Photovoltaic(PV)systems utilize maximum power point tracking(MPPT)controllers to optimize power output amidst varying environmental conditions.However,the presence of multiple peaks resulting from partial shading pose...Photovoltaic(PV)systems utilize maximum power point tracking(MPPT)controllers to optimize power output amidst varying environmental conditions.However,the presence of multiple peaks resulting from partial shading poses a challenge to the tracking operation.Under partial shade conditions,the global maximum power point(GMPP)may be missed by most traditional maximum power point tracker.The flower pollination algorithm(FPA)and particle swarm optimization(PSO)are two examples of metaheuristic techniques that can be used to solve the issue of failing to track the GMPP.This paper discusses and resolves all issues associated with using the standard FPA method as the MPPT for PV systems.The first issue is that the initial values of pollen are determined randomly at first,which can lead to premature convergence.To minimize the convergence time and enhance the possibility of detecting the GMPP,the initial pollen values were modified so that they were near the expected peak positions.Secondly,in the modified FPA,population fitness and switch probability values both influence swapping between two-mode optimization,which may improve the flower pollination algorithm’s tracking speed.The performance of the modified flower pollination algorithm(MFPA)is assessed through a comparison with the perturb and observe(P&O)method and the standard FPA method.The simulation results reveal that under different partial shading conditions,the tracking time for MFPA is 0.24,0.24,0.22,and 0.23 s,while for FPA,it is 0.4,0.35,0.45,and 0.37 s.Additionally,the simulation results demonstrate that MFPA achieves higher MPPT efficiency in the same four partial shading conditions,with values of 99.98%,99.90%,99.93%,and 99.26%,compared to FPA with MPPT efficiencies of 99.93%,99.88%,99.91%,and 99.18%.Based on the findings from simulations,the proposed method effectively and accurately tracks the GMPP across a diverse set of environmental conditions.展开更多
Chlorophyll fluorescence emission, pigment composition and photosynthetic rate of shade-grown cotton ( Gossypium hirsutum L.) plants were measured immediately after suddenly exposing to full sunlight and at regular in...Chlorophyll fluorescence emission, pigment composition and photosynthetic rate of shade-grown cotton ( Gossypium hirsutum L.) plants were measured immediately after suddenly exposing to full sunlight and at regular intervals there after within 15 d. Photoinhibition occurred in shade-grown cotton leaves immediately after exposed to full sunlight. The chlorophyll fluorescence parameter F-v/F-m and PhiPS II, which reflect the efficiency of PS II,obviously decreased in shade-grown leaves, much lower than that of the full sunlight-grown leaves. On the contrary, F-o value was sharply increased. Neither of these parameters could completely recover till next morning. The photoinhibition was chronic and continued for about 4 d, while the F-v/F-m and the net photosynthetic rate ( P-n) continued to decline, then began to increase gradually 6 d later and turned stable after 10 - 12 d, appearing as an acclimation phenomenon. However, the final value of F-v/F-m and P-n did not reach the level as in those leaves grown in the full sunlight ever before. The final P-n was higher by 60% than that before exposure, but lower for more than 40% than that of the full sunlight-grown leaves. The most notable response of chloroplast pigment composition was a pronounced increase in the pool size of carotenoids in xanthophyll cycle over a period of 3 d. The results indicated that when shade-grown cotton seedlings were suddenly transferred to the full sunlight, the decline of F-v/F-m and P-n might associate with the damage of the PS II reaction center. During the light acclimation, photoprotective mechanisms such as the xanthophyll cycle-dependent energy dissipation were increased, so that photodamage in leaves transferred from low to high light might be reduced.展开更多
Ths paper introduces a transducer for measuring suspended sand particles, and a shading principle to eliminate the blind point in the near field of sound source axis. By adopting the front matching layer and back line...Ths paper introduces a transducer for measuring suspended sand particles, and a shading principle to eliminate the blind point in the near field of sound source axis. By adopting the front matching layer and back liner, the transducer’s fraquency band becomes 2. 1 times wider and the sensitivity 1. 6 times higher. The transducer is characterized by simple structure and portability.展开更多
The paper presents new MPPT algorithm for partial shading of series connected PV cells/modules. In the shaded condition, there is a problem of decrease in the total output power of the PV system. The proposed algorith...The paper presents new MPPT algorithm for partial shading of series connected PV cells/modules. In the shaded condition, there is a problem of decrease in the total output power of the PV system. The proposed algorithm aims to reduce this problem by active bypassing of the shaded cells. The algorithm senses the irradiance of each cell and performs calculation in order to decide if to actively bypass the shaded cell or not. Extensive simulation results proved that algorithm works and increases the output power under partial shading conditions. Furthermore, the algorithm becomes more efficient when the number of cells is increased.展开更多
A robust single-sensor global maximum power point tracking(MPPT)strategy based on modern optimization for photovoltaic systems considering shading conditions is proposed in this work.The proposed strategy is designed ...A robust single-sensor global maximum power point tracking(MPPT)strategy based on modern optimization for photovoltaic systems considering shading conditions is proposed in this work.The proposed strategy is designed for battery charging applications and direct current(DC)microgrids.Under normal operation,the curve of photovoltaic(PV)output power versus PV voltage contains only a single peak point.This point can be simply captured using any traditional tracking method like perturb and observe.However,this situation is completely different during the shadowing effect where several peaks appear on the power voltage curve.Most of these peaks are local with only a single global.This condition leads to the incapability of traditional tracking approaches to extract the global peak power due to their inability to distinguish between the local and global peak points.They are trapped in the first peak point even when the point is local.Therefore,global tracking approaches based on modern optimization are highly required.A recent marine predators algorithm(MPA)has been used to solve the problem of tracking the global MPP under shadowing influence.Different shadowing scenarios are used to test and evaluate the performance of MPA based tracker.The obtained results are compared with particle swarm optimization(PSO)and ant lion optimizer(ALO).The results of the comparison con-firmed the effectiveness and robustness of the proposed global MPPT-MPA based tracker over PSO and ALO.展开更多
A new method to generate shaded display of objects is presented in this paper.Based on shading knowledge like that used by painters,it can work quickly and flexibly.Users may produce shading effects with different sty...A new method to generate shaded display of objects is presented in this paper.Based on shading knowledge like that used by painters,it can work quickly and flexibly.Users may produce shading effects with different styles on purposes,while the cost time almost remains constant.An experimental system is implemented,and some results are obtained.展开更多
Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types withi...Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types within the canopy are poorly quantified.In this study,the seasonality of leaf chlorophyll,nitrogen(N),and phosphorus(P)were quantified vertically along the canopy of four major tree species and two types of herbs in a temperate deciduous forest.The role of shade tolerance in shaping the seasonal variation and vertical differentiation was examined.During the entire season,chlorophyll content showed a distinct asymmetric unimodal pattern for all species,with greater chlorophyll levels in autumn than in spring,and the timing of peak chlorophyll per leaf area gradually decreased as shade tolerance increased.Chlorophyll a:b ratios gradually decreased with increasing shade tolerance.Leaf N and P contents sharply declined during leaf expansion,remained steady in the mature stage and decreased again during leaf senescence.Over the seasons,the lower canopy layer had significantly higher chlorophyll per leaf mass but not chlorophyll per leaf area than the upper canopy layer regardless of degree of shade tolerance.However,N and P per leaf area of intermediate shade-tolerant and fully shade-tolerant tree species were significantly higher in the upper canopy than in the lower.Seasonal variations in N:P ratios suggest changes in N or P limitation.These findings indicate that shade tolerance is a key feature shaping inter-specific differences in leaf chlorophyll,N,and P contents as well as their seasonality in temperate deciduous forests,which have significant implications for modeling leaf photosynthesis and ecosystem production.展开更多
Characterizing foliar trait variation in sun and shade leaves can provide insights into inter-and intra-species resource use strategies and plant response to environmental change.However,datasets with records of multi...Characterizing foliar trait variation in sun and shade leaves can provide insights into inter-and intra-species resource use strategies and plant response to environmental change.However,datasets with records of multiple foliar traits from the same individual and including shade leaves are sparse,which limits our ability to investigate trait-trait,trait-environment relationships and trait coordination in both sun and shade leaves.We presented a comprehensive dataset of 15 foliar traits from sun and shade leaves sampled with leaf spectroscopy,including 424 individuals of 110 plant species from 19 sites across eastern North America.We investigated trait variation,covariation,scaling relationships with leaf mass,and the effects of environment,canopy position,and taxonomy on trait expression.Generally,sun leaves had higher leaf mass per area,nonstructural carbohydrates and total phenolics,lower mass-based chlorophyll a+b,carotenoids,phosphorus,and potassium,but exhibited species-specific characteristics.Covariation between sun and shade leaf traits,and trait-environment relationships were overall consistent across species.The main dimensions of foliar trait variation in seed plants were revealed including leaf economics traits,photosynthetic pigments,defense,and structural traits.Taxonomy and canopy position collectively explained most of the foliar trait variation.This study highlights the importance of including intra-individual and intra-specific trait variation to improve our understanding of ecosystem functions.Our findings have implications for efficient field sampling,and trait mapping with remote sensing.展开更多
Maximum power point tracking(MPPT)technology plays a key role in improving the energy conversion efficiency of photovoltaic(PV)systems,especially when multiple local maximum power points(LMPPs)occur under partial shad...Maximum power point tracking(MPPT)technology plays a key role in improving the energy conversion efficiency of photovoltaic(PV)systems,especially when multiple local maximum power points(LMPPs)occur under partial shading conditions(PSC).It is necessary to modify the operating point efficiently and accurately with the help of MPPT technology to maximize the collected power.Even though a lot of research has been carried out and impressive progress achieved for MPPT technology,it still faces some challenges and dilemmas.Firstly,the mathematical model established for PV cells is not precise enough.Second,the existing algorithms are often optimized for specific conditions and lack comprehensive adaptability to the actual operating environment.Besides,a single algorithm may not be able to give full play to its advantages.In the end,the selection criteria for choosing the suitable MPPT algorithm/converter combination to achieve better performance in a given scenario is very limited.Therefore,this paper systematically discusses the current research status and challenges faced by PV MPPT technology around the three aspects of MPPT models,algorithms,and hardware implementation.Through in-depth thinking and discussion,it also puts forward positive perspectives on future development,and five forward-looking solutions to improve the performance of PV systems MPPT are suggested.展开更多
A photovoltaic (PV) string with multiple modules with bypass diodes frequently deployed on a variety of autonomous PV systems may present multiple power peaks under uneven shading. For optimal solar harvesting, there ...A photovoltaic (PV) string with multiple modules with bypass diodes frequently deployed on a variety of autonomous PV systems may present multiple power peaks under uneven shading. For optimal solar harvesting, there is a need for a control schema to force the PV string to operate at global maximum power point (GMPP). While a lot of tracking methods have been proposed in the literature, they are usually complex and do not fully take advantage of the available characteristics of the PV array. This work highlights how the voltage at operating point and the forward voltage of the bypass diode are considered to design a global maximum power point tracking (GMPPT) algorithm with a very limited global search phase called Fast GMPPT. This algorithm successfully tracks GMPP between 94% and 98% of the time under a theoretical evaluation. It is then compared against Perturb and Observe, Deterministic Particle Swarm Optimization, and Grey Wolf Optimization under a sequence of irradiance steps as well as a power-over-voltage characteristics profile that mimics the electrical characteristics of a PV string under varying partial shading conditions. Overall, the simulation with the sequence of irradiance steps shows that while Fast GMPPT does not have the best convergence time, it has an excellent convergence rate as well as causes the least amount of power loss during the global search phase. Experimental test under varying partial shading conditions shows that while the GMPPT proposal is simple and lightweight, it is very performant under a wide range of dynamically varying partial shading conditions and boasts the best energy efficiency (94.74%) out of the 4 tested algorithms.展开更多
Although many photorealistic relighting methods provide a way to change the illumination of objects in a digital photograph, it is currently difficult to relight digital illustrations having a cartoon shading style. T...Although many photorealistic relighting methods provide a way to change the illumination of objects in a digital photograph, it is currently difficult to relight digital illustrations having a cartoon shading style. The main difference between photorealistic and cartoon shading styles is that cartoon shading is characterized by soft color quantization and nonlinear color variations that cause noticeable reconstruction errors under a physical reflectance assumption, such as Lambertian reflection. To handle this non-photorealistic shading property, we focus on shading analysis of the most fundamental cartoon shading technique. Based on the color map shading representation, we propose a simple method to determine the input shading as that of a smooth shape with a nonlinear reflectance property. We have conducted simple ground-truth evaluations to compare our results to those obtained by other approaches.展开更多
Solar photo voltaic array (SPVA) generates a smaller amount of power than the standard rating of the panel due to the partial shading effect. Since the modules of the arrays receive different solar irradiations, the...Solar photo voltaic array (SPVA) generates a smaller amount of power than the standard rating of the panel due to the partial shading effect. Since the modules of the arrays receive different solar irradiations, the P-V characteristics ofphotovoltaic (PV) arrays contain multiple peaks or local peaks. This paper presents an innovative method (magic square) in order to increase the generated power by configuring the modules of a shaded photo- voltaic array. In this approach, the physical location of the modules in the total cross tied (TCT) connected in the solar PV array is rearranged based on the magic square arrangement pattern. This connection is done without altering any electrical configurations of the modules in the PV array. This method can distribute the shading effect over the entire PV array, without concentrating on any row of modules and can achieve global peaks. For different types of shading patterns, the output power of the solar PV array with the proposed magic square configuration is compared with the traditional configurations and the performance is calculated. This paper presents a new reconfiguration technique for solar PV arrays, which increases the PV power under different shading conditions. The proposed technique facilitates the distribution of the effect of shading over the entire array, thereby, reducing the mismatch losses caused by partial shading. The theoretical calculations are tested through simulations in Matlab/ Simulink to validate the results. A comparison of power loss for different types of topologies under different types of shading patterns for a 4 × 4 array is also explained.展开更多
Gradient slope, aspect slope, profiling and contourlines are important topographic parameters that can be derived from digital elevation data obtained from different sources with exploitation of different interpolatio...Gradient slope, aspect slope, profiling and contourlines are important topographic parameters that can be derived from digital elevation data obtained from different sources with exploitation of different interpolation techniques. Geostatistical interpolation methods such as ordinary kriging models constitute reliable alternatives to deterministic approaches in creation of continuous surface models from discrete elevation data. This research aimed at extraction, analysis, and evaluation of different terrain parameters elevation measurements with the use of different ordinary kriging models including the linear model, the circular model, the spherical model, the exponential models, and the Gaussian model. Different ordinary kriging models under ESRI ArcView 3.3 package along with its 3D analyst and Spatial analysis extensions have been exploited in extraction of gradient slope maps, aspect slope maps, and hillshade maps in addition to contourline maps from a sample of elevation data. Visual analysis of the gradient slope maps shows great similarities between the slope maps from the linear, circular, spherical, and exponential OK models, however, that from OK Gaussian models look very different as different sizes and arrangements of the colour patches, referring to different tones and different textures where smooth tones and smooth textures dominate the gradient slope map from the OK Gaussian model. Thus, gradient slope degradation and smoothing are considerably high in the gradient slope map from Gaussian model compared to the slope maps from the other four OK models. Also, the mean slope in the Gaussian model records the lowest value with the lowest value of the standard deviation of slopes in the same map reflecting less structured and highly smoothed gradient slope map compared to the slope maps from the other OK models. Thus, similar sizes of the colour patches and similar tones and similar texture dominate the different aspect slope maps. This is not the case in Figure 2(e) which depicts the aspect slope map extracted with the use of the Gaussian OK model where the smooth colour patches, smooth tones and smooth textures can be observed. Also, the Aspect map, hillshade map and the contourline map from Gaussian OK model are visually and statistically different from their corresponding maps created with the other four OK models. Finally, analysis of extracted two groups of profiles shows that the profiles extracted with the use of linear, circular, spherical, and exponential OK models run close and show highly corrugated and varied terrain. This is different from the profiles with the use of the Gaussian model which are less corrugated and tend to smooth and approximate different parts of the terrains.展开更多
The development of alternative renewable energy technologies is crucial for alleviating climate change and promoting energy transformation.Of the currently available technologies,solar energy has promising application...The development of alternative renewable energy technologies is crucial for alleviating climate change and promoting energy transformation.Of the currently available technologies,solar energy has promising application prospects owing to its merits of being clean,safe,and sustainable.Solar energy is converted into electricity through photovoltaic(PV)cells;however,the overall conversion efficiency of PV modules is relatively low,and most of the captured solar energy is dissipated in the form of heat.This not only reduces the power generation efficiency of solar cells but may also have a negative impact on the electrical parameters of PV modules and the service life of PV cells.To overcome the shortcomings,an efficient approach involves combining a PV cell with a thermoelectric generator(TEG)to form hybrid PV-TEG systems,which simultaneously improve the energy conversion efficiency of the PV system by reducing the operating temperature of the PV modules and increasing the power output by utilizing the waste heat generated from the PV system to generate electricity via the TEGs.Based on a thorough examination of the literature,this study comprehensively reviews 14 maximum power point tracking(MPPT)algorithms currently applied to hybrid PV-TEG systems and classifies them into five major categories for further discussion,namely conventional,mathematics-based,metaheuristic,artificial intelligence,and other algorithms.This review aims to inspire advanced ideas and research on MPPT algorithms for hybrid PV-TEG systems.展开更多
A field experiment was performed to investigate the physiological mechanism of the simultaneous stresses of waterlogging and shading on leaf photosynthetic and senescence during three growth stages of summer maize.The...A field experiment was performed to investigate the physiological mechanism of the simultaneous stresses of waterlogging and shading on leaf photosynthetic and senescence during three growth stages of summer maize.The responses of leaf gas exchange parameters and antioxidant enzyme activities of the summer maize hybrids Denghai 605(DH605)to waterlogging(W),shading(S),and their combination(W+S)for 6 days at the third leaf stage(V3),the sixth leaf stage(V6),and the tasseling stage(VT)were recorded.Shading,waterlogging,and their combination disturbed the activities of protective enzymes and increased the contents of H2O2and O-2,accelerating leaf senescence and disordering photosynthetic characteristics.Under waterlogging,shading and their combination,leaf Pn,the photo-assimilates and grain yield was decreased.The greatest reduction for waterlogging and the combined stresses occurred at V3 and that for shading stress occurred at VT.The individual and combined stresses reduced the activities of protective enzymes and inhibited photosynthesis,reducing the accumulation of photosynthetic compounds and thereby yield.Waterlogging and the combined stresses at the V3 stage showed the greatest effect on leaf photosynthetic and senescence,followed by the V6 and VT stages.The greatest effect for shading stress occurred at VT,followed by the V6 and V3 stages,and the combined influence of shading and waterlogging was greater than that of either single stress.展开更多
The existing Maximum Power Point Tracking(MPPT)method has low tracking efficiency and poor stability.It is easy to fall into the Local Maximum Power Point(LMPP)in Partial Shading Condition(PSC),resulting in the degrad...The existing Maximum Power Point Tracking(MPPT)method has low tracking efficiency and poor stability.It is easy to fall into the Local Maximum Power Point(LMPP)in Partial Shading Condition(PSC),resulting in the degradation of output power quality and efficiency.It was found that various bio-inspired MPPT based optimization algorithms employ different mechanisms,and their performance in tracking the Global Maximum Power Point(GMPP)varies.Thus,a Cuckoo search algorithm(CSA)combined with the Incremental conductance Algorithm(INC)is proposed(CSA-INC)is put forward for the MPPT method of photovoltaic power generation.The method can improve the tracking speed by more than 52%compared with the traditional Cuckoo Search Algorithm(CSA),and the results of the study using this algorithm are compared with the popular Particle Swarm Optimization(PSO)and the Gravitational Search Algorithm(GSA).CSA-INC has an average tracking efficiency of 99.99%and an average tracking time of 0.19 s when tracking the GMPP,which improves PV power generation’s efficiency and power quality.展开更多
Dance of the Happy Shades是加拿大作家艾丽斯·门罗的成名作,该部描写女性题材的短篇小说集历时15年完成于1968年出版,荣获加拿大最高文学奖项——总督奖。目前,我国有部分学者从图里翻译规范理论出发对Dance of the Happy Shade...Dance of the Happy Shades是加拿大作家艾丽斯·门罗的成名作,该部描写女性题材的短篇小说集历时15年完成于1968年出版,荣获加拿大最高文学奖项——总督奖。目前,我国有部分学者从图里翻译规范理论出发对Dance of the Happy Shades进行了汉译本对比研究,而从女性主义翻译理论出发的研究有待拓展。本文以李玉瑶汉译本为研究对象,从女性主义翻译理论视域出发,探讨女性译者如何在翻译中体现女性主义翻译意识,从而帮助读者进一步理解原著。展开更多
Light fl ux and quality are crucial factor for setting endogenous plant circadian rhythms.Evaluating the daily rhythmicity of leaf chlorophyll content is an eff ective method to monitor the plant physiological endogen...Light fl ux and quality are crucial factor for setting endogenous plant circadian rhythms.Evaluating the daily rhythmicity of leaf chlorophyll content is an eff ective method to monitor the plant physiological endogenous clock in response to environmental signals such as light availability/quality.Here,we used a leaf-clip sensor to monitor diurnal rhythms in the content of chlorophyll and fl avonoids such as fl avonols and anthocyanins in three green-(Ailanthus altissima,Tilia platyphyllos and Platanus×acerifolia)and two red-leafed(Acer platanoides cv.Crimson King and Prunus cerasifera var.pissardii)tree species,adapted to sun(L)or shade(S).Signifi cant diff erences in chlorophyll content(Chl)and its variations during the day were observed among treatments in all the analyzed species.S-plants had more Chl than L-plants irrespective of leaf color,and Chl variations were more distinct during the day than in L-plants.In particular,contents were lowest in the morning(9:00)and in the middle of the day(at 12:00 and 15:00),and the highest at dusk(21:00).The less evident trends in Chl variation in L-plants were attributed to a decrease in Chl content in high light,which likely masked any increases in the shaded counterparts during the afternoon.Daily fl avonol levels did not vary no notably during the day.In sun-exposed red leaves,anthocyanins partially screened mesophyll cells from incident light,and its levels were similar to the Chl dynamics in the shaded counterparts.This study provides new bases for further work on endogenous rhythms of plant pigments and improves our understanding of plant physiology in the context of day/night rhythmicity.展开更多
Light deficiency is a growing abiotic stress in rice production.However,few studies focus on shading effects on grain yield and quality of rice in East China.It is also essential to investigate proper nitrogen(N)appli...Light deficiency is a growing abiotic stress in rice production.However,few studies focus on shading effects on grain yield and quality of rice in East China.It is also essential to investigate proper nitrogen(N)application strategies that can effectively alleviate the negative impacts of light deficiency on grain yield and quality in rice.A two-year field experiment was conducted to explore the effects of shading(non-shading and shading from heading to maturity)and panicle N application(NDP,decreased panicle N rate;NMP,medium panicle N rate;NIP,increased panicle N rate)treatments on rice yield-and quality-related characteristics.Compared with non-shading,shading resulted in a 9.5-14.8%yield loss(P<0.05),mainly due to lower filled-grain percentage and grain weight.NMP and NIP had higher(P<0.05)grain yield than NDP under non-shading,and no significant difference was observed in rice grain yield among NDP,NMP,and NIP under shading.Compared with NMP and NIP,NDP achieved less yield loss under shading because of the increased filled-grain percentage and grain weight.Shading reduced leaf photosynthetic rate after heading,as well as shoot biomass weight at maturity,shoot biomass accumulation from heading to maturity,and nonstructural carbohydrate(NSC)content in the stem at maturity(P<0.05).The harvest index and NSC remobilization reserve of NDP were increased under shading.Shading decreased(P<0.05)percentages of brown rice,milled rice,head rice,and amylose content while increasing(P<0.05)chalky rice percentage,chalky area,chalky degree,and grain protein.NMP demonstrated a better milling quality under non-shading,while NDP demonstrated under shading.NDP exhibited both lower chalky rice percentage,chalky area,and chalky degree under non-shading and shading,compared with NMP and NIP.NDP under shading decreased amylose content and breakdown but increased grain protein content and setback,contributing to similar overall palatability to non-shading.Our results suggested severe grain yield and quality penalty of rice when subjected to shading after heading.NDP improved NSC remobilization,harvest index,and sink-filling efficiency and alleviated yield loss under shading.Besides,NDP would maintain rice’s milling,appearance,and cooking and eating qualities under shading.Proper N management with a decreased panicle N rate could be adopted to mitigate the negative effects of shading on rice grain yield and quality.展开更多
Maize growth and development are regulated by light quality,intensity and photoperiod.Cryptochromes are blue/ultraviolet-A light receptors involved in stem elongation,shade avoidance,and photoperiodic flowering.To inv...Maize growth and development are regulated by light quality,intensity and photoperiod.Cryptochromes are blue/ultraviolet-A light receptors involved in stem elongation,shade avoidance,and photoperiodic flowering.To investigate the function of cryptochrome 1(CRY1) in maize,where it is encoded by Zm CRY1,we obtained two Zm CRY1a genes(Zm CRY1a1 and Zm CRY1a2),both of which share the highest similarity with other gramineous plants,in particular rice CRY1a by phylogenetic analysis.In Arabidopsis,overexpression of Zm CRY1a genes promoted seedling de-etiolation under blue and white light,resulting in dwarfing of mature plants.In seedlings of the maize inbred line Zong 31(Zm CRY1aOE),overexpression of Zm CRY1a genes caused a reduction in the mesocotyl and first leaf sheath lengths due to down-regulation of genes influencing cell elongation.In mature transgenic maize plants,plant height,ear height,and internode length decreased in response to overexpression of Zm CRY1a genes.Expression of Zm CRY1a were insensitive to low blue light(LBL)-induced shade avoidance syndrome(SAS) in Arabidopsis and maize.This prompted us to investigate the regulatory role of the gibberellin and auxin metabolic pathways in the response of Zm CRY1a genes to LBL treatment.We confirmed a link between Zm CRY1a expression and hormonal influence on the growth and development of maize under LBL-induced SAS.These results reveal that Zm CRY1a has a relatively conservative function in regulating maize photomorphogenesis and may guide new strategies for breeding high density-tolerant maize cultivars.展开更多
文摘Photovoltaic(PV)systems utilize maximum power point tracking(MPPT)controllers to optimize power output amidst varying environmental conditions.However,the presence of multiple peaks resulting from partial shading poses a challenge to the tracking operation.Under partial shade conditions,the global maximum power point(GMPP)may be missed by most traditional maximum power point tracker.The flower pollination algorithm(FPA)and particle swarm optimization(PSO)are two examples of metaheuristic techniques that can be used to solve the issue of failing to track the GMPP.This paper discusses and resolves all issues associated with using the standard FPA method as the MPPT for PV systems.The first issue is that the initial values of pollen are determined randomly at first,which can lead to premature convergence.To minimize the convergence time and enhance the possibility of detecting the GMPP,the initial pollen values were modified so that they were near the expected peak positions.Secondly,in the modified FPA,population fitness and switch probability values both influence swapping between two-mode optimization,which may improve the flower pollination algorithm’s tracking speed.The performance of the modified flower pollination algorithm(MFPA)is assessed through a comparison with the perturb and observe(P&O)method and the standard FPA method.The simulation results reveal that under different partial shading conditions,the tracking time for MFPA is 0.24,0.24,0.22,and 0.23 s,while for FPA,it is 0.4,0.35,0.45,and 0.37 s.Additionally,the simulation results demonstrate that MFPA achieves higher MPPT efficiency in the same four partial shading conditions,with values of 99.98%,99.90%,99.93%,and 99.26%,compared to FPA with MPPT efficiencies of 99.93%,99.88%,99.91%,and 99.18%.Based on the findings from simulations,the proposed method effectively and accurately tracks the GMPP across a diverse set of environmental conditions.
文摘Chlorophyll fluorescence emission, pigment composition and photosynthetic rate of shade-grown cotton ( Gossypium hirsutum L.) plants were measured immediately after suddenly exposing to full sunlight and at regular intervals there after within 15 d. Photoinhibition occurred in shade-grown cotton leaves immediately after exposed to full sunlight. The chlorophyll fluorescence parameter F-v/F-m and PhiPS II, which reflect the efficiency of PS II,obviously decreased in shade-grown leaves, much lower than that of the full sunlight-grown leaves. On the contrary, F-o value was sharply increased. Neither of these parameters could completely recover till next morning. The photoinhibition was chronic and continued for about 4 d, while the F-v/F-m and the net photosynthetic rate ( P-n) continued to decline, then began to increase gradually 6 d later and turned stable after 10 - 12 d, appearing as an acclimation phenomenon. However, the final value of F-v/F-m and P-n did not reach the level as in those leaves grown in the full sunlight ever before. The final P-n was higher by 60% than that before exposure, but lower for more than 40% than that of the full sunlight-grown leaves. The most notable response of chloroplast pigment composition was a pronounced increase in the pool size of carotenoids in xanthophyll cycle over a period of 3 d. The results indicated that when shade-grown cotton seedlings were suddenly transferred to the full sunlight, the decline of F-v/F-m and P-n might associate with the damage of the PS II reaction center. During the light acclimation, photoprotective mechanisms such as the xanthophyll cycle-dependent energy dissipation were increased, so that photodamage in leaves transferred from low to high light might be reduced.
文摘Ths paper introduces a transducer for measuring suspended sand particles, and a shading principle to eliminate the blind point in the near field of sound source axis. By adopting the front matching layer and back liner, the transducer’s fraquency band becomes 2. 1 times wider and the sensitivity 1. 6 times higher. The transducer is characterized by simple structure and portability.
文摘The paper presents new MPPT algorithm for partial shading of series connected PV cells/modules. In the shaded condition, there is a problem of decrease in the total output power of the PV system. The proposed algorithm aims to reduce this problem by active bypassing of the shaded cells. The algorithm senses the irradiance of each cell and performs calculation in order to decide if to actively bypass the shaded cell or not. Extensive simulation results proved that algorithm works and increases the output power under partial shading conditions. Furthermore, the algorithm becomes more efficient when the number of cells is increased.
基金supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No.2020/01/11742.
文摘A robust single-sensor global maximum power point tracking(MPPT)strategy based on modern optimization for photovoltaic systems considering shading conditions is proposed in this work.The proposed strategy is designed for battery charging applications and direct current(DC)microgrids.Under normal operation,the curve of photovoltaic(PV)output power versus PV voltage contains only a single peak point.This point can be simply captured using any traditional tracking method like perturb and observe.However,this situation is completely different during the shadowing effect where several peaks appear on the power voltage curve.Most of these peaks are local with only a single global.This condition leads to the incapability of traditional tracking approaches to extract the global peak power due to their inability to distinguish between the local and global peak points.They are trapped in the first peak point even when the point is local.Therefore,global tracking approaches based on modern optimization are highly required.A recent marine predators algorithm(MPA)has been used to solve the problem of tracking the global MPP under shadowing influence.Different shadowing scenarios are used to test and evaluate the performance of MPA based tracker.The obtained results are compared with particle swarm optimization(PSO)and ant lion optimizer(ALO).The results of the comparison con-firmed the effectiveness and robustness of the proposed global MPPT-MPA based tracker over PSO and ALO.
文摘A new method to generate shaded display of objects is presented in this paper.Based on shading knowledge like that used by painters,it can work quickly and flexibly.Users may produce shading effects with different styles on purposes,while the cost time almost remains constant.An experimental system is implemented,and some results are obtained.
基金This work was supported by the National Natural Science Foundation of China(32171765).
文摘Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types within the canopy are poorly quantified.In this study,the seasonality of leaf chlorophyll,nitrogen(N),and phosphorus(P)were quantified vertically along the canopy of four major tree species and two types of herbs in a temperate deciduous forest.The role of shade tolerance in shaping the seasonal variation and vertical differentiation was examined.During the entire season,chlorophyll content showed a distinct asymmetric unimodal pattern for all species,with greater chlorophyll levels in autumn than in spring,and the timing of peak chlorophyll per leaf area gradually decreased as shade tolerance increased.Chlorophyll a:b ratios gradually decreased with increasing shade tolerance.Leaf N and P contents sharply declined during leaf expansion,remained steady in the mature stage and decreased again during leaf senescence.Over the seasons,the lower canopy layer had significantly higher chlorophyll per leaf mass but not chlorophyll per leaf area than the upper canopy layer regardless of degree of shade tolerance.However,N and P per leaf area of intermediate shade-tolerant and fully shade-tolerant tree species were significantly higher in the upper canopy than in the lower.Seasonal variations in N:P ratios suggest changes in N or P limitation.These findings indicate that shade tolerance is a key feature shaping inter-specific differences in leaf chlorophyll,N,and P contents as well as their seasonality in temperate deciduous forests,which have significant implications for modeling leaf photosynthesis and ecosystem production.
基金supported by National Natural Science Foundation of China(42001305)Guangdong Basic and Applied Basic Research Foundation(2022A1515011459)+3 种基金GDAS’Special Project of Science and Technology Development(2020GDASYL-20200102001)Guangzhou Basic and Applied Basic Research Foundation(2023A04J1534)to Z.W.the US National Science Foundation(NSF)Macrosystems Biology and NEON-Enabled Science grant 1638720 to P.A.T.E.L.K.and NSF Biology Integration Institute award ASCEND,DBI-2021898 to P.A.T.
文摘Characterizing foliar trait variation in sun and shade leaves can provide insights into inter-and intra-species resource use strategies and plant response to environmental change.However,datasets with records of multiple foliar traits from the same individual and including shade leaves are sparse,which limits our ability to investigate trait-trait,trait-environment relationships and trait coordination in both sun and shade leaves.We presented a comprehensive dataset of 15 foliar traits from sun and shade leaves sampled with leaf spectroscopy,including 424 individuals of 110 plant species from 19 sites across eastern North America.We investigated trait variation,covariation,scaling relationships with leaf mass,and the effects of environment,canopy position,and taxonomy on trait expression.Generally,sun leaves had higher leaf mass per area,nonstructural carbohydrates and total phenolics,lower mass-based chlorophyll a+b,carotenoids,phosphorus,and potassium,but exhibited species-specific characteristics.Covariation between sun and shade leaf traits,and trait-environment relationships were overall consistent across species.The main dimensions of foliar trait variation in seed plants were revealed including leaf economics traits,photosynthetic pigments,defense,and structural traits.Taxonomy and canopy position collectively explained most of the foliar trait variation.This study highlights the importance of including intra-individual and intra-specific trait variation to improve our understanding of ecosystem functions.Our findings have implications for efficient field sampling,and trait mapping with remote sensing.
基金funding from the Open Fund Project of Intelligent Electric Power Grid Key Laboratory of Sichuan Province under Grant(2023-IEPGKLSP-KFYB03)Yunnan Provincial Basic Research Project(202301AT070443).
文摘Maximum power point tracking(MPPT)technology plays a key role in improving the energy conversion efficiency of photovoltaic(PV)systems,especially when multiple local maximum power points(LMPPs)occur under partial shading conditions(PSC).It is necessary to modify the operating point efficiently and accurately with the help of MPPT technology to maximize the collected power.Even though a lot of research has been carried out and impressive progress achieved for MPPT technology,it still faces some challenges and dilemmas.Firstly,the mathematical model established for PV cells is not precise enough.Second,the existing algorithms are often optimized for specific conditions and lack comprehensive adaptability to the actual operating environment.Besides,a single algorithm may not be able to give full play to its advantages.In the end,the selection criteria for choosing the suitable MPPT algorithm/converter combination to achieve better performance in a given scenario is very limited.Therefore,this paper systematically discusses the current research status and challenges faced by PV MPPT technology around the three aspects of MPPT models,algorithms,and hardware implementation.Through in-depth thinking and discussion,it also puts forward positive perspectives on future development,and five forward-looking solutions to improve the performance of PV systems MPPT are suggested.
文摘A photovoltaic (PV) string with multiple modules with bypass diodes frequently deployed on a variety of autonomous PV systems may present multiple power peaks under uneven shading. For optimal solar harvesting, there is a need for a control schema to force the PV string to operate at global maximum power point (GMPP). While a lot of tracking methods have been proposed in the literature, they are usually complex and do not fully take advantage of the available characteristics of the PV array. This work highlights how the voltage at operating point and the forward voltage of the bypass diode are considered to design a global maximum power point tracking (GMPPT) algorithm with a very limited global search phase called Fast GMPPT. This algorithm successfully tracks GMPP between 94% and 98% of the time under a theoretical evaluation. It is then compared against Perturb and Observe, Deterministic Particle Swarm Optimization, and Grey Wolf Optimization under a sequence of irradiance steps as well as a power-over-voltage characteristics profile that mimics the electrical characteristics of a PV string under varying partial shading conditions. Overall, the simulation with the sequence of irradiance steps shows that while Fast GMPPT does not have the best convergence time, it has an excellent convergence rate as well as causes the least amount of power loss during the global search phase. Experimental test under varying partial shading conditions shows that while the GMPPT proposal is simple and lightweight, it is very performant under a wide range of dynamically varying partial shading conditions and boasts the best energy efficiency (94.74%) out of the 4 tested algorithms.
基金supported in part by the Japan Science and Technology Agency CREST projectthe Japan Society for the Promotion of Science KAKENHI Grant No.JP15H05924
文摘Although many photorealistic relighting methods provide a way to change the illumination of objects in a digital photograph, it is currently difficult to relight digital illustrations having a cartoon shading style. The main difference between photorealistic and cartoon shading styles is that cartoon shading is characterized by soft color quantization and nonlinear color variations that cause noticeable reconstruction errors under a physical reflectance assumption, such as Lambertian reflection. To handle this non-photorealistic shading property, we focus on shading analysis of the most fundamental cartoon shading technique. Based on the color map shading representation, we propose a simple method to determine the input shading as that of a smooth shape with a nonlinear reflectance property. We have conducted simple ground-truth evaluations to compare our results to those obtained by other approaches.
文摘Solar photo voltaic array (SPVA) generates a smaller amount of power than the standard rating of the panel due to the partial shading effect. Since the modules of the arrays receive different solar irradiations, the P-V characteristics ofphotovoltaic (PV) arrays contain multiple peaks or local peaks. This paper presents an innovative method (magic square) in order to increase the generated power by configuring the modules of a shaded photo- voltaic array. In this approach, the physical location of the modules in the total cross tied (TCT) connected in the solar PV array is rearranged based on the magic square arrangement pattern. This connection is done without altering any electrical configurations of the modules in the PV array. This method can distribute the shading effect over the entire PV array, without concentrating on any row of modules and can achieve global peaks. For different types of shading patterns, the output power of the solar PV array with the proposed magic square configuration is compared with the traditional configurations and the performance is calculated. This paper presents a new reconfiguration technique for solar PV arrays, which increases the PV power under different shading conditions. The proposed technique facilitates the distribution of the effect of shading over the entire array, thereby, reducing the mismatch losses caused by partial shading. The theoretical calculations are tested through simulations in Matlab/ Simulink to validate the results. A comparison of power loss for different types of topologies under different types of shading patterns for a 4 × 4 array is also explained.
文摘Gradient slope, aspect slope, profiling and contourlines are important topographic parameters that can be derived from digital elevation data obtained from different sources with exploitation of different interpolation techniques. Geostatistical interpolation methods such as ordinary kriging models constitute reliable alternatives to deterministic approaches in creation of continuous surface models from discrete elevation data. This research aimed at extraction, analysis, and evaluation of different terrain parameters elevation measurements with the use of different ordinary kriging models including the linear model, the circular model, the spherical model, the exponential models, and the Gaussian model. Different ordinary kriging models under ESRI ArcView 3.3 package along with its 3D analyst and Spatial analysis extensions have been exploited in extraction of gradient slope maps, aspect slope maps, and hillshade maps in addition to contourline maps from a sample of elevation data. Visual analysis of the gradient slope maps shows great similarities between the slope maps from the linear, circular, spherical, and exponential OK models, however, that from OK Gaussian models look very different as different sizes and arrangements of the colour patches, referring to different tones and different textures where smooth tones and smooth textures dominate the gradient slope map from the OK Gaussian model. Thus, gradient slope degradation and smoothing are considerably high in the gradient slope map from Gaussian model compared to the slope maps from the other four OK models. Also, the mean slope in the Gaussian model records the lowest value with the lowest value of the standard deviation of slopes in the same map reflecting less structured and highly smoothed gradient slope map compared to the slope maps from the other OK models. Thus, similar sizes of the colour patches and similar tones and similar texture dominate the different aspect slope maps. This is not the case in Figure 2(e) which depicts the aspect slope map extracted with the use of the Gaussian OK model where the smooth colour patches, smooth tones and smooth textures can be observed. Also, the Aspect map, hillshade map and the contourline map from Gaussian OK model are visually and statistically different from their corresponding maps created with the other four OK models. Finally, analysis of extracted two groups of profiles shows that the profiles extracted with the use of linear, circular, spherical, and exponential OK models run close and show highly corrugated and varied terrain. This is different from the profiles with the use of the Gaussian model which are less corrugated and tend to smooth and approximate different parts of the terrains.
基金This work was supported by National Natural Science Foundation of China(61963020,62263014)Yunnan Provincial Basic Research Project(202201AT070857).
文摘The development of alternative renewable energy technologies is crucial for alleviating climate change and promoting energy transformation.Of the currently available technologies,solar energy has promising application prospects owing to its merits of being clean,safe,and sustainable.Solar energy is converted into electricity through photovoltaic(PV)cells;however,the overall conversion efficiency of PV modules is relatively low,and most of the captured solar energy is dissipated in the form of heat.This not only reduces the power generation efficiency of solar cells but may also have a negative impact on the electrical parameters of PV modules and the service life of PV cells.To overcome the shortcomings,an efficient approach involves combining a PV cell with a thermoelectric generator(TEG)to form hybrid PV-TEG systems,which simultaneously improve the energy conversion efficiency of the PV system by reducing the operating temperature of the PV modules and increasing the power output by utilizing the waste heat generated from the PV system to generate electricity via the TEGs.Based on a thorough examination of the literature,this study comprehensively reviews 14 maximum power point tracking(MPPT)algorithms currently applied to hybrid PV-TEG systems and classifies them into five major categories for further discussion,namely conventional,mathematics-based,metaheuristic,artificial intelligence,and other algorithms.This review aims to inspire advanced ideas and research on MPPT algorithms for hybrid PV-TEG systems.
基金funded by the National Natural Science Foundation of China(31801296)the Postdoctoral Innovation Program of Shandong Province(202003039)China Agriculture Research System of MOF and MARA(CARS-02-21)。
文摘A field experiment was performed to investigate the physiological mechanism of the simultaneous stresses of waterlogging and shading on leaf photosynthetic and senescence during three growth stages of summer maize.The responses of leaf gas exchange parameters and antioxidant enzyme activities of the summer maize hybrids Denghai 605(DH605)to waterlogging(W),shading(S),and their combination(W+S)for 6 days at the third leaf stage(V3),the sixth leaf stage(V6),and the tasseling stage(VT)were recorded.Shading,waterlogging,and their combination disturbed the activities of protective enzymes and increased the contents of H2O2and O-2,accelerating leaf senescence and disordering photosynthetic characteristics.Under waterlogging,shading and their combination,leaf Pn,the photo-assimilates and grain yield was decreased.The greatest reduction for waterlogging and the combined stresses occurred at V3 and that for shading stress occurred at VT.The individual and combined stresses reduced the activities of protective enzymes and inhibited photosynthesis,reducing the accumulation of photosynthetic compounds and thereby yield.Waterlogging and the combined stresses at the V3 stage showed the greatest effect on leaf photosynthetic and senescence,followed by the V6 and VT stages.The greatest effect for shading stress occurred at VT,followed by the V6 and V3 stages,and the combined influence of shading and waterlogging was greater than that of either single stress.
基金supported by the Natural Science Foundation of Gansu Province(Grant No.21JR7RA321)。
文摘The existing Maximum Power Point Tracking(MPPT)method has low tracking efficiency and poor stability.It is easy to fall into the Local Maximum Power Point(LMPP)in Partial Shading Condition(PSC),resulting in the degradation of output power quality and efficiency.It was found that various bio-inspired MPPT based optimization algorithms employ different mechanisms,and their performance in tracking the Global Maximum Power Point(GMPP)varies.Thus,a Cuckoo search algorithm(CSA)combined with the Incremental conductance Algorithm(INC)is proposed(CSA-INC)is put forward for the MPPT method of photovoltaic power generation.The method can improve the tracking speed by more than 52%compared with the traditional Cuckoo Search Algorithm(CSA),and the results of the study using this algorithm are compared with the popular Particle Swarm Optimization(PSO)and the Gravitational Search Algorithm(GSA).CSA-INC has an average tracking efficiency of 99.99%and an average tracking time of 0.19 s when tracking the GMPP,which improves PV power generation’s efficiency and power quality.
文摘Dance of the Happy Shades是加拿大作家艾丽斯·门罗的成名作,该部描写女性题材的短篇小说集历时15年完成于1968年出版,荣获加拿大最高文学奖项——总督奖。目前,我国有部分学者从图里翻译规范理论出发对Dance of the Happy Shades进行了汉译本对比研究,而从女性主义翻译理论出发的研究有待拓展。本文以李玉瑶汉译本为研究对象,从女性主义翻译理论视域出发,探讨女性译者如何在翻译中体现女性主义翻译意识,从而帮助读者进一步理解原著。
文摘Light fl ux and quality are crucial factor for setting endogenous plant circadian rhythms.Evaluating the daily rhythmicity of leaf chlorophyll content is an eff ective method to monitor the plant physiological endogenous clock in response to environmental signals such as light availability/quality.Here,we used a leaf-clip sensor to monitor diurnal rhythms in the content of chlorophyll and fl avonoids such as fl avonols and anthocyanins in three green-(Ailanthus altissima,Tilia platyphyllos and Platanus×acerifolia)and two red-leafed(Acer platanoides cv.Crimson King and Prunus cerasifera var.pissardii)tree species,adapted to sun(L)or shade(S).Signifi cant diff erences in chlorophyll content(Chl)and its variations during the day were observed among treatments in all the analyzed species.S-plants had more Chl than L-plants irrespective of leaf color,and Chl variations were more distinct during the day than in L-plants.In particular,contents were lowest in the morning(9:00)and in the middle of the day(at 12:00 and 15:00),and the highest at dusk(21:00).The less evident trends in Chl variation in L-plants were attributed to a decrease in Chl content in high light,which likely masked any increases in the shaded counterparts during the afternoon.Daily fl avonol levels did not vary no notably during the day.In sun-exposed red leaves,anthocyanins partially screened mesophyll cells from incident light,and its levels were similar to the Chl dynamics in the shaded counterparts.This study provides new bases for further work on endogenous rhythms of plant pigments and improves our understanding of plant physiology in the context of day/night rhythmicity.
基金This work was financed by the National Natural Science Foundation of China(U20A2022,31901448 and 32001466)the Postdoctoral Research Foundation of China(2020M671628 and 2020M671629)+2 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions,China(19KJB210004)the Key Research and Development Program of Jiangsu Province,China(BE2019343)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China.
文摘Light deficiency is a growing abiotic stress in rice production.However,few studies focus on shading effects on grain yield and quality of rice in East China.It is also essential to investigate proper nitrogen(N)application strategies that can effectively alleviate the negative impacts of light deficiency on grain yield and quality in rice.A two-year field experiment was conducted to explore the effects of shading(non-shading and shading from heading to maturity)and panicle N application(NDP,decreased panicle N rate;NMP,medium panicle N rate;NIP,increased panicle N rate)treatments on rice yield-and quality-related characteristics.Compared with non-shading,shading resulted in a 9.5-14.8%yield loss(P<0.05),mainly due to lower filled-grain percentage and grain weight.NMP and NIP had higher(P<0.05)grain yield than NDP under non-shading,and no significant difference was observed in rice grain yield among NDP,NMP,and NIP under shading.Compared with NMP and NIP,NDP achieved less yield loss under shading because of the increased filled-grain percentage and grain weight.Shading reduced leaf photosynthetic rate after heading,as well as shoot biomass weight at maturity,shoot biomass accumulation from heading to maturity,and nonstructural carbohydrate(NSC)content in the stem at maturity(P<0.05).The harvest index and NSC remobilization reserve of NDP were increased under shading.Shading decreased(P<0.05)percentages of brown rice,milled rice,head rice,and amylose content while increasing(P<0.05)chalky rice percentage,chalky area,chalky degree,and grain protein.NMP demonstrated a better milling quality under non-shading,while NDP demonstrated under shading.NDP exhibited both lower chalky rice percentage,chalky area,and chalky degree under non-shading and shading,compared with NMP and NIP.NDP under shading decreased amylose content and breakdown but increased grain protein content and setback,contributing to similar overall palatability to non-shading.Our results suggested severe grain yield and quality penalty of rice when subjected to shading after heading.NDP improved NSC remobilization,harvest index,and sink-filling efficiency and alleviated yield loss under shading.Besides,NDP would maintain rice’s milling,appearance,and cooking and eating qualities under shading.Proper N management with a decreased panicle N rate could be adopted to mitigate the negative effects of shading on rice grain yield and quality.
基金supported by the National Natural Science Foundation of China (31871709)the Construction of Support System for National Agricultural Green Development Advance Region of Qushui County,Tibet,China (QYXTZX-LS2022-01)+1 种基金the Key Project of Beijing Natural Science Foundation (6151002)the Startup Grants of Henan Agricultural University (30501038,30500823)。
文摘Maize growth and development are regulated by light quality,intensity and photoperiod.Cryptochromes are blue/ultraviolet-A light receptors involved in stem elongation,shade avoidance,and photoperiodic flowering.To investigate the function of cryptochrome 1(CRY1) in maize,where it is encoded by Zm CRY1,we obtained two Zm CRY1a genes(Zm CRY1a1 and Zm CRY1a2),both of which share the highest similarity with other gramineous plants,in particular rice CRY1a by phylogenetic analysis.In Arabidopsis,overexpression of Zm CRY1a genes promoted seedling de-etiolation under blue and white light,resulting in dwarfing of mature plants.In seedlings of the maize inbred line Zong 31(Zm CRY1aOE),overexpression of Zm CRY1a genes caused a reduction in the mesocotyl and first leaf sheath lengths due to down-regulation of genes influencing cell elongation.In mature transgenic maize plants,plant height,ear height,and internode length decreased in response to overexpression of Zm CRY1a genes.Expression of Zm CRY1a were insensitive to low blue light(LBL)-induced shade avoidance syndrome(SAS) in Arabidopsis and maize.This prompted us to investigate the regulatory role of the gibberellin and auxin metabolic pathways in the response of Zm CRY1a genes to LBL treatment.We confirmed a link between Zm CRY1a expression and hormonal influence on the growth and development of maize under LBL-induced SAS.These results reveal that Zm CRY1a has a relatively conservative function in regulating maize photomorphogenesis and may guide new strategies for breeding high density-tolerant maize cultivars.