It is always desirable to know the interior deformation pattern when a rock is subjected to mechanicalload. Few experimental techniques exist that can represent full-field three-dimensional (3D) straindistribution i...It is always desirable to know the interior deformation pattern when a rock is subjected to mechanicalload. Few experimental techniques exist that can represent full-field three-dimensional (3D) straindistribution inside a rock specimen. And yet it is crucial that this information is available for fully understandingthe failure mechanism of rocks or other geomaterials. In this study, by using the newlydeveloped digital volumetric speckle photography (DVSP) technique in conjunction with X-ray computedtomography (CT) and taking advantage of natural 3D speckles formed inside the rock due to materialimpurities and voids, we can probe the interior of a rock to map its deformation pattern under load andshed light on its failure mechanism. We apply this technique to the analysis of a red sandstone specimenunder increasing uniaxial compressive load applied incrementally. The full-field 3D displacement fieldsare obtained in the specimen as a function of the load, from which both the volumetric and the deviatoricstrain fields are calculated. Strain localization zones which lead to the eventual failure of the rock areidentified. The results indicate that both shear and tension are contributing factors to the failuremechanism. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
Based on the experimental results in the full stress-strain process of sandstone, siltstone, mudstone,coal, marble by using the advanced experimental equipmeut. This paper studies the characteristics of volumetric str...Based on the experimental results in the full stress-strain process of sandstone, siltstone, mudstone,coal, marble by using the advanced experimental equipmeut. This paper studies the characteristics of volumetric strain in the full stress-strain process. The results give out some new knowledge and conclusions and are helpful to the study on rock mechanical properties, constitutive law and strength theory.展开更多
Here is proposed the principle of interaction between plastic volumetric and shear strains, revealing the main origin of generating the complexity and variety of deformations for geotechnical materials. Here are also ...Here is proposed the principle of interaction between plastic volumetric and shear strains, revealing the main origin of generating the complexity and variety of deformations for geotechnical materials. Here are also explained the manners of the interaction between plastic volumetric and shear strains and the conditions of generating shear dilatancy. It is demonstrated that dependency of the stress path exists and is a combination of effects of this interaction. According to this principle, it is theoretically proved that the space critical state line exists, and is unique and independent of the stress history. Based on this principle, the constitutive models that are able completely and accurately to characterize the basic behavior features for geotechnical materials have been constructed within the framework of thermodynamics. What is determined is a general expression of the constitutive relation as well as the inequality of the dissipative potential increment for obeying the second law of thermodynamics.展开更多
The principle of interaction between plastic volumetric and shear strains for rock and soil has been extended to the field of unsaturated soils.Two new interactions of suction-plastic volumetric strain and pore air pr...The principle of interaction between plastic volumetric and shear strains for rock and soil has been extended to the field of unsaturated soils.Two new interactions of suction-plastic volumetric strain and pore air pressure-plastic volumetric strain appear in the unsaturated state of a soil except the interaction between plastic volumetric and shear strains.It is very important to find that the suction possesses a dual property,which is the origin of generating its special functions.Thereby the effect of the suction on volumetric strain includes two opposite aspects.By means of this property of suction,the physical significance of effective stress parameter,effects of suction on volume change and preconsolidation pressure,and the mechanism of collapse upon wetting all can be explained.In addition,it is theoretically proved by application of this principle of interaction that the critical state line for unsaturated soils exists,and is unique and independent of the stress history.展开更多
The change of the confined aquifer level reflects the pore pressure change,and the pore pressure change of the aquifer is closely related to the aquifer pressure. This paper uses the tidal response of the well water l...The change of the confined aquifer level reflects the pore pressure change,and the pore pressure change of the aquifer is closely related to the aquifer pressure. This paper uses the tidal response of the well water level data in the North China region to calculate the tidal factor of each well and extract the effective water trend information. Then,the volumetric strain of an existing confined aquifer well in the North China region is inverted,and the contour maps are plotted on a half-year scale from 2009 to 2012. Results show that it can reflect the state of stress and strain in deep crust to a certain extent in the North China region.展开更多
The deformation of sea coast or sandy deposits caused by earthquakes can lead to catastrophic damages to various port structures. The volumetric deformation is mainly induced by densification of sand during the dissip...The deformation of sea coast or sandy deposits caused by earthquakes can lead to catastrophic damages to various port structures. The volumetric deformation is mainly induced by densification of sand during the dissipation of excess pore water pressure created by cyclic loading. Based on laboratory test, the reconsolidation volumetric characteristics of saturated sea sand are investigated. The experiments are conducted with a newly developed multi functional triaxial test equipment. Two types of dynamic loads are applied to the samples to clarify different kinds of affecting factors. It is found that the reconsolidation volumetric strain is correlated not only to the excess pore water pressure and the maximum shear strain during the dynamic loading, but also to the effective confining pressure. A new formula is put forward to calculate the volumetric strain during reconssolidation.展开更多
针对西安某地铁车站基坑Q3原状黄土,开展偏应力恒定的循环球应力加/卸载试验,对不同固结应力与不同动应力幅值条件下原状黄土的轴向变形与体应变发展规律进行分析。结果表明:循环球应力作用下,黄土会产生一定的不可逆塑性变形与可逆弹...针对西安某地铁车站基坑Q3原状黄土,开展偏应力恒定的循环球应力加/卸载试验,对不同固结应力与不同动应力幅值条件下原状黄土的轴向变形与体应变发展规律进行分析。结果表明:循环球应力作用下,黄土会产生一定的不可逆塑性变形与可逆弹性变形,其变形增长规律与偏压程度和动应力幅值成正比,与固结应力成反比;轴向变形规律符合Monismith C L幂函数模型,且其模型参数与固结应力条件具有显著的相关性;原状黄土在加载初期体应变累积较明显,之后逐渐趋于稳定;固结应力比对体应变影响较小,固结球应力对体应变发展具有抑制作用,表明浅层土体更容易产生压缩变形。展开更多
The safe and efficient development of natural gas hydrate requires a deep understanding of the deformation behaviors of reservoirs.In this study,a series of triaxial shearing tests are carried out to investigate the d...The safe and efficient development of natural gas hydrate requires a deep understanding of the deformation behaviors of reservoirs.In this study,a series of triaxial shearing tests are carried out to investigate the deformation properties of hydrate-bearing sediments.Variations of volumetric and lateral strains versus hydrate saturation are analyzed comprehensively.Results indicate that the sediments with high hydrate saturation show dilative behaviors,which lead to strain-softening characteristics during shearing.The volumetric strain curves have a tendency to transform gradually from dilatation to compression with the increase in effective confining pressure.An easy prediction model is proposed to describe the relationship between volumetric and axial strains.The model coefficientβis the key dominating factor for the shape of volumetric strain curves and can be determined by the hydrate saturation and stress state.Moreover,a modified model is established for the calculation of lateral strain.The corresponding determination method is provided for the easy estimation of model coefficients for medium sand sediments containing hydrate.This study provides a theoretical and experimental reference for deformation estimation in natural gas hydrate development.展开更多
基金financially supported by National Basic Research Program of China (973 Program) (No. 2010CB732002)National Natural Science Foundation of China (Nos. 51374211, 51374215)+1 种基金National Key Foundation for Exploring Scientific Instrument of China (No. 2013YQ240803)Fundamental Research Funds for the Central Universities (No. 2009QM02)
文摘It is always desirable to know the interior deformation pattern when a rock is subjected to mechanicalload. Few experimental techniques exist that can represent full-field three-dimensional (3D) straindistribution inside a rock specimen. And yet it is crucial that this information is available for fully understandingthe failure mechanism of rocks or other geomaterials. In this study, by using the newlydeveloped digital volumetric speckle photography (DVSP) technique in conjunction with X-ray computedtomography (CT) and taking advantage of natural 3D speckles formed inside the rock due to materialimpurities and voids, we can probe the interior of a rock to map its deformation pattern under load andshed light on its failure mechanism. We apply this technique to the analysis of a red sandstone specimenunder increasing uniaxial compressive load applied incrementally. The full-field 3D displacement fieldsare obtained in the specimen as a function of the load, from which both the volumetric and the deviatoricstrain fields are calculated. Strain localization zones which lead to the eventual failure of the rock areidentified. The results indicate that both shear and tension are contributing factors to the failuremechanism. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
文摘Based on the experimental results in the full stress-strain process of sandstone, siltstone, mudstone,coal, marble by using the advanced experimental equipmeut. This paper studies the characteristics of volumetric strain in the full stress-strain process. The results give out some new knowledge and conclusions and are helpful to the study on rock mechanical properties, constitutive law and strength theory.
文摘Here is proposed the principle of interaction between plastic volumetric and shear strains, revealing the main origin of generating the complexity and variety of deformations for geotechnical materials. Here are also explained the manners of the interaction between plastic volumetric and shear strains and the conditions of generating shear dilatancy. It is demonstrated that dependency of the stress path exists and is a combination of effects of this interaction. According to this principle, it is theoretically proved that the space critical state line exists, and is unique and independent of the stress history. Based on this principle, the constitutive models that are able completely and accurately to characterize the basic behavior features for geotechnical materials have been constructed within the framework of thermodynamics. What is determined is a general expression of the constitutive relation as well as the inequality of the dissipative potential increment for obeying the second law of thermodynamics.
文摘The principle of interaction between plastic volumetric and shear strains for rock and soil has been extended to the field of unsaturated soils.Two new interactions of suction-plastic volumetric strain and pore air pressure-plastic volumetric strain appear in the unsaturated state of a soil except the interaction between plastic volumetric and shear strains.It is very important to find that the suction possesses a dual property,which is the origin of generating its special functions.Thereby the effect of the suction on volumetric strain includes two opposite aspects.By means of this property of suction,the physical significance of effective stress parameter,effects of suction on volume change and preconsolidation pressure,and the mechanism of collapse upon wetting all can be explained.In addition,it is theoretically proved by application of this principle of interaction that the critical state line for unsaturated soils exists,and is unique and independent of the stress history.
基金funded by the 2013 Contract Orientation Tasks of Earthquake Tracing(2013020307)the 2014 Contract Orientation Task of Earthquake Tracing(2014020207)the Spark Program of Earthquake Science and Technology of CEA in 2014(XH14005Y)
文摘The change of the confined aquifer level reflects the pore pressure change,and the pore pressure change of the aquifer is closely related to the aquifer pressure. This paper uses the tidal response of the well water level data in the North China region to calculate the tidal factor of each well and extract the effective water trend information. Then,the volumetric strain of an existing confined aquifer well in the North China region is inverted,and the contour maps are plotted on a half-year scale from 2009 to 2012. Results show that it can reflect the state of stress and strain in deep crust to a certain extent in the North China region.
文摘The deformation of sea coast or sandy deposits caused by earthquakes can lead to catastrophic damages to various port structures. The volumetric deformation is mainly induced by densification of sand during the dissipation of excess pore water pressure created by cyclic loading. Based on laboratory test, the reconsolidation volumetric characteristics of saturated sea sand are investigated. The experiments are conducted with a newly developed multi functional triaxial test equipment. Two types of dynamic loads are applied to the samples to clarify different kinds of affecting factors. It is found that the reconsolidation volumetric strain is correlated not only to the excess pore water pressure and the maximum shear strain during the dynamic loading, but also to the effective confining pressure. A new formula is put forward to calculate the volumetric strain during reconssolidation.
文摘针对西安某地铁车站基坑Q3原状黄土,开展偏应力恒定的循环球应力加/卸载试验,对不同固结应力与不同动应力幅值条件下原状黄土的轴向变形与体应变发展规律进行分析。结果表明:循环球应力作用下,黄土会产生一定的不可逆塑性变形与可逆弹性变形,其变形增长规律与偏压程度和动应力幅值成正比,与固结应力成反比;轴向变形规律符合Monismith C L幂函数模型,且其模型参数与固结应力条件具有显著的相关性;原状黄土在加载初期体应变累积较明显,之后逐渐趋于稳定;固结应力比对体应变影响较小,固结球应力对体应变发展具有抑制作用,表明浅层土体更容易产生压缩变形。
基金supported by the Qingdao Natural Science Foundation(No.23-2-1-54-zyyd-jch)the National Natural Science Foundation of China(Nos.42076217,41976074)+1 种基金the Laoshan Laboratory(No.LSKJ202203506)the Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education,Tongji University(No.KLE-TJGE-G2202).
文摘The safe and efficient development of natural gas hydrate requires a deep understanding of the deformation behaviors of reservoirs.In this study,a series of triaxial shearing tests are carried out to investigate the deformation properties of hydrate-bearing sediments.Variations of volumetric and lateral strains versus hydrate saturation are analyzed comprehensively.Results indicate that the sediments with high hydrate saturation show dilative behaviors,which lead to strain-softening characteristics during shearing.The volumetric strain curves have a tendency to transform gradually from dilatation to compression with the increase in effective confining pressure.An easy prediction model is proposed to describe the relationship between volumetric and axial strains.The model coefficientβis the key dominating factor for the shape of volumetric strain curves and can be determined by the hydrate saturation and stress state.Moreover,a modified model is established for the calculation of lateral strain.The corresponding determination method is provided for the easy estimation of model coefficients for medium sand sediments containing hydrate.This study provides a theoretical and experimental reference for deformation estimation in natural gas hydrate development.