Characterizing foliar trait variation in sun and shade leaves can provide insights into inter-and intra-species resource use strategies and plant response to environmental change.However,datasets with records of multi...Characterizing foliar trait variation in sun and shade leaves can provide insights into inter-and intra-species resource use strategies and plant response to environmental change.However,datasets with records of multiple foliar traits from the same individual and including shade leaves are sparse,which limits our ability to investigate trait-trait,trait-environment relationships and trait coordination in both sun and shade leaves.We presented a comprehensive dataset of 15 foliar traits from sun and shade leaves sampled with leaf spectroscopy,including 424 individuals of 110 plant species from 19 sites across eastern North America.We investigated trait variation,covariation,scaling relationships with leaf mass,and the effects of environment,canopy position,and taxonomy on trait expression.Generally,sun leaves had higher leaf mass per area,nonstructural carbohydrates and total phenolics,lower mass-based chlorophyll a+b,carotenoids,phosphorus,and potassium,but exhibited species-specific characteristics.Covariation between sun and shade leaf traits,and trait-environment relationships were overall consistent across species.The main dimensions of foliar trait variation in seed plants were revealed including leaf economics traits,photosynthetic pigments,defense,and structural traits.Taxonomy and canopy position collectively explained most of the foliar trait variation.This study highlights the importance of including intra-individual and intra-specific trait variation to improve our understanding of ecosystem functions.Our findings have implications for efficient field sampling,and trait mapping with remote sensing.展开更多
Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types withi...Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types within the canopy are poorly quantified.In this study,the seasonality of leaf chlorophyll,nitrogen(N),and phosphorus(P)were quantified vertically along the canopy of four major tree species and two types of herbs in a temperate deciduous forest.The role of shade tolerance in shaping the seasonal variation and vertical differentiation was examined.During the entire season,chlorophyll content showed a distinct asymmetric unimodal pattern for all species,with greater chlorophyll levels in autumn than in spring,and the timing of peak chlorophyll per leaf area gradually decreased as shade tolerance increased.Chlorophyll a:b ratios gradually decreased with increasing shade tolerance.Leaf N and P contents sharply declined during leaf expansion,remained steady in the mature stage and decreased again during leaf senescence.Over the seasons,the lower canopy layer had significantly higher chlorophyll per leaf mass but not chlorophyll per leaf area than the upper canopy layer regardless of degree of shade tolerance.However,N and P per leaf area of intermediate shade-tolerant and fully shade-tolerant tree species were significantly higher in the upper canopy than in the lower.Seasonal variations in N:P ratios suggest changes in N or P limitation.These findings indicate that shade tolerance is a key feature shaping inter-specific differences in leaf chlorophyll,N,and P contents as well as their seasonality in temperate deciduous forests,which have significant implications for modeling leaf photosynthesis and ecosystem production.展开更多
The variation and correlation of leaf economics and vein traits are crucial for predicting plant ecological strategies under different environmental changes.However,correlations between these two suites of traits and ...The variation and correlation of leaf economics and vein traits are crucial for predicting plant ecological strategies under different environmental changes.However,correlations between these two suites of traits and abiotic factors such as soil water and nitrogen content remain ambiguous.We measured leaf economics and vein traits as well as soil water and nitrogen content for two different shade-tolerant species(Betula platyphylla and Acer mono)in four mixed broadleaved-Korean pine(Pinus koraiensis)forests along a latitudinal gradient in Northeast China.We found that leaf economics traits and vein traits were decoupled in shade-intolerant species,Betula platphylla,but significantly coupled in a shadetolerant species,A.mono.We found stronger correlations among leaf traits in the shade tolerant species than in the shade intolerant species.Furthermore,leaf economic traits were positively correlated with the soil water gradient for both species,whereas vein traits were positively correlated with soil water gradient for the shade intolerant species but negatively correlated in the shade tolerant species.Although economic traits were positively correlated with soil nitrogen gradient in shade intolerant species but not correlated in shade tolerant species,vein traits were negatively correlated with soil nitrogen gradient in shade tolerant species but not correlated in shade intolerant species.Our study provides evidence for distinct correlations between leaf economics and vein traits and local abiotic factors of species differing in light demands.We recommend that the ecological significance of shade tolerance be considered for species when evaluating ecosystem functions and predicting plant responses to environmental changes.展开更多
The solar radiation intensity and duration are continuously decreasing in the major wheat planting area of China. As a con- sequence, leaf senescence, photosynthesis, grain filling and thus wheat yield shall be affect...The solar radiation intensity and duration are continuously decreasing in the major wheat planting area of China. As a con- sequence, leaf senescence, photosynthesis, grain filling and thus wheat yield shall be affected by light deficiency. Therefore, two winter wheat (Triticum aestivum L.) cultivars, Tainong 18 (a large-spike cultivar) and Ji'nan 17 (a multiple-spike cultivar), were subjected to shading during anthesis and maturity under field condition in 2010-2011 and 2011-2012. Under the slight shading treatment ($1,88% of full sunshine), leaf senescence was delayed, net photosynthesis rate (Po) and canopy apparent photosynthesis rate (CAP) were improved, and thus thousand-kernel weight (TKW) and grain yield were higher as compared with the control. However, mid and severe shading (S2 andS3, 67 and 35% of full sunshine, respectively) led to negative effects on these traits substantially. Moreover, superoxide dismutase (SOD), peroxidase (POD) and cat- alase (CAT) activities in flag leaf were significantly greater under slight shading than those in other treatments, while the malondialdehyde (MDA) content was less than that under other treatments. In addition, the multiple-spike cultivar is more tolerant to shading than large-spike cultivar. In conclusion, slight shading after anthesis delayed leaf senescence, enhanced photosynthesis and grain filling, and thus resulted in higher grain yield.展开更多
Light heterogeneity leads to anatomically and physiologically heterogeneous features in leaves. However, little attention has been paid to the effects of nonuniform illumination on the anatomical and photosynthetic pe...Light heterogeneity leads to anatomically and physiologically heterogeneous features in leaves. However, little attention has been paid to the effects of nonuniform illumination on the anatomical and photosynthetic performance on both sides along the leaf main vein. This study explored such effects by combining in situ determination in the field with shading simulation in the phytotron, on pima cotton that has cupping leaves. Photosynthetic characteristics and morphological structures were measured in the field on both sides along the main vein of eastward, westward, southward, and northward leaves. The results showed that the difference in photosynthetic capacity between the two sides along the main vein in different directions was closely related to the daily photo irridiance(DPI). This result indicates that the photosynthetic heterogeneity between the two sides is related to their intercepted light energy. The conclusion was further verified by the shading simulation experiments. Photosynthetic capacity and leaf thickness of the unshaded sides of leaves in the half-shaded treatment decreased, compared to those in the unshaded treatment. Therefore, it is conjectured that the development of photosynthetic characteristics on one side is systematically regulated by that on the other side. The study provides theoretical guidance on accessing the feasibility of sampling and directional planting.展开更多
基金supported by National Natural Science Foundation of China(42001305)Guangdong Basic and Applied Basic Research Foundation(2022A1515011459)+3 种基金GDAS’Special Project of Science and Technology Development(2020GDASYL-20200102001)Guangzhou Basic and Applied Basic Research Foundation(2023A04J1534)to Z.W.the US National Science Foundation(NSF)Macrosystems Biology and NEON-Enabled Science grant 1638720 to P.A.T.E.L.K.and NSF Biology Integration Institute award ASCEND,DBI-2021898 to P.A.T.
文摘Characterizing foliar trait variation in sun and shade leaves can provide insights into inter-and intra-species resource use strategies and plant response to environmental change.However,datasets with records of multiple foliar traits from the same individual and including shade leaves are sparse,which limits our ability to investigate trait-trait,trait-environment relationships and trait coordination in both sun and shade leaves.We presented a comprehensive dataset of 15 foliar traits from sun and shade leaves sampled with leaf spectroscopy,including 424 individuals of 110 plant species from 19 sites across eastern North America.We investigated trait variation,covariation,scaling relationships with leaf mass,and the effects of environment,canopy position,and taxonomy on trait expression.Generally,sun leaves had higher leaf mass per area,nonstructural carbohydrates and total phenolics,lower mass-based chlorophyll a+b,carotenoids,phosphorus,and potassium,but exhibited species-specific characteristics.Covariation between sun and shade leaf traits,and trait-environment relationships were overall consistent across species.The main dimensions of foliar trait variation in seed plants were revealed including leaf economics traits,photosynthetic pigments,defense,and structural traits.Taxonomy and canopy position collectively explained most of the foliar trait variation.This study highlights the importance of including intra-individual and intra-specific trait variation to improve our understanding of ecosystem functions.Our findings have implications for efficient field sampling,and trait mapping with remote sensing.
基金This work was supported by the National Natural Science Foundation of China(32171765).
文摘Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types within the canopy are poorly quantified.In this study,the seasonality of leaf chlorophyll,nitrogen(N),and phosphorus(P)were quantified vertically along the canopy of four major tree species and two types of herbs in a temperate deciduous forest.The role of shade tolerance in shaping the seasonal variation and vertical differentiation was examined.During the entire season,chlorophyll content showed a distinct asymmetric unimodal pattern for all species,with greater chlorophyll levels in autumn than in spring,and the timing of peak chlorophyll per leaf area gradually decreased as shade tolerance increased.Chlorophyll a:b ratios gradually decreased with increasing shade tolerance.Leaf N and P contents sharply declined during leaf expansion,remained steady in the mature stage and decreased again during leaf senescence.Over the seasons,the lower canopy layer had significantly higher chlorophyll per leaf mass but not chlorophyll per leaf area than the upper canopy layer regardless of degree of shade tolerance.However,N and P per leaf area of intermediate shade-tolerant and fully shade-tolerant tree species were significantly higher in the upper canopy than in the lower.Seasonal variations in N:P ratios suggest changes in N or P limitation.These findings indicate that shade tolerance is a key feature shaping inter-specific differences in leaf chlorophyll,N,and P contents as well as their seasonality in temperate deciduous forests,which have significant implications for modeling leaf photosynthesis and ecosystem production.
基金This work was supported by the National Key R&D Program of China(2022YFD2201100)the National Natural Science Foundation of China(31971636)the Fundamental Research Funds for the Central Universities(2572022DS13).
文摘The variation and correlation of leaf economics and vein traits are crucial for predicting plant ecological strategies under different environmental changes.However,correlations between these two suites of traits and abiotic factors such as soil water and nitrogen content remain ambiguous.We measured leaf economics and vein traits as well as soil water and nitrogen content for two different shade-tolerant species(Betula platyphylla and Acer mono)in four mixed broadleaved-Korean pine(Pinus koraiensis)forests along a latitudinal gradient in Northeast China.We found that leaf economics traits and vein traits were decoupled in shade-intolerant species,Betula platphylla,but significantly coupled in a shadetolerant species,A.mono.We found stronger correlations among leaf traits in the shade tolerant species than in the shade intolerant species.Furthermore,leaf economic traits were positively correlated with the soil water gradient for both species,whereas vein traits were positively correlated with soil water gradient for the shade intolerant species but negatively correlated in the shade tolerant species.Although economic traits were positively correlated with soil nitrogen gradient in shade intolerant species but not correlated in shade tolerant species,vein traits were negatively correlated with soil nitrogen gradient in shade tolerant species but not correlated in shade intolerant species.Our study provides evidence for distinct correlations between leaf economics and vein traits and local abiotic factors of species differing in light demands.We recommend that the ecological significance of shade tolerance be considered for species when evaluating ecosystem functions and predicting plant responses to environmental changes.
基金supported by the National Natural Science Foundation of China (31271661)the Special Fund for Agro-scientific Research in the Public Interest of China (201203100, 201203031)
文摘The solar radiation intensity and duration are continuously decreasing in the major wheat planting area of China. As a con- sequence, leaf senescence, photosynthesis, grain filling and thus wheat yield shall be affected by light deficiency. Therefore, two winter wheat (Triticum aestivum L.) cultivars, Tainong 18 (a large-spike cultivar) and Ji'nan 17 (a multiple-spike cultivar), were subjected to shading during anthesis and maturity under field condition in 2010-2011 and 2011-2012. Under the slight shading treatment ($1,88% of full sunshine), leaf senescence was delayed, net photosynthesis rate (Po) and canopy apparent photosynthesis rate (CAP) were improved, and thus thousand-kernel weight (TKW) and grain yield were higher as compared with the control. However, mid and severe shading (S2 andS3, 67 and 35% of full sunshine, respectively) led to negative effects on these traits substantially. Moreover, superoxide dismutase (SOD), peroxidase (POD) and cat- alase (CAT) activities in flag leaf were significantly greater under slight shading than those in other treatments, while the malondialdehyde (MDA) content was less than that under other treatments. In addition, the multiple-spike cultivar is more tolerant to shading than large-spike cultivar. In conclusion, slight shading after anthesis delayed leaf senescence, enhanced photosynthesis and grain filling, and thus resulted in higher grain yield.
基金supported by the National Natural Science Foundation of China(31860355,U1903302)the Regional Innovation Guidance Plan of Xinjiang Production and Construction Corps,China(2021BB001)。
文摘Light heterogeneity leads to anatomically and physiologically heterogeneous features in leaves. However, little attention has been paid to the effects of nonuniform illumination on the anatomical and photosynthetic performance on both sides along the leaf main vein. This study explored such effects by combining in situ determination in the field with shading simulation in the phytotron, on pima cotton that has cupping leaves. Photosynthetic characteristics and morphological structures were measured in the field on both sides along the main vein of eastward, westward, southward, and northward leaves. The results showed that the difference in photosynthetic capacity between the two sides along the main vein in different directions was closely related to the daily photo irridiance(DPI). This result indicates that the photosynthetic heterogeneity between the two sides is related to their intercepted light energy. The conclusion was further verified by the shading simulation experiments. Photosynthetic capacity and leaf thickness of the unshaded sides of leaves in the half-shaded treatment decreased, compared to those in the unshaded treatment. Therefore, it is conjectured that the development of photosynthetic characteristics on one side is systematically regulated by that on the other side. The study provides theoretical guidance on accessing the feasibility of sampling and directional planting.