期刊文献+
共找到100,056篇文章
< 1 2 250 >
每页显示 20 50 100
A semi-analytical model for coupled flow in stress-sensitive multi-scale shale reservoirs with fractal characteristics 被引量:1
1
作者 Qian Zhang Wen-Dong Wang +4 位作者 Yu-Liang Su Wei Chen Zheng-Dong Lei Lei Li Yong-Mao Hao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期327-342,共16页
A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes... A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation. 展开更多
关键词 Multi-scale coupled flow Stress sensitivity Shale oil Micro-scale effect Fractal theory
下载PDF
Coupled multiphysical model for investigation of influence factors in the application of microbially induced calcite precipitation 被引量:1
2
作者 Xuerui Wang Pavan Kumar Bhukya +1 位作者 Dali Naidu Arnepalli Shuang Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2232-2249,共18页
The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiph... The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiphysics involved in MICP,such as bacterial ureolytic activities,biochemical reactions,multiphase and multicomponent transport,and alteration of the porosity and permeability.The model incorporates multiphysical coupling effects through well-established constitutive relations that connect parameters and variables from different physical fields.It was implemented in the open-source finite element code OpenGeoSys(OGS),and a semi-staggered solution strategy was designed to solve the couplings,allowing for flexible model settings.Therefore,the developed model can be easily adapted to simulate MICP applications in different scenarios.The numerical model was employed to analyze the effect of various factors,including temperature,injection strategies,and application scales.Besides,a TBCH modeling study was conducted on the laboratory-scale domain to analyze the effects of temperature on urease activity and precipitated calcium carbonate.To understand the scale dependency of MICP treatment,a large-scale heterogeneous domain was subjected to variable biochemical injection strategies.The simulations conducted at the field-scale guided the selection of an injection strategy to achieve the desired type and amount of precipitation.Additionally,the study emphasized the potential of numerical models as reliable tools for optimizing future developments in field-scale MICP treatment.The present study demonstrates the potential of this numerical framework for designing and optimizing the MICP applications in laboratory-,prototype-,and field-scale scenarios. 展开更多
关键词 MULTIPHYSICS Microbially induced calcite precipitation(MICP) coupled thermo-bio-chemo-hydraulic(TBCH) model OpenGeoSys(OGS) Influence factors
下载PDF
Nonlinearly induced entanglement in dissipatively coupled optomechanical system
3
作者 杨文全 冷轩 +1 位作者 程泂 张闻钊 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期255-260,共6页
Nonlinearly induced steady-state photon–phonon entanglement of a dissipative coupled system is studied in the bistable regime. Quantum dynamical characteristics are analysed by solving the mean-field and fluctuation ... Nonlinearly induced steady-state photon–phonon entanglement of a dissipative coupled system is studied in the bistable regime. Quantum dynamical characteristics are analysed by solving the mean-field and fluctuation equations of the system. It is shown that dissipative coupling can induce bistable behaviour for the effective dissipation of the system.Under suitable parameters, one of the steady states significantly reduces the dissipative effect of the system. Consequently,a larger steady-state entanglement can be achieved compared to linear dynamics. Furthermore, the experimental feasibility of the parameters is analysed. Our results provide a new perspective for the implementation of steady-state optomechanical entanglement. 展开更多
关键词 ENTANGLEMENT optomechanical system dissipatively coupling
下载PDF
Seismic performance evaluation of hybrid coupled shear wall system with shear and flexural fuse-type steel coupling beams
4
作者 Zahra Ramezandoust Abbas Tajaddini Panam Zarfam 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期691-712,共22页
Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically... Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically evaluate the seismic behavior of flexural and shear fuse beams situated in short-,medium-and high-rise RC buildings that have HCSWs.Three building groups hypothetically located in a high seismic hazard zone were studied.A series of 2D nonlinear time history analyses was accomplished in OpenSees,using the ground motion records scaled at the design basis earthquake level.It was found that the effectiveness of fuses in HCSWs depends on various factors such as size and scale of the building,allowable rotation value,inter-story drift ratio,residual drift quantity,energy dissipation value of the fuses,etc.The results show that shear fuses better meet the requirements of rotations and drifts.In contrast,flexural fuses dissipate more energy,but their sectional stiffness should increase to meet other requirements.It was concluded that adoption of proper fuses depends on the overall scale of the building and on how associated factors are considered. 展开更多
关键词 hybrid coupled shear wall steel fuse coupling beam shear and flexural fuse nonlinear dynamic analysis seismic performance
下载PDF
Effects of asymmetric coupling and boundary on the dynamic behaviors of a random nearest neighbor coupled system
5
作者 徐玲 姜磊 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期309-322,共14页
This study investigates the dynamical behaviors of nearest neighbor asymmetric coupled systems in a confined space.First, the study derivative analytical stability and synchronization conditions for the asymmetrically... This study investigates the dynamical behaviors of nearest neighbor asymmetric coupled systems in a confined space.First, the study derivative analytical stability and synchronization conditions for the asymmetrically coupled system in an unconfined space, which are then validated through numerical simulations. Simulation results show that asymmetric coupling has a significant impact on synchronization conditions. Moreover, it is observed that irrespective of whether the system is confined, an increase in coupling asymmetry leads to a hastened synchronization pace. Additionally, the study examines the effects of boundaries on the system's collective behaviors via numerical experiments. The presence of boundaries ensures the system's stability and synchronization, and reducing these boundaries can expedite the synchronization process and amplify its effects. Finally, the study reveals that the system's output amplitude exhibits stochastic resonance as the confined boundary size increases. 展开更多
关键词 asymmetric coupled confined space SYNCHRONIZATION stochastic resonance stability
下载PDF
Customized modulation on plasma uniformity by non-uniform magnetic field in capacitively coupled plasma
6
作者 王森 张权治 +2 位作者 马方方 Maksudbek YUSUPOV 王友年 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期79-87,共9页
A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static m... A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static magnetic field, direct current is applied to a circular coil located at the top of the chamber. By adjusting the magnetic field's configuration, which is done by altering the coil current and position, both the plasma uniformity and density can be significantly modulated. In the absence of the magnetic field, the plasma density exhibits an inhomogeneous distribution characterized by higher values at the plasma edge and lower values at the center. The introduction of a magnetic field generated by coils results in a significant increase in electron density near the coils. Furthermore, an increase in the sets of coils improves the uniformity of the plasma. By flexibly adjusting the positions of the coils and the applied current,a substantial enhancement in overall uniformity can be achieved. These findings demonstrate the feasibility of using this method for achieving uniform plasma densities in industrial applications. 展开更多
关键词 COMSOL capacitively coupled plasma plasma uniformity magnetic field
下载PDF
A Coupled Thermomechanical Crack Propagation Behavior of Brittle Materials by Peridynamic Differential Operator
7
作者 Tianyi Li Xin Gu Qing Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期339-361,共23页
This study proposes a comprehensive,coupled thermomechanical model that replaces local spatial derivatives in classical differential thermomechanical equations with nonlocal integral forms derived from the peridynamic... This study proposes a comprehensive,coupled thermomechanical model that replaces local spatial derivatives in classical differential thermomechanical equations with nonlocal integral forms derived from the peridynamic differential operator(PDDO),eliminating the need for calibration procedures.The model employs a multi-rate explicit time integration scheme to handle varying time scales in multi-physics systems.Through simulations conducted on granite and ceramic materials,this model demonstrates its effectiveness.It successfully simulates thermal damage behavior in granite arising from incompatible mineral expansion and accurately calculates thermal crack propagation in ceramic slabs during quenching.To account for material heterogeneity,the model utilizes the Shuffle algorithm andWeibull distribution,yielding results that align with numerical simulations and experimental observations.This coupled thermomechanical model shows great promise for analyzing intricate thermomechanical phenomena in brittle materials. 展开更多
关键词 Peridynamic differential operator thermomechanical coupling HETEROGENEITY numerical simulation
下载PDF
Coexisting fast–slow dendritic traveling waves in a 3D-array electric field coupled neuronal network
8
作者 魏熙乐 任泽宇 +2 位作者 卢梅丽 樊亚琴 常思远 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期614-626,共13页
Coexistence of fast and slow traveling waves without synaptic transmission has been found in hhhippocampal tissues,which is closely related to both normal brain activity and abnormal neural activity such as epileptic ... Coexistence of fast and slow traveling waves without synaptic transmission has been found in hhhippocampal tissues,which is closely related to both normal brain activity and abnormal neural activity such as epileptic discharge. However, the propagation mechanism behind this coexistence phenomenon remains unclear. In this paper, a three-dimensional electric field coupled hippocampal neural network is established to investigate generation of coexisting spontaneous fast and slow traveling waves. This model captures two types of dendritic traveling waves propagating in both transverse and longitude directions: the N-methyl-D-aspartate(NMDA)-dependent wave with a speed of about 0.1 m/s and the Ca-dependent wave with a speed of about 0.009 m/s. These traveling waves are synaptic-independent and could be conducted only by the electric fields generated by neighboring neurons, which are basically consistent with the in vitro data measured experiments. It is also found that the slow Ca wave could trigger generation of fast NMDA waves in the propagation path of slow waves whereas fast NMDA waves cannot affect the propagation of slow Ca waves. These results suggest that dendritic Ca waves could acted as the source of the coexistence fast and slow waves. Furthermore, we also confirm the impact of cellular spacing heterogeneity on the onset of coexisting fast and slow waves. The local region with decreasing distances among neighbor neurons is more liable to promote the onset of spontaneous slow waves which, as sources, excite propagation of fast waves. These modeling studies provide possible biophysical mechanisms underlying the neural dynamics of spontaneous traveling waves in brain tissues. 展开更多
关键词 hippocampal network EPILEPTIFORM dendritic oscillation traveling wave electric field coupling
下载PDF
Multi-soliton solutions of coupled Lakshmanan-Porsezian-Daniel equations with variable coefficients under nonzero boundary conditions
9
作者 赵会超 马雷诺 解西阳 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期137-152,共16页
This paper aims to investigate the multi-soliton solutions of the coupled Lakshmanan–Porsezian–Daniel equations with variable coefficients under nonzero boundary conditions.These equations are utilized to model the ... This paper aims to investigate the multi-soliton solutions of the coupled Lakshmanan–Porsezian–Daniel equations with variable coefficients under nonzero boundary conditions.These equations are utilized to model the phenomenon of nonlinear waves propagating simultaneously in non-uniform optical fibers.By analyzing the Lax pair and the Riemann–Hilbert problem,we aim to provide a comprehensive understanding of the dynamics and interactions of solitons of this system.Furthermore,we study the impacts of group velocity dispersion or the fourth-order dispersion on soliton behaviors.Through appropriate parameter selections,we observe various nonlinear phenomena,including the disappearance of solitons after interaction and their transformation into breather-like solitons,as well as the propagation of breathers with variable periodicity and interactions between solitons with variable periodicities. 展开更多
关键词 soliton Riemann-Hilbert problem non-zero boundary conditions coupled Lakshmanan-Porsezian-Daniel equation
下载PDF
A mechanically coupled MEMS filter with high-Q width extensional mode resonators
10
作者 Wei Wang Wenli Liu +5 位作者 Junyuan Zhao Bo Niu Zeyu Wu Yinfang Zhu Jinling Yang Fuhua Yang 《Journal of Semiconductors》 EI CAS CSCD 2024年第8期41-48,共8页
This work presents a novel radio frequency(RF)narrowband Si micro-electro-mechanical systems(MEMS)filter based on capacitively transduced slotted width extensional mode(WEM)resonators.The flexibility of the plate lead... This work presents a novel radio frequency(RF)narrowband Si micro-electro-mechanical systems(MEMS)filter based on capacitively transduced slotted width extensional mode(WEM)resonators.The flexibility of the plate leads to multiple modes near the target frequency.The high Q-factor resonators of around 100000 enable narrow bandwidth filters with small size and simplified design.The 1-wavelength and 2-wavelength WEMs were first developed as a pair of coupled modes to form a passband.To reduce bandwidth,two plates are coupled with aλ-length coupling beam.The 79.69 MHz coupled plate filter(CPF)achieved a narrow bandwidth of 8.8 kHz,corresponding to a tiny 0.011%.The CPF exhibits an impressive 34.84 dB stopband rejection and 7.82 dB insertion loss with near-zero passband ripple.In summary,the RF MEMS filter presented in this work shows promising potential for application in RF transceiver front-ends. 展开更多
关键词 MEMS narrowband filter mechanically coupling quality factor width extensional mode
下载PDF
Abnormal transition of the electron energy distribution with excitation of the second harmonic in low-pressure radio-frequency capacitively coupled plasmas
11
作者 余乐怡 陆文琪 张丽娜 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第8期58-63,共6页
The self-excited second harmonic in radio-frequency capacitively coupled plasma was significantly enhanced by adjusting the external variable capacitor.At a lower pressure of 3 Pa,the excitation of the second harmonic... The self-excited second harmonic in radio-frequency capacitively coupled plasma was significantly enhanced by adjusting the external variable capacitor.At a lower pressure of 3 Pa,the excitation of the second harmonic caused an abnormal transition of the electron energy probability function,resulting in abrupt changes in the electron density and temperature.Such changes in the electron energy probability function as well as the electron density and temperature were not observed at the higher pressure of 16 Pa under similar harmonic changes.The phenomena are related to the influence of the second harmonic on stochastic heating,which is determined by both amplitude and the relative phase of the harmonics.The results suggest that the self-excited high-order harmonics must be considered in practical applications of lowpressure radio-frequency capacitively coupled plasmas. 展开更多
关键词 RADIO-FREQUENCY capacitively coupled plasma HARMONICS the electron energy probability function
下载PDF
Numerical simulation study on the mold strength of magnetic mold casting based on a coupled electromagnetic-structural method
12
作者 Wei-li Peng Jian-hua Zhao +1 位作者 Cheng Gu Ya-jun Wang 《China Foundry》 SCIE EI CAS CSCD 2024年第5期577-587,共11页
The properties of the magnetic mold in magnetic mold casting directly determine the quality of the final cast parts.In this study,the magnetic mold properties in magnetic mold casting,were studied utilizing a coupled ... The properties of the magnetic mold in magnetic mold casting directly determine the quality of the final cast parts.In this study,the magnetic mold properties in magnetic mold casting,were studied utilizing a coupled electromagnetic-structural method through numerical simulation.This study investigated key factors including equivalent stress,the distribution of tensile and compressive stresses,and the area ratio of tensile stress.It compared molds made entirely of magnetic materials with those made partially of magnetic materials.Simulation results indicate that as current increases from 4 A to 8 A,both the initial magnetic mold and the material-replaced magnetic mold initially show an increasing trend in equivalent stress,tensile-compressive stress,and the area ratio of tensile stress,peaking at 6 A before declining.After material replacement,the area ratio of tensile stress at 6 A decreases to 19.84%,representing a reduction of 29.72%.Magnetic molds comprising a combination of magnetic and non-magnetic materials exhibit sufficient strength and a reduced area ratio of tensile stress compared to those made entirely from magnetic materials.This study provides valuable insights for optimizing magnetic mold casting processes and offers practical guidance for advancing the application of magnetic molds. 展开更多
关键词 magnetic mold casting coupled electromagnetic-structural method numerical simulation stress analysis
下载PDF
Contrasts of bimodal tropical instability waves(TIWs)-induced wind stress perturbations in the Pacific Ocean among observations,ocean models,and coupled climate models
13
作者 Kai MA Chuanyu LIU +1 位作者 Junli XU Fan WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期1-23,共23页
The coupling between wind stress perturbations and sea surface temperature(SST)perturbations induced by tropical instability waves(TIWs)in the Pacific Ocean has been revealed previously and proven crucial to both the ... The coupling between wind stress perturbations and sea surface temperature(SST)perturbations induced by tropical instability waves(TIWs)in the Pacific Ocean has been revealed previously and proven crucial to both the atmosphere and ocean.However,an overlooked fact by previous studies is that the loosely defined“TIWs”actually consist of two modes,including the Yanai wave-based TIW on the equator(hereafter eTIW)and the Rossby wave-based TIW off the equator(hereafter vTIW).Hence,the individual feedbacks of the wind stress to the bimodal TIWs remain unexplored.In this study,individual coupling relationships are established for both eTIW and v TIW,including the relationship between the TIW-induced SST perturbations and two components of wind stress perturbations,and the relationship between the TIW-induced wind stress perturbation divergence(curl)and the downwind(crosswind)TIW-induced SST gradients.Results show that,due to different distributions of eTIW and vTIW,the coupling strength induced by the eTIW is stronger on the equator,and that by the vTIW is stronger off the equator.The results of any of eTIW and vTIW are higher than those of the loosely defined TIWs.We further investigated how well the coupling relationships remained in several widely recognized oceanic general circulation models and fully coupled climate models.However,the coupling relationships cannot be well represented in most numerical models.Finally,we confirmed that higher resolution usually corresponds to more accurate simulation.Therefore,the coupling models established in this study are complementary to previous research and can be used to refine the oceanic and coupled climate models. 展开更多
关键词 bimodal tropical instability waves mesoscale air-sea interaction coupled models Yanai wave
下载PDF
Stress-corrosion coupled damage localization induced by secondary phases in bio-degradable Mg alloys:phase-field modeling
14
作者 Chao Xie Shijie Bai +2 位作者 Xiao Liu Minghua Zhang Jianke Du 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期361-383,共23页
In this study,a phase-field scheme that rigorously obeys conservation laws and irreversible thermodynamics is developed for modeling stress-corrosion coupled damage(SCCD).The coupling constitutive relationships of the... In this study,a phase-field scheme that rigorously obeys conservation laws and irreversible thermodynamics is developed for modeling stress-corrosion coupled damage(SCCD).The coupling constitutive relationships of the deformation,phase-field damage,mass transfer,and electrostatic field are derived from the entropy inequality.The SCCD localization induced by secondary phases in Mg is numerically simulated using the implicit iterative algorithm of the self-defined finite elements.The quantitative evaluation of the SCCD of a C-ring is in good agreement with the experimental results.To capture the damage localization,a micro-galvanic corrosion domain is defined,and the buffering effect on charge migration is explored.Three cases are investigated to reveal the effect of localization on corrosion acceleration and provide guidance for the design for resistance to SCCD at the crystal scale. 展开更多
关键词 Phase field Mg alloys Stress-corrosion coupled damage Damage localization Finite element method
下载PDF
Multi-Physics Coupled Acoustic-Mechanics Analysis and Synergetic Optimization for a Twin-Fluid Atomization Nozzle
15
作者 Wenying Li Yanying Li +4 位作者 Yingjie Lu Jinhuan Xu Bo Chen Li Zhang Yanbiao Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期204-223,共20页
Fine particulate matter produced during the rapid industrialization over the past decades can cause significant harm to human health.Twin-fluid atomization technology is an effective means of controlling fine particul... Fine particulate matter produced during the rapid industrialization over the past decades can cause significant harm to human health.Twin-fluid atomization technology is an effective means of controlling fine particulate matter pollution.In this paper,the influences of the main parameters on the droplet size,effective atomization range and sound pressure level(SPL)of a twin-fluid nozzle(TFN)are investigated,and in order to improve the atomization performance,a multi-objective synergetic optimization algorithm is presented.A multi-physics coupled acousticmechanics model based on the discrete phase model(DPM),large eddy simulation(LES)model,and Ffowcs Williams-Hawkings(FW-H)model is established,and the numerical simulation results of the multi-physics coupled acoustic-mechanics method are verified via experimental comparison.Based on the analysis of the multi-physics coupled acoustic-mechanics numerical simulation results,the effects of the water flow on the characteristics of the atomization flow distribution were obtained.A multi-physics coupled acoustic-mechanics numerical simulation result was employed to establish an orthogonal test database,and a multi-objective synergetic optimization algorithm was adopted to optimize the key parameters of the TFN.The optimal parameters are as follows:A gas flow of 0.94 m^(3)/h,water flow of 0.0237 m^(3)/h,orifice diameter of the self-excited vibrating cavity(SVC)of 1.19 mm,SVC orifice depth of 0.53 mm,distance between SVC and the outlet of nozzle of 5.11 mm,and a nozzle outlet diameter of 3.15 mm.The droplet particle size in the atomization flow field was significantly reduced,the spray distance improved by 71.56%,and the SPL data at each corresponding measurement point decreased by an average of 38.96%.The conclusions of this study offer a references for future TFN research. 展开更多
关键词 Twin-fluid nozzle BP neural network Multi-objective optimization Multi-physics coupled Acousticmechanics analysis Genetic algorithm
下载PDF
CAS-ESM2.0 Successfully Reproduces Historical Atmospheric CO_(2) in a Coupled Carbon−Climate Simulation
16
作者 Jiawen ZHU Juanxiong HE +6 位作者 Duoying JI Yangchun LI He ZHANG Minghua ZHANG Xiaodong ZENG Kece FEI Jiangbo JIN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第4期572-580,共9页
The atmospheric carbon dioxide(CO_(2))concentration has been increasing rapidly since the Industrial Revolution,which has led to unequivocal global warming and crucial environmental change.It is extremely important to... The atmospheric carbon dioxide(CO_(2))concentration has been increasing rapidly since the Industrial Revolution,which has led to unequivocal global warming and crucial environmental change.It is extremely important to investigate the interactions among atmospheric CO_(2),the physical climate system,and the carbon cycle of the underlying surface for a better understanding of the Earth system.Earth system models are widely used to investigate these interactions via coupled carbon-climate simulations.The Chinese Academy of Sciences Earth System Model version 2(CAS-ESM2.0)has successfully fixed a two-way coupling of atmospheric CO_(2)with the climate and carbon cycle on land and in the ocean.Using CAS-ESM2.0,we conducted a coupled carbon-climate simulation by following the CMIP6 proposal of a historical emissions-driven experiment.This paper examines the modeled CO_(2)by comparison with observed CO_(2)at the sites of Mauna Loa and Barrow,and the Greenhouse Gases Observing Satellite(GOSAT)CO_(2)product.The results showed that CAS-ESM2.0 agrees very well with observations in reproducing the increasing trend of annual CO_(2)during the period 1850-2014,and in capturing the seasonal cycle of CO_(2)at the two baseline sites,as well as over northern high latitudes.These agreements illustrate a good ability of CAS-ESM2.0 in simulating carbon-climate interactions,even though uncertainties remain in the processes involved.This paper reports an important stage of the development of CAS-ESM with the coupling of carbon and climate,which will provide significant scientific support for climate research and China’s goal of carbon neutrality. 展开更多
关键词 CAS-ESM atmospheric CO_(2) coupled carbon-climate simulation emissions-driven CMIP6 experiment
下载PDF
Uncertainty quantification of mechanism motion based on coupled mechanism—motor dynamic model for ammunition delivery system
17
作者 Jinsong Tang Linfang Qian +3 位作者 Longmiao Chen Guangsong Chen Mingming Wang Guangzu Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期125-133,共9页
In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to pro... In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to propose a novel mechanism-motor coupling dynamic modeling method,in which the relationship between mechanism motion and motor rotation is established according to the geometric coordination of the system.The advantages of this include establishing intuitive coupling between the mechanism and motor,facilitating the discussion for the influence of both mechanical and electrical parameters on the mechanism,and enabling dynamic simulation with controller to take the randomness of the electric load into account.Dynamic simulation considering feedback control of ammunition delivery system is carried out,and the feasibility of the model is verified experimentally.Based on probability density evolution theory,we comprehensively discuss the effects of system parameters on mechanism motion from the perspective of uncertainty quantization.Our work can not only provide guidance for engineering design of ammunition delivery mechanism,but also provide theoretical support for modeling and uncertainty quantification research of mechatronics system. 展开更多
关键词 Ammunition delivery system Electromechanical coupling dynamics Uncertainty quantification Generalized probability density evolution
下载PDF
Optimal Design and Experimental Study of Tightly Coupled SCR Mixers for Diesel Engines
18
作者 Jianhua Zhang Wen Sun Zhijun Li 《Energy Engineering》 EI 2024年第10期2893-2906,共14页
Two types of tightly coupled Selective Catalytic Reduction(SCR)mixers were designed in this study,namely Mixer 1 integrated with an SCR catalyst and Mixer 2 arranged separately.Computational Fluid Dynamics(CFD)softwar... Two types of tightly coupled Selective Catalytic Reduction(SCR)mixers were designed in this study,namely Mixer 1 integrated with an SCR catalyst and Mixer 2 arranged separately.Computational Fluid Dynamics(CFD)software was utilized to model the gas flow,spraying,and pyrolysis reaction of the aqueous urea solution in the tightly coupled SCR system.The parameters of gas flow velocity uniformity and ammonia distribution uniformity were simulated and calculated for both Mixer 1 and Mixer 2 in the tightly coupled SCR system to compare their advantages and disadvantages.The simulation results indicated that Mixer 1 exhibited a gas velocity uniformity of 0.972 and an ammonia distribution uniformity of 0.817,whereas Mixer 2 demonstrated a gas velocity uniformity of 0.988 and an ammonia distribution uniformity of 0.964.Mixer 2 performed better in the simulation analysis.Furthermore,a 3D-printed prototype of Mixer 2 was manufactured and installed on an engine test bench to investigate ammonia distribution uniformity and NOX conversion efficiency.The experimental investigations yielded the following findings:1)The ammonia distribution uniformity of Mixer 2 was measured as 0.976,which closely aligned with the simulation result of 0.964,with a deviation of 1.2%from the model calculations;2)As exhaust temperature increased,the ammonia distribution uniformity gradually improved,while an increase in exhaust flow rate resulted in a decrease in ammonia distribution uniformity;3)When utilizing Mixer 2,the NOX conversion efficiency reached 84.7%at an exhaust temperature of 200°C and 97.4%at 250°C.Within the exhaust temperature range of 300°C to 450°C,the NOX conversion efficiency remained above 98%.This study proposed two innovative mixer structures,conducted simulation analysis,and performed performance testing.The research outcomes indicated that the separately arranged Mixer 2 exhibited superior performance.The tightly coupled SCR systemequippedwith Mixer 2 achieved excellent levels of gas velocity uniformity,ammonia distribution uniformity,and NOX conversion efficiency.These findings can serve as valuable references for the design and development of ultra-low emission after-treatment systems for diesel engines in the field of diesel engine aftertreatment. 展开更多
关键词 Tightly coupled SCR MIXER ammonia distribution uniformity
下载PDF
An internal ballistic model of electromagnetic railgun based on PFN coupled with multi-physical field and experimental validation
19
作者 Benfeng Gu Haiyuan Li Baoming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期254-261,共8页
To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dime... To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed. 展开更多
关键词 Internal ballistic modeling Electromagnetic rail gun Multi-physics field coupling Experimental validation PFN
下载PDF
Effect of coil and chamber structure on plasma radial uniformity in radio frequency inductively coupled plasma
20
作者 赵洋 周晓华 +2 位作者 高升荣 宋莎莎 赵玉真 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第7期58-66,共9页
Enhancing plasma uniformity can be achieved by modifying coil and chamber structures in radio frequency inductively coupled plasma(ICP)to meet the demand for large-area and uniformly distributed plasma in industrial m... Enhancing plasma uniformity can be achieved by modifying coil and chamber structures in radio frequency inductively coupled plasma(ICP)to meet the demand for large-area and uniformly distributed plasma in industrial manufacturing.This study utilized a two-dimensional self-consistent fluid model to investigate how different coil configurations and chamber aspect ratios affect the radial uniformity of plasma in radio frequency ICP.The findings indicate that optimizing the radial spacing of the coil enhances plasma uniformity but with a reduction in electron density.Furthermore,optimizing the coil within the ICP reactor,using the interior point method in the Interior Point Optimizer significantly enhances plasma uniformity,elevating it from 56%to 96%within the range of the model sizes.Additionally,when the chamber aspect ratio k changes from 2.8 to 4.7,the plasma distribution changes from a center-high to a saddleshaped distribution.Moreover,the plasma uniformity becomes worse.Finally,adjusting process parameters,such as increasing source power and gas pressure,can enhance plasma uniformity.These findings contribute to optimizing the etching process by improving plasma radial uniformity. 展开更多
关键词 inductively coupled plasma fluid simulation optimized coil chamber aspect ratio plasma uniformity
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部