BACKGROUND Alzheimer’s disease(AD)is a neurodegenerative condition characterized by oxidative stress and neuroinflammation.Tanshinone ⅡA(Tan-ⅡA),a bioactive compound isolated from Salvia miltiorrhiza plants,has sho...BACKGROUND Alzheimer’s disease(AD)is a neurodegenerative condition characterized by oxidative stress and neuroinflammation.Tanshinone ⅡA(Tan-ⅡA),a bioactive compound isolated from Salvia miltiorrhiza plants,has shown potential neuroprotective effects;however,the mechanisms underlying such a function remain unclear.AIM To investigate potential Tan-ⅡA neuroprotective effects in AD and to elucidate their underlying mechanisms.METHODS Hematoxylin and eosin staining was utilized to analyze structural brain tissue morphology.To assess changes in oxidative stress and neuroinflammation,we performed enzyme-linked immunosorbent assay and western blotting.Additionally,the effect of Tan-ⅡA on AD cell models was evaluated in vitro using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.Genetic changes related to the long non-coding RNA(lncRNA)nuclear-enriched abundant transcript 1(NEAT1)/microRNA(miRNA,miR)-291a-3p/member RAS oncogene family Rab22a axis were assessed through reverse transcription quantitative polymerase chain reaction.RESULTS In vivo,Tan-ⅡA treatment improved neuronal morphology and attenuated oxidative stress and neuroinflammation in the brain tissue of AD mice.In vitro experiments showed that Tan-ⅡA dose-dependently ameliorated the amyloid-beta 1-42-induced reduction of neural stem cell viability,apoptosis,oxidative stress,and neuroinflammation.In this process,the lncRNA NEAT1-a potential therapeutic target-is highly expressed in AD mice and downregulated via Tan-ⅡA treatment.Mechanistically,NEAT1 promotes the transcription and translation of Rab22a via miR-291a-3p,which activates nuclear factor kappa-B(NF-κB)signaling,leading to activation of the pro-apoptotic B-cell lymphoma 2-associated X protein and inhibition of the anti-apoptotic B-cell lymphoma 2 protein,which exacerbates AD.Tan-ⅡA intervention effectively blocked this process by inhibiting the NEAT1/miR-291a-3p/Rab22a axis and NF-κB signaling.CONCLUSION This study demonstrates that Tan-ⅡA exerts neuroprotective effects in AD by modulating the NEAT1/miR-291a-3p/Rab22a/NF-κB signaling pathway,serving as a foundation for the development of innovative approaches for AD therapy.展开更多
BACKGROUND MicroRNAs(miRNAs)regulate gene expression and play a critical role in cancer physiology.However,there is still a limited understanding of the function and regulatory mechanism of miRNAs in gastric cancer(GC...BACKGROUND MicroRNAs(miRNAs)regulate gene expression and play a critical role in cancer physiology.However,there is still a limited understanding of the function and regulatory mechanism of miRNAs in gastric cancer(GC).AIM To investigate the role and molecular mechanism of miRNA-145-5p(miR145-5p)in the progression of GC.METHODS Real-time polymerase chain reaction(RT-PCR)was used to detect miRNA expression in human GC tissues and cells.The ability of cancer cells to migrate and invade was assessed using wound-healing and transwell assays,respectively.Cell proliferation was measured using cell counting kit-8 and colony formation assays,and apoptosis was evaluated using flow cytometry.Expression of the epithelial-mesenchymal transition(EMT)-associated protein was determined by Western blot.Targets of miR-145-5p were predicated using bioinformatics analysis and verified using a dual-luciferase reporter system.Serpin family E member 1(SERPINE1)expression in GC tissues and cells was evaluated using RT-PCR and immunohistochemical staining.The correlation between SERPINE1 expression and overall patient survival was determined using Kaplan-Meier plot analysis.The association between SERPINE1 and GC progression was also tested.A rescue experiment of SERPINE1 overexpression was conducted to verify the relationship between this protein and miR-145-5p.The mechanism by which miR-145-5p influences GC progression was further explored by assessing tumor formation in nude mice.RESULTS GC tissues and cells had reduced miR-145-5p expression and SERPINE1 was identified as a direct target of this miRNA.Overexpression of miR-145-5p was associated with decreased GC cell proliferation,invasion,migration,and EMT,and these effects were reversed by forcing SERPINE1 expression.Kaplan-Meier plot analysis revealed that patients with higher SERPINE1 expression had a shorter survival rate than those with lower SERPINE1 expression.Nude mouse tumorigenesis experiments confirmed that miR-145-5p targets SERPINE1 to regulate extracellular signal-regulated kinase-1/2(ERK1/2).CONCLUSION This study found that miR-145-5p inhibits tumor progression and is expressed in lower amounts in patients with GC.MiR-145-5p was found to affect GC cell proliferation,migration,and invasion by negatively regulating SERPINE1 levels and controlling the ERK1/2 pathway.展开更多
Bladder cancer is a urological tumor with high rates of recurrence despite recent advances in novel therapies.Many proteins involved in the molecular mechanisms are currently an enigma,especially the transmembrane 9 s...Bladder cancer is a urological tumor with high rates of recurrence despite recent advances in novel therapies.Many proteins involved in the molecular mechanisms are currently an enigma,especially the transmembrane 9 superfamily member 1 which has an unclear function.Wei et al published the function and mechanism of this protein,and showed that it could participate in the proliferation,migration and invasion of tumor cells in bladder cancer,therefore treatments directed against this protein may be beneficial in avoiding this condition.展开更多
In this editorial we comment on the article by Wei et al,published in the recent issue of the World Journal of Clinical Oncology.The authors investigated the role of Transmembrane 9 superfamily member 1(TM9SF1)protein...In this editorial we comment on the article by Wei et al,published in the recent issue of the World Journal of Clinical Oncology.The authors investigated the role of Transmembrane 9 superfamily member 1(TM9SF1)protein in bladder cancer(BC)carcinogenesis.Lentiviral vectors were used to achieve silencing or overexpression of TM9SF1 gene in three BC cell lines.These cell lines were then subject to cell counting kit 8,wound-healing assay,transwell assay,and flow cytometry.Proliferation,migration,and invasion of BC cells were increased in cell lines subjected to TM9SF1 overexpression.TM9SF1 silencing inhibited proliferation,migration and invasion of BC cells.The authors conclude that TM9SF1 may be an oncogene in bladder cancer pathogenesis.展开更多
Previous studies have reported upregulation of heme oxygenase-1 in different central nervous system injury models.Heme oxygenase-1 plays a critical anti-inflammatory role and is essential for regulating cellular redox...Previous studies have reported upregulation of heme oxygenase-1 in different central nervous system injury models.Heme oxygenase-1 plays a critical anti-inflammatory role and is essential for regulating cellular redox homeostasis.Metformin is a classic drug used to treat type 2 diabetes that can inhibit ferroptosis.Previous studies have shown that,when used to treat cardiovascular and digestive system diseases,metformin can also upregulate heme oxygenase-1 expression.Therefore,we hypothesized that heme oxygenase-1 plays a significant role in mediating the beneficial effects of metformin on neuronal ferroptosis after spinal cord injury.To test this,we first performed a bioinformatics analysis based on the GEO database and found that heme oxygenase-1 was upregulated in the lesion of rats with spinal cord injury.Next,we confirmed this finding in a rat model of T9 spinal cord compression injury that exhibited spinal cord nerve cell ferroptosis.Continuous intraperitoneal injection of metformin for 14 days was found to both upregulate heme oxygenase-1 expression and reduce neuronal ferroptosis in rats with spinal cord injury.Subsequently,we used a lentivirus vector to knock down heme oxygenase-1 expression in the spinal cord,and found that this significantly reduced the effect of metformin on ferroptosis after spinal cord injury.Taken together,these findings suggest that metformin inhibits neuronal ferroptosis after spinal cord injury,and that this effect is partially dependent on upregulation of heme oxygenase-1.展开更多
清道夫受体B类成员1(scavenger receptor class B member 1,Scarb1)作为细胞表面的膜受体蛋白,在动物体色形成过程中发挥重要作用。为了解Scarb1基因在虹鳟(Oncorhynchus mykiss)体色形成中的作用,通过RACE技术克隆虹鳟Scarb1基因的cDN...清道夫受体B类成员1(scavenger receptor class B member 1,Scarb1)作为细胞表面的膜受体蛋白,在动物体色形成过程中发挥重要作用。为了解Scarb1基因在虹鳟(Oncorhynchus mykiss)体色形成中的作用,通过RACE技术克隆虹鳟Scarb1基因的cDNA全长,并运用生物信息学方法分析该基因及其序列结构特征,同时使用实时定量PCR(qRT-PCR)检测Scarb1基因在虹鳟、金鳟及其杂交F_(1)代不同发育阶段和不同组织中的表达情况。结果显示,Scarb1基因cDNA序列全长为2032 bp,开放阅读框1479 bp,编码492个氨基酸,预测分子质量为55.59 ku,且存在保守的CD36结构域和2个跨膜区。序列同源性分析显示,虹鳟与其他硬骨鱼类的氨基酸序列相似度为71.69%~98.58%;进化分析发现虹鳟与大马哈鱼亲缘关系最近,与哺乳动物和两栖动物亲缘关系最远。qRT-PCR检测结果表明,在虹鳟与金鳟胚胎期及出膜后各发育阶段中Scarb1基因均有不同程度表达,且表现为受精期至桑葚期的表达显著高于其他时期(P<0.05),对虹鳟与金鳟同一时期的差异分析发现该基因在胚胎期及7 dph(days post hatch)、1 M(month post hatch)、2 M和3 M时期中表达存在显著差异(P<0.01)。Scarb1基因在虹鳟与金鳟背部皮肤和背部肌肉等色素沉着性组织中表达量较高,其中在金鳟背部皮肤的表达量显著高于虹鳟(P<0.01)。此外,Scarb1基因在杂交F_(1)代不同发育时期中的表达规律与双亲一致;在不同组织中,该基因在杂交F_(1)代背部皮肤中的表达量介于双亲之间。研究结果表明,Scarb1基因与虹鳟体色形成有着密切关系,且可能在金鳟黄色体色形成过程中发挥重要作用。展开更多
目的:探究核受体亚家族4A组成员1(nuclear receptor subfamily 4 group A member 1,Nr4a1)Nr4a1激动剂胞孢子酮B(cytosporone B,Csn-B)对小鼠噪声暴露后听力损失的治疗作用。方法:采用双氧水刺激HEI-OC1毛细胞系的方法构建氧化应激细胞...目的:探究核受体亚家族4A组成员1(nuclear receptor subfamily 4 group A member 1,Nr4a1)Nr4a1激动剂胞孢子酮B(cytosporone B,Csn-B)对小鼠噪声暴露后听力损失的治疗作用。方法:采用双氧水刺激HEI-OC1毛细胞系的方法构建氧化应激细胞模型;通过实时荧光定量PCR(quantitative real-time PCR,q PCR)检测细胞中Nr4a1的mRNA表达水平;分别通过细胞计数试剂盒(cell counting kit-8,CCK8)及流式细胞术的方法检测细胞活力和细胞凋亡水平以评估Csn-B预处理后经双氧水刺激的细胞状态。构建小鼠噪声性听力损失模型,运用qPCR和免疫荧光技术检测噪声暴露后Nr4a1在小鼠耳蜗中的表达;通过检测听性脑干反应(auditory brainstem response,ABR)评估噪声暴露后以及Csn-B连续治疗13 d后小鼠听力情况。结果:双氧水刺激后HEI-OC1毛细胞中Nr4a1表达上升,细胞活力显著下降,凋亡水平显著升高;Csn-B预处理HEI-OC1毛细胞经双氧水刺激,细胞活力显著高于对照组而凋亡水平则显著低于对照组。在体研究结果显示,噪声暴露后小鼠听力显著降低,Nr4a1在小鼠耳蜗中的表达水平显著升高。噪声暴露后经Csn-B治疗小鼠听力得到改善,主要表现为Click-ABR以及Tone Burst-ABR(4000、8000Hz处)阈值下降。结论:Nr4a1激动剂Csn-B增强内耳毛细胞对氧化应激损伤的抵御能力,部分改善噪声暴露后的小鼠听力。展开更多
基金Supported by 2020 Guangxi Zhuang Autonomous Region Health Care Commission Self-Financing Research Projects,No.Z202000962023 Guangxi University Young and Middle-Aged Teachers’Basic Research Ability Improvement Project,No.2023KY0091+1 种基金National Natural Science Foundation of China,No.82260241the Natural Science Foundation of Guangxi Province,No.2015GXNSFAA139171 and No.2020GXNSFAA259053.
文摘BACKGROUND Alzheimer’s disease(AD)is a neurodegenerative condition characterized by oxidative stress and neuroinflammation.Tanshinone ⅡA(Tan-ⅡA),a bioactive compound isolated from Salvia miltiorrhiza plants,has shown potential neuroprotective effects;however,the mechanisms underlying such a function remain unclear.AIM To investigate potential Tan-ⅡA neuroprotective effects in AD and to elucidate their underlying mechanisms.METHODS Hematoxylin and eosin staining was utilized to analyze structural brain tissue morphology.To assess changes in oxidative stress and neuroinflammation,we performed enzyme-linked immunosorbent assay and western blotting.Additionally,the effect of Tan-ⅡA on AD cell models was evaluated in vitro using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.Genetic changes related to the long non-coding RNA(lncRNA)nuclear-enriched abundant transcript 1(NEAT1)/microRNA(miRNA,miR)-291a-3p/member RAS oncogene family Rab22a axis were assessed through reverse transcription quantitative polymerase chain reaction.RESULTS In vivo,Tan-ⅡA treatment improved neuronal morphology and attenuated oxidative stress and neuroinflammation in the brain tissue of AD mice.In vitro experiments showed that Tan-ⅡA dose-dependently ameliorated the amyloid-beta 1-42-induced reduction of neural stem cell viability,apoptosis,oxidative stress,and neuroinflammation.In this process,the lncRNA NEAT1-a potential therapeutic target-is highly expressed in AD mice and downregulated via Tan-ⅡA treatment.Mechanistically,NEAT1 promotes the transcription and translation of Rab22a via miR-291a-3p,which activates nuclear factor kappa-B(NF-κB)signaling,leading to activation of the pro-apoptotic B-cell lymphoma 2-associated X protein and inhibition of the anti-apoptotic B-cell lymphoma 2 protein,which exacerbates AD.Tan-ⅡA intervention effectively blocked this process by inhibiting the NEAT1/miR-291a-3p/Rab22a axis and NF-κB signaling.CONCLUSION This study demonstrates that Tan-ⅡA exerts neuroprotective effects in AD by modulating the NEAT1/miR-291a-3p/Rab22a/NF-κB signaling pathway,serving as a foundation for the development of innovative approaches for AD therapy.
文摘BACKGROUND MicroRNAs(miRNAs)regulate gene expression and play a critical role in cancer physiology.However,there is still a limited understanding of the function and regulatory mechanism of miRNAs in gastric cancer(GC).AIM To investigate the role and molecular mechanism of miRNA-145-5p(miR145-5p)in the progression of GC.METHODS Real-time polymerase chain reaction(RT-PCR)was used to detect miRNA expression in human GC tissues and cells.The ability of cancer cells to migrate and invade was assessed using wound-healing and transwell assays,respectively.Cell proliferation was measured using cell counting kit-8 and colony formation assays,and apoptosis was evaluated using flow cytometry.Expression of the epithelial-mesenchymal transition(EMT)-associated protein was determined by Western blot.Targets of miR-145-5p were predicated using bioinformatics analysis and verified using a dual-luciferase reporter system.Serpin family E member 1(SERPINE1)expression in GC tissues and cells was evaluated using RT-PCR and immunohistochemical staining.The correlation between SERPINE1 expression and overall patient survival was determined using Kaplan-Meier plot analysis.The association between SERPINE1 and GC progression was also tested.A rescue experiment of SERPINE1 overexpression was conducted to verify the relationship between this protein and miR-145-5p.The mechanism by which miR-145-5p influences GC progression was further explored by assessing tumor formation in nude mice.RESULTS GC tissues and cells had reduced miR-145-5p expression and SERPINE1 was identified as a direct target of this miRNA.Overexpression of miR-145-5p was associated with decreased GC cell proliferation,invasion,migration,and EMT,and these effects were reversed by forcing SERPINE1 expression.Kaplan-Meier plot analysis revealed that patients with higher SERPINE1 expression had a shorter survival rate than those with lower SERPINE1 expression.Nude mouse tumorigenesis experiments confirmed that miR-145-5p targets SERPINE1 to regulate extracellular signal-regulated kinase-1/2(ERK1/2).CONCLUSION This study found that miR-145-5p inhibits tumor progression and is expressed in lower amounts in patients with GC.MiR-145-5p was found to affect GC cell proliferation,migration,and invasion by negatively regulating SERPINE1 levels and controlling the ERK1/2 pathway.
文摘Bladder cancer is a urological tumor with high rates of recurrence despite recent advances in novel therapies.Many proteins involved in the molecular mechanisms are currently an enigma,especially the transmembrane 9 superfamily member 1 which has an unclear function.Wei et al published the function and mechanism of this protein,and showed that it could participate in the proliferation,migration and invasion of tumor cells in bladder cancer,therefore treatments directed against this protein may be beneficial in avoiding this condition.
文摘In this editorial we comment on the article by Wei et al,published in the recent issue of the World Journal of Clinical Oncology.The authors investigated the role of Transmembrane 9 superfamily member 1(TM9SF1)protein in bladder cancer(BC)carcinogenesis.Lentiviral vectors were used to achieve silencing or overexpression of TM9SF1 gene in three BC cell lines.These cell lines were then subject to cell counting kit 8,wound-healing assay,transwell assay,and flow cytometry.Proliferation,migration,and invasion of BC cells were increased in cell lines subjected to TM9SF1 overexpression.TM9SF1 silencing inhibited proliferation,migration and invasion of BC cells.The authors conclude that TM9SF1 may be an oncogene in bladder cancer pathogenesis.
文摘Previous studies have reported upregulation of heme oxygenase-1 in different central nervous system injury models.Heme oxygenase-1 plays a critical anti-inflammatory role and is essential for regulating cellular redox homeostasis.Metformin is a classic drug used to treat type 2 diabetes that can inhibit ferroptosis.Previous studies have shown that,when used to treat cardiovascular and digestive system diseases,metformin can also upregulate heme oxygenase-1 expression.Therefore,we hypothesized that heme oxygenase-1 plays a significant role in mediating the beneficial effects of metformin on neuronal ferroptosis after spinal cord injury.To test this,we first performed a bioinformatics analysis based on the GEO database and found that heme oxygenase-1 was upregulated in the lesion of rats with spinal cord injury.Next,we confirmed this finding in a rat model of T9 spinal cord compression injury that exhibited spinal cord nerve cell ferroptosis.Continuous intraperitoneal injection of metformin for 14 days was found to both upregulate heme oxygenase-1 expression and reduce neuronal ferroptosis in rats with spinal cord injury.Subsequently,we used a lentivirus vector to knock down heme oxygenase-1 expression in the spinal cord,and found that this significantly reduced the effect of metformin on ferroptosis after spinal cord injury.Taken together,these findings suggest that metformin inhibits neuronal ferroptosis after spinal cord injury,and that this effect is partially dependent on upregulation of heme oxygenase-1.
文摘清道夫受体B类成员1(scavenger receptor class B member 1,Scarb1)作为细胞表面的膜受体蛋白,在动物体色形成过程中发挥重要作用。为了解Scarb1基因在虹鳟(Oncorhynchus mykiss)体色形成中的作用,通过RACE技术克隆虹鳟Scarb1基因的cDNA全长,并运用生物信息学方法分析该基因及其序列结构特征,同时使用实时定量PCR(qRT-PCR)检测Scarb1基因在虹鳟、金鳟及其杂交F_(1)代不同发育阶段和不同组织中的表达情况。结果显示,Scarb1基因cDNA序列全长为2032 bp,开放阅读框1479 bp,编码492个氨基酸,预测分子质量为55.59 ku,且存在保守的CD36结构域和2个跨膜区。序列同源性分析显示,虹鳟与其他硬骨鱼类的氨基酸序列相似度为71.69%~98.58%;进化分析发现虹鳟与大马哈鱼亲缘关系最近,与哺乳动物和两栖动物亲缘关系最远。qRT-PCR检测结果表明,在虹鳟与金鳟胚胎期及出膜后各发育阶段中Scarb1基因均有不同程度表达,且表现为受精期至桑葚期的表达显著高于其他时期(P<0.05),对虹鳟与金鳟同一时期的差异分析发现该基因在胚胎期及7 dph(days post hatch)、1 M(month post hatch)、2 M和3 M时期中表达存在显著差异(P<0.01)。Scarb1基因在虹鳟与金鳟背部皮肤和背部肌肉等色素沉着性组织中表达量较高,其中在金鳟背部皮肤的表达量显著高于虹鳟(P<0.01)。此外,Scarb1基因在杂交F_(1)代不同发育时期中的表达规律与双亲一致;在不同组织中,该基因在杂交F_(1)代背部皮肤中的表达量介于双亲之间。研究结果表明,Scarb1基因与虹鳟体色形成有着密切关系,且可能在金鳟黄色体色形成过程中发挥重要作用。