Comprehensive quantitative evaluation of shale gas content and the controlling factors in different occurrence states is of great significance for accurately assessing gas-bearing capacity and providing effective well...Comprehensive quantitative evaluation of shale gas content and the controlling factors in different occurrence states is of great significance for accurately assessing gas-bearing capacity and providing effective well-production strategies. A total of 122 core samples from well JY-A in the Fuling shale gas field were studied to reveal the characteristics of S_1 l shale,15 of which were selected to further predict the shale gas content in different occurrence states, which are dependent on geological factors in the thermal evolution process. Geological parameters were researched by a number of laboratory programs, and the factors influential in controlling shale gas content were extracted by both PCA and GRA methods and prediction models were confirmed by the BE method using SPSS software. Results reveal that the adsorbed gas content is mainly controlled by TOC, Ro, SSA, PD and pyrite content, and the free gas content is mainly controlled by S_2, quartz content, gas saturation and formation pressure for S_1 l in well JY-A. Three methods, including the on-site gas desorption method, the empirical formula method, and the multiple regression analysis method were used in combination to evaluate the shale gas capacity of well JY-A, all of which show that the overall shale gas content of well JY-A is in the range of 2.0–5.0 m^3/t and that the free gas ratio is about 50%, lower than that of well JY-1. Cause analysis further confirms the tectonics and preservation conditions of S_1 l in the geological processes, especially the influence of eastern boundary faults on well JY-A, as the fundamental reasons for the differences in shale gas enrichment in the Jiaoshiba area.展开更多
Measuring gas content is an essential step in estimating the commerciality of gas reserves. In this study,eight shale core samples from the Mouye-1 well were measured using a homemade patented gas desorption apparatus...Measuring gas content is an essential step in estimating the commerciality of gas reserves. In this study,eight shale core samples from the Mouye-1 well were measured using a homemade patented gas desorption apparatus to determine their gas contents. Due to the air contamination that is introduced into the desorption canister, a mathematical method was devised to correct the gas quantity and quality.Compared to the chemical compositions of desorbed gas, the chemical compositions of residual gas are somewhat different. In residual gas, carbon dioxide and nitrogen record a slight increase, and propane is first observed. This phenomenon may be related to the exposure time during the transportation of shale samples from the drilling site to the laboratory, as well as the differences in the mass, size and adsorptivity of different gas molecules. In addition to a series of conventional methods, including the USBM direct method and the Amoco Curve Fit(ACF) method, which were used here for lost gas content estimation, a Modified Curve Fit(MCF) method, based on the 'bidisperse' diffusion model, was established to estimate lost gas content. By fitting the ACF and MCF models to gas desorption data, we determined that the MCF method could reasonably describe the gas desorption data over the entire time period, whereas the ACF method failed. The failure of the ACF method to describe the gas desorption process may be related to its restrictive assumption of a single pore size within shale samples. In comparison to the indirect method, this study demonstrates that none of the three methods studied in this investigation(USBM, ACF and MCF) could individually estimate the lost gas contents of all shale samples and that the proportion of free gas relative to total gas has a significant effect on the estimation accuracy of the selected method. When the ratio of free gas to total gas is lower than 45%, the USBM method is the best for estimating the lost gas content, whereas when the ratio ranges from 45% to 75% or is more than 75%, the ACF and MCF methods, are the best options respectively.展开更多
As an important pilot target for shale gas exploration and development in China,the Longmaxi Formation shale in the Dianqianbei Area is characterized by high content of nitrogen,which severely increases exploration ri...As an important pilot target for shale gas exploration and development in China,the Longmaxi Formation shale in the Dianqianbei Area is characterized by high content of nitrogen,which severely increases exploration risk.Accordingly,this study explores the genesis of shale gas reservoir and the mechanism of nitrogen enrichment through investigating shale gas compositions,isotope features,and geochemical characteristics of associated gases.The high-nitrogen shale gas reservoir in the Longmaxi Formation is demonstrated to be a typical dry gas reservoir.Specifically,the alkane carbon isotope reversal is ascribed to the secondary cracking of crude oil and the Rayleigh fractionation induced by the basalt mantle plume.Such a thermogenic oil-type gas reservoir is composed of both oil-cracking gas and kerogen-cracking gas.The normally high nitrogen content(18.05%-40.92%) is attributed to organic matter cracking and thermal ammoniation in the high-maturity stage.Specifically,the high heat flow effect of the Emeishan mantle plume exacerbates the thermal cracking of organic matter in the Longmaxi Formation shale,accompanied by nitrogen generation.In comparison,the abnormally high nitrogen content(86.79%-98.54%) is ascribed to the communication between the atmosphere and deep underground fluids by deep faults,which results in hydrocarbon loss and nitrogen intrusion,acting as the key factor for deconstruction of the primary shale gas reservoir.Results of this study not only enrich research on genetic mechanism of high-maturity N_@ shale gas reservoirs,but also provide theoretical guidance for subsequent gas reservoir resource evaluation and well-drilling deployment in this area.展开更多
Based on 991 groups of analysis data of shale samples from the Lower Member of the Cretaceous Eagle Ford Formation of 1317 production wells and 72 systematic coring wells in the U.S. Gulf Basin, the estimated ultimate...Based on 991 groups of analysis data of shale samples from the Lower Member of the Cretaceous Eagle Ford Formation of 1317 production wells and 72 systematic coring wells in the U.S. Gulf Basin, the estimated ultimate recovery(EUR) of shale oil and gas of the wells are predicted by using two classical EUR estimation models, and the average values predicted excluding the effect of engineering factors are taken as the final EUR. Key geological factors controlling EUR of shale oil and gas are fully investigated. The reservoir capacity, resources, flow capacity and fracability are the four key geological parameters controlling EUR. The storage capacity of shale oil and gas is directly controlled by total porosity and hydrocarbon-bearing porosity, and indirectly controlled by total organic carbon(TOC) and vitrinite reflectance(Ro). The resources of shale oil and gas are controlled by hydrocarbon-bearing porosity and effective shale thickness etc. The flow capacity of shale oil and gas is controlled by effective permeability, crude oil density, gas-oil ratio, condensate oil-gas ratio, formation pressure gradient, and Ro. The fracability of shale is directly controlled by brittleness index, and indirectly controlled by clay content in volume. EUR of shale oil and gas is controlled by six geological parameters: it is positively correlated with effective shale thickness, TOC and fracture porosity, negatively correlated with clay content in volume, and increases firstly and then decreases with the rise of Ro and formation pressure gradient. Under the present upper limit of horizontal well fracturing effective thickness of 65 m and the lower limit of EUR of 3×10^(4) m^(3), when TOC<2.3%, or Ro<0.85%, or clay content in volume larger than 25%, and fractures and micro-fractures aren’t developed, favorable areas of shale oil and gas hardly occur.展开更多
Shale gas is being hailed as the green energy of the future due to high heating value,low carbon emissions,and large reserves.Gas content of shale is a key parameter for evaluating the shale gas potential and screenin...Shale gas is being hailed as the green energy of the future due to high heating value,low carbon emissions,and large reserves.Gas content of shale is a key parameter for evaluating the shale gas potential and screening for the shale gas sweet spots.Although the concept of gas content has been well defined,obtaining a reliable gas content data still remains a challenge.A significant barrier is the method for evaluating the gas content.In this paper,we provide a review of the long-established and recently developed gas content evaluation methods.In the first part of this review article,the history of gas content evaluation methods is summarized since 1910s,relied on published and unpublished literatures as well as our own experiences.Then,the fundamental contents and concepts involved in gas content evaluation are introduced to provide a clear theoretical foundation for the methods.In the third part,eleven evaluation methods,including four direct methods and seven indirect methods,are systematically reviewed.In each method,its application to evaluating the gas content is presented,the key advances are highlighted,and the advantages and limitations are discussed.Finally,future directions are discussed to promote creative thinking across disciplines to develop new methods or improve current methods for evaluating the gas content more accurately and efficiently.展开更多
Factors of shale gas accumulation can be divided into the external and internal factors,according to accumulation mechanism and characteristics of shale gas. The internal factors mainly refer to parameters of organic ...Factors of shale gas accumulation can be divided into the external and internal factors,according to accumulation mechanism and characteristics of shale gas. The internal factors mainly refer to parameters of organic geochemistry,mineral components and physical parameters. Six factors were presented in this study,i. e.organic matter,maturity,quartz,carbonate,clay mineral and pore. The external factors mainly refer to geologic environment of shale gas reservoir,including four factors: temperature,pressure,depth and thickness.Based on the experiment results of 26 samples of drilling cores from Wuling fold belt in Lower Paleozoic Silurian of the Upper Yangtze Basin,combined with the integrated analysis of geology,logging and test,the correlation of the gas content of shale gas to the above-mentioned ten factors was concluded. Six important evaluation indicators were preliminarily established in the gas-bearing core area of marine shale in the Upper Yangtze Basin.展开更多
Shale gas resources are considered to be extremely abundant in southern China,which has dedicated considerable attention to shale gas exploration in recent years.Exploration of shale gas has considerably progressed an...Shale gas resources are considered to be extremely abundant in southern China,which has dedicated considerable attention to shale gas exploration in recent years.Exploration of shale gas has considerably progressed and several breakthroughs have been made in China.However,shale gas explorations are still scarce.Summary and detailed analysis studies on black shale reservoirs are still to be performed for many areas.This lack of information slows the progress of shale gas explorations and results in low quantities of stored black shale.The Carboniferous Dawuba Formation,which is widely distributed and considerably thick,is one of the black shale formations targeted for shale gas exploration in southern China in the recent years.The acquisition and analysis of total organic carbon,vitrinite reflectance,types of organic matter,mineral composition,porosity,and permeability are basic but important processes.In addition,we analyzed the microscopic pores present in the shale.This study also showesd the good gas content of the Dawuba Formation,as well as the geological factors affecting its gas content and other characteristics.To understand the prospect of exploration,we compared this with other shale reservoirs which have been already successfully explored for gas.Our comparison showesd that those shale reservoirs have similar but not identical geological characteristics.展开更多
The technical feasibility of in situ upgrading technology to develop the enormous oil and gas resource potential in low-maturity shale is widely acknowledged.However,because of the large quantities of energy required ...The technical feasibility of in situ upgrading technology to develop the enormous oil and gas resource potential in low-maturity shale is widely acknowledged.However,because of the large quantities of energy required to heat shale,its economic feasibility is still a matter of debate and has yet to be convincingly demonstrated quantitatively.Based on the energy conservation law,the energy acquisition of oil and gas generation and the energy consumption of organic matter cracking,shale heat-absorption,and surrounding rock heat dissipation during in situ heating were evaluated in this study.The energy consumption ratios for different conditions were determined,and the factors that influence them were analyzed.The results show that the energy consumption ratio increases rapidly with increasing total organic carbon(TOC)content.For oil-prone shales,the TOC content corresponding to an energy consumption ratio of 3 is approximately 4.2%.This indicates that shale with a high TOC content can be expected to reduce the project cost through large-scale operation,making the energy consumption ratio after consideration of the project cost greater than 1.In situ heating and upgrading technology can achieve economic benefits.The main methods for improving the economic feasibility by analyzing factors that influence the energy consumption ratio include the following:(1)exploring technologies that efficiently heat shale but reduce the heat dissipation of surrounding rocks,(2)exploring technologies for efficient transformation of organic matter into oil and gas,i.e.,exploring technologies with catalytic effects,or the capability to reduce in situ heating time,and(3)establishing a horizontal well deployment technology that comprehensively considers the energy consumption ratio,time cost,and engineering cost.展开更多
The gas in-place(GIP)content and the ratio of adsorbed/free gas are two key parameters for the assessment of shale gas resources and have thus received extensive attention.A variety of methods have been proposed to so...The gas in-place(GIP)content and the ratio of adsorbed/free gas are two key parameters for the assessment of shale gas resources and have thus received extensive attention.A variety of methods have been proposed to solve these issues,however none have gained widespread acceptance.Carbon isotope fractionation during the methane transport process provides abundant information,serving as an effective method for differentiating the gas transport processes of adsorbed gas and free gas and ultimately evaluating the two key parameters.In this study,four stages of methane carbon isotope fractionation were documented during a laboratory experiment that simulated gas transport through shale.The four stages reflect different transport processes:the free gas seepage stage(Ⅰ),transition stage(Ⅱ),adsorbed gas desorption stage(Ⅲ)and concentration diffusion stage(Ⅳ).Combined with the results of decoupling experiments,the isotope fractionation characteristics donated by the single effect(seepage,adsorption-desorption and diffusion)were clearly revealed.We further propose a technique integrating the Amoco curve fit(ACF)method and carbon isotope fractionation(CIF)to determine the dynamic change in adsorbed and free gas ratios during gas production.We find that the gases produced in stage Ⅰ are primarily composed of free gas and that carbon isotope ratios of methane(δ13C1)are stable and equal to the ratios of source gas(13C 10).In stage Ⅱ,the contribution of free gas decreases,while the proportion of adsorbed gas increases,and the δ13C1 gradually becomes lighter.With the depletion of free gas,the adsorbed gas contribution in stage Ⅲ reaches 100%,and the δ13C1 becomes heavier.Finally,in stage Ⅳ,the desorbed gas remaining in the pore spaces diffuses out under the concentration difference,and the δ13C1 becomes lighter again and finally stabilizes.In addition,a kinetic model for the quantitative description of isotope fractionation during desorption and diffusion was established.展开更多
The lower Cambrian Niutitang Formation is of crucial importance for shale gas target reservoirs in western Hubei,China;however,little work has been done in this field,and its shale gas accumulation and enrichment mech...The lower Cambrian Niutitang Formation is of crucial importance for shale gas target reservoirs in western Hubei,China;however,little work has been done in this field,and its shale gas accumulation and enrichment mechanism are still unclear.Based on survey wells,outcrop data,and large numbers of tests,the geological conditions of shale gas accumulation were studied;moreover,the factors that influence the gas content were thoroughly discussed.The results show that the Niutitang Formation(Є1n)can be divided into three sections:the first section(Є_(1)n^(1)),the second section(Є_(1)n^(2)),and the third section(Є1n3).TheЄ_(1)n^(2) is the main shale gas reservoir.The deep shelf facies is the main sedimentary facies and can be divided into three main lithofacies:argillaceous siltstone,carbonaceous shale and carbonaceous siliceous rock.The total organic carbon(TOC)content shows gentle growth trends until bottom of theЄ_(1)n^(2) and then decreases rapidly within theЄ_(1)n^(1),and the TOC content mainly ranges from 2%to 4%horizontally.The calcite and dolomite dissolution pores,clay intergranular pores and organic pores are the main pore types and the micropore types are clearly related to the mineral compositions and the TOC content.Vertically,the gas content is mainly affected by the TOC content.Horizontally,wells with high gas contents are distributed only southeast of the Huangling anticline,and the combination of structural styles,fault and fracture development,and the distribution of the regional unconformity boundary between the upper Sinian Dengying Formation(Z2d)and theЄ_(1)n^(2) are the three most important factors affecting the gas content.The favorable areas must meet the following conditions:a deep shelf environment,the presence of theЄ_(1)n^(1),wide and gentle folds,far from large normal faults that are more than 5 km,moderate thermal evolution,and greater than 500 m burial depth;this includes the block with the YD2–ZD2 wells,and the block with the Y1 and YD4 wells,which are distributed in the southern portion of the Huangling anticline and northern portion of the Xiannvshan fault.展开更多
Fine-grained sedimentary rocks are defined as rocks which mainly compose of fine grains(〈62.5 μm). The detailed studies on these rocks have revealed the need of a more unified, comprehensive and inclusive classifi...Fine-grained sedimentary rocks are defined as rocks which mainly compose of fine grains(〈62.5 μm). The detailed studies on these rocks have revealed the need of a more unified, comprehensive and inclusive classification. The study focuses on fine-grained rocks has turned from the differences of inorganic mineral components to the significance of organic matter and microorganisms. The proposed classification is based on mineral composition, and it is noted that organic matters have been taken as a very important parameter in this classification scheme. Thus, four parameters, the TOC content, silica(quartz plus feldspars), clay minerals and carbonate minerals, are considered to divide the fine-grained sedimentary rocks into eight categories, and the further classification within every category is refined depending on subordinate mineral composition. The nomenclature consists of a root name preceded by a primary adjective. The root names reflect mineral constituent of the rock, including low organic(TOC〈2%), middle organic(2%4%) claystone, siliceous mudstone, limestone, and mixed mudstone. Primary adjectives convey structure and organic content information, including massive or limanited. The lithofacies are closely related to the reservoir storage space, porosity, permeability, hydrocarbon potential and shale oil/gas sweet spot, and are the key factor for the shale oil and gas exploration. The classification helps to systematically and practicably describe variability within fine-grained sedimentary rocks, what's more, it helps to guide the hydrocarbon exploration.展开更多
基金financially supported by the Natural Science Foundation of China (NSFC Grant 41572106)+1 种基金the National Science and Technology Major Project "The enrichment conditions, evaluation technology and application of shale gas in the Sichuan Basin and its periphery" (Item No. 2017ZX05035002-006)State Key Laboratory of oil and gas resources and exploration, Chinese University of Petroleum-Beijing
文摘Comprehensive quantitative evaluation of shale gas content and the controlling factors in different occurrence states is of great significance for accurately assessing gas-bearing capacity and providing effective well-production strategies. A total of 122 core samples from well JY-A in the Fuling shale gas field were studied to reveal the characteristics of S_1 l shale,15 of which were selected to further predict the shale gas content in different occurrence states, which are dependent on geological factors in the thermal evolution process. Geological parameters were researched by a number of laboratory programs, and the factors influential in controlling shale gas content were extracted by both PCA and GRA methods and prediction models were confirmed by the BE method using SPSS software. Results reveal that the adsorbed gas content is mainly controlled by TOC, Ro, SSA, PD and pyrite content, and the free gas content is mainly controlled by S_2, quartz content, gas saturation and formation pressure for S_1 l in well JY-A. Three methods, including the on-site gas desorption method, the empirical formula method, and the multiple regression analysis method were used in combination to evaluate the shale gas capacity of well JY-A, all of which show that the overall shale gas content of well JY-A is in the range of 2.0–5.0 m^3/t and that the free gas ratio is about 50%, lower than that of well JY-1. Cause analysis further confirms the tectonics and preservation conditions of S_1 l in the geological processes, especially the influence of eastern boundary faults on well JY-A, as the fundamental reasons for the differences in shale gas enrichment in the Jiaoshiba area.
文摘Measuring gas content is an essential step in estimating the commerciality of gas reserves. In this study,eight shale core samples from the Mouye-1 well were measured using a homemade patented gas desorption apparatus to determine their gas contents. Due to the air contamination that is introduced into the desorption canister, a mathematical method was devised to correct the gas quantity and quality.Compared to the chemical compositions of desorbed gas, the chemical compositions of residual gas are somewhat different. In residual gas, carbon dioxide and nitrogen record a slight increase, and propane is first observed. This phenomenon may be related to the exposure time during the transportation of shale samples from the drilling site to the laboratory, as well as the differences in the mass, size and adsorptivity of different gas molecules. In addition to a series of conventional methods, including the USBM direct method and the Amoco Curve Fit(ACF) method, which were used here for lost gas content estimation, a Modified Curve Fit(MCF) method, based on the 'bidisperse' diffusion model, was established to estimate lost gas content. By fitting the ACF and MCF models to gas desorption data, we determined that the MCF method could reasonably describe the gas desorption data over the entire time period, whereas the ACF method failed. The failure of the ACF method to describe the gas desorption process may be related to its restrictive assumption of a single pore size within shale samples. In comparison to the indirect method, this study demonstrates that none of the three methods studied in this investigation(USBM, ACF and MCF) could individually estimate the lost gas contents of all shale samples and that the proportion of free gas relative to total gas has a significant effect on the estimation accuracy of the selected method. When the ratio of free gas to total gas is lower than 45%, the USBM method is the best for estimating the lost gas content, whereas when the ratio ranges from 45% to 75% or is more than 75%, the ACF and MCF methods, are the best options respectively.
基金financially supported by the National Science and Technology Major Project (2017ZX05063002–009)National Natural Science Foundation of China (41772150)+1 种基金Sichuan Province’s Key Project of Research and Development (18ZDYF0884)Qian Ke He Platform Talents [2017]5789-16。
文摘As an important pilot target for shale gas exploration and development in China,the Longmaxi Formation shale in the Dianqianbei Area is characterized by high content of nitrogen,which severely increases exploration risk.Accordingly,this study explores the genesis of shale gas reservoir and the mechanism of nitrogen enrichment through investigating shale gas compositions,isotope features,and geochemical characteristics of associated gases.The high-nitrogen shale gas reservoir in the Longmaxi Formation is demonstrated to be a typical dry gas reservoir.Specifically,the alkane carbon isotope reversal is ascribed to the secondary cracking of crude oil and the Rayleigh fractionation induced by the basalt mantle plume.Such a thermogenic oil-type gas reservoir is composed of both oil-cracking gas and kerogen-cracking gas.The normally high nitrogen content(18.05%-40.92%) is attributed to organic matter cracking and thermal ammoniation in the high-maturity stage.Specifically,the high heat flow effect of the Emeishan mantle plume exacerbates the thermal cracking of organic matter in the Longmaxi Formation shale,accompanied by nitrogen generation.In comparison,the abnormally high nitrogen content(86.79%-98.54%) is ascribed to the communication between the atmosphere and deep underground fluids by deep faults,which results in hydrocarbon loss and nitrogen intrusion,acting as the key factor for deconstruction of the primary shale gas reservoir.Results of this study not only enrich research on genetic mechanism of high-maturity N_@ shale gas reservoirs,but also provide theoretical guidance for subsequent gas reservoir resource evaluation and well-drilling deployment in this area.
基金Supported by the PetroChina Science and Technology Department Project(2012A-4802-02)National Key Basic Research and Development Program(2014CB239000)。
文摘Based on 991 groups of analysis data of shale samples from the Lower Member of the Cretaceous Eagle Ford Formation of 1317 production wells and 72 systematic coring wells in the U.S. Gulf Basin, the estimated ultimate recovery(EUR) of shale oil and gas of the wells are predicted by using two classical EUR estimation models, and the average values predicted excluding the effect of engineering factors are taken as the final EUR. Key geological factors controlling EUR of shale oil and gas are fully investigated. The reservoir capacity, resources, flow capacity and fracability are the four key geological parameters controlling EUR. The storage capacity of shale oil and gas is directly controlled by total porosity and hydrocarbon-bearing porosity, and indirectly controlled by total organic carbon(TOC) and vitrinite reflectance(Ro). The resources of shale oil and gas are controlled by hydrocarbon-bearing porosity and effective shale thickness etc. The flow capacity of shale oil and gas is controlled by effective permeability, crude oil density, gas-oil ratio, condensate oil-gas ratio, formation pressure gradient, and Ro. The fracability of shale is directly controlled by brittleness index, and indirectly controlled by clay content in volume. EUR of shale oil and gas is controlled by six geological parameters: it is positively correlated with effective shale thickness, TOC and fracture porosity, negatively correlated with clay content in volume, and increases firstly and then decreases with the rise of Ro and formation pressure gradient. Under the present upper limit of horizontal well fracturing effective thickness of 65 m and the lower limit of EUR of 3×10^(4) m^(3), when TOC<2.3%, or Ro<0.85%, or clay content in volume larger than 25%, and fractures and micro-fractures aren’t developed, favorable areas of shale oil and gas hardly occur.
基金supported by the National Natural Science Foundation of China(42202175,41927801,and 42102128)the Open Foundation of State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development(33550000-22-ZC0613-0296)。
文摘Shale gas is being hailed as the green energy of the future due to high heating value,low carbon emissions,and large reserves.Gas content of shale is a key parameter for evaluating the shale gas potential and screening for the shale gas sweet spots.Although the concept of gas content has been well defined,obtaining a reliable gas content data still remains a challenge.A significant barrier is the method for evaluating the gas content.In this paper,we provide a review of the long-established and recently developed gas content evaluation methods.In the first part of this review article,the history of gas content evaluation methods is summarized since 1910s,relied on published and unpublished literatures as well as our own experiences.Then,the fundamental contents and concepts involved in gas content evaluation are introduced to provide a clear theoretical foundation for the methods.In the third part,eleven evaluation methods,including four direct methods and seven indirect methods,are systematically reviewed.In each method,its application to evaluating the gas content is presented,the key advances are highlighted,and the advantages and limitations are discussed.Finally,future directions are discussed to promote creative thinking across disciplines to develop new methods or improve current methods for evaluating the gas content more accurately and efficiently.
文摘Factors of shale gas accumulation can be divided into the external and internal factors,according to accumulation mechanism and characteristics of shale gas. The internal factors mainly refer to parameters of organic geochemistry,mineral components and physical parameters. Six factors were presented in this study,i. e.organic matter,maturity,quartz,carbonate,clay mineral and pore. The external factors mainly refer to geologic environment of shale gas reservoir,including four factors: temperature,pressure,depth and thickness.Based on the experiment results of 26 samples of drilling cores from Wuling fold belt in Lower Paleozoic Silurian of the Upper Yangtze Basin,combined with the integrated analysis of geology,logging and test,the correlation of the gas content of shale gas to the above-mentioned ten factors was concluded. Six important evaluation indicators were preliminarily established in the gas-bearing core area of marine shale in the Upper Yangtze Basin.
基金the financial support provided by the 1:50000 Shale Gas Geological Survey of Southern Chinathe Investigation and Evaluation of Shale Gas Resources in Guizhou Province
文摘Shale gas resources are considered to be extremely abundant in southern China,which has dedicated considerable attention to shale gas exploration in recent years.Exploration of shale gas has considerably progressed and several breakthroughs have been made in China.However,shale gas explorations are still scarce.Summary and detailed analysis studies on black shale reservoirs are still to be performed for many areas.This lack of information slows the progress of shale gas explorations and results in low quantities of stored black shale.The Carboniferous Dawuba Formation,which is widely distributed and considerably thick,is one of the black shale formations targeted for shale gas exploration in southern China in the recent years.The acquisition and analysis of total organic carbon,vitrinite reflectance,types of organic matter,mineral composition,porosity,and permeability are basic but important processes.In addition,we analyzed the microscopic pores present in the shale.This study also showesd the good gas content of the Dawuba Formation,as well as the geological factors affecting its gas content and other characteristics.To understand the prospect of exploration,we compared this with other shale reservoirs which have been already successfully explored for gas.Our comparison showesd that those shale reservoirs have similar but not identical geological characteristics.
文摘The technical feasibility of in situ upgrading technology to develop the enormous oil and gas resource potential in low-maturity shale is widely acknowledged.However,because of the large quantities of energy required to heat shale,its economic feasibility is still a matter of debate and has yet to be convincingly demonstrated quantitatively.Based on the energy conservation law,the energy acquisition of oil and gas generation and the energy consumption of organic matter cracking,shale heat-absorption,and surrounding rock heat dissipation during in situ heating were evaluated in this study.The energy consumption ratios for different conditions were determined,and the factors that influence them were analyzed.The results show that the energy consumption ratio increases rapidly with increasing total organic carbon(TOC)content.For oil-prone shales,the TOC content corresponding to an energy consumption ratio of 3 is approximately 4.2%.This indicates that shale with a high TOC content can be expected to reduce the project cost through large-scale operation,making the energy consumption ratio after consideration of the project cost greater than 1.In situ heating and upgrading technology can achieve economic benefits.The main methods for improving the economic feasibility by analyzing factors that influence the energy consumption ratio include the following:(1)exploring technologies that efficiently heat shale but reduce the heat dissipation of surrounding rocks,(2)exploring technologies for efficient transformation of organic matter into oil and gas,i.e.,exploring technologies with catalytic effects,or the capability to reduce in situ heating time,and(3)establishing a horizontal well deployment technology that comprehensively considers the energy consumption ratio,time cost,and engineering cost.
基金supported by the National Natural Science Foundation of China(Grant Nos.41672130,41602131)the Research Project Funded by the SINOPEC Corp.(Grant No.P17027-3)the National Science and Technology Major Project(Grant No.2016ZX05061).
文摘The gas in-place(GIP)content and the ratio of adsorbed/free gas are two key parameters for the assessment of shale gas resources and have thus received extensive attention.A variety of methods have been proposed to solve these issues,however none have gained widespread acceptance.Carbon isotope fractionation during the methane transport process provides abundant information,serving as an effective method for differentiating the gas transport processes of adsorbed gas and free gas and ultimately evaluating the two key parameters.In this study,four stages of methane carbon isotope fractionation were documented during a laboratory experiment that simulated gas transport through shale.The four stages reflect different transport processes:the free gas seepage stage(Ⅰ),transition stage(Ⅱ),adsorbed gas desorption stage(Ⅲ)and concentration diffusion stage(Ⅳ).Combined with the results of decoupling experiments,the isotope fractionation characteristics donated by the single effect(seepage,adsorption-desorption and diffusion)were clearly revealed.We further propose a technique integrating the Amoco curve fit(ACF)method and carbon isotope fractionation(CIF)to determine the dynamic change in adsorbed and free gas ratios during gas production.We find that the gases produced in stage Ⅰ are primarily composed of free gas and that carbon isotope ratios of methane(δ13C1)are stable and equal to the ratios of source gas(13C 10).In stage Ⅱ,the contribution of free gas decreases,while the proportion of adsorbed gas increases,and the δ13C1 gradually becomes lighter.With the depletion of free gas,the adsorbed gas contribution in stage Ⅲ reaches 100%,and the δ13C1 becomes heavier.Finally,in stage Ⅳ,the desorbed gas remaining in the pore spaces diffuses out under the concentration difference,and the δ13C1 becomes lighter again and finally stabilizes.In addition,a kinetic model for the quantitative description of isotope fractionation during desorption and diffusion was established.
基金supported by the Scientific Research project of Department of Natural Resources of Hubei Province(No.ZRZY2020KJ10)Hubei Geological Bureau(No.KJ2019-3)+2 种基金the Shale Gas Geological Survey Projects of Department of Natural Resources of Hubei Province(Nos.HBCZ-17060223-170397 and DTCG-190409)We also thank the funds provided by Youth Foundation of the Northeast Petroleum University(No.2019QNL-21)Opening Fund of the Coal Reservoir Laboratory of National Engineering Research Center of CBM Development&Utilization,China University of Geosciences(Beijing)(No.2019MCQ02001)。
文摘The lower Cambrian Niutitang Formation is of crucial importance for shale gas target reservoirs in western Hubei,China;however,little work has been done in this field,and its shale gas accumulation and enrichment mechanism are still unclear.Based on survey wells,outcrop data,and large numbers of tests,the geological conditions of shale gas accumulation were studied;moreover,the factors that influence the gas content were thoroughly discussed.The results show that the Niutitang Formation(Є1n)can be divided into three sections:the first section(Є_(1)n^(1)),the second section(Є_(1)n^(2)),and the third section(Є1n3).TheЄ_(1)n^(2) is the main shale gas reservoir.The deep shelf facies is the main sedimentary facies and can be divided into three main lithofacies:argillaceous siltstone,carbonaceous shale and carbonaceous siliceous rock.The total organic carbon(TOC)content shows gentle growth trends until bottom of theЄ_(1)n^(2) and then decreases rapidly within theЄ_(1)n^(1),and the TOC content mainly ranges from 2%to 4%horizontally.The calcite and dolomite dissolution pores,clay intergranular pores and organic pores are the main pore types and the micropore types are clearly related to the mineral compositions and the TOC content.Vertically,the gas content is mainly affected by the TOC content.Horizontally,wells with high gas contents are distributed only southeast of the Huangling anticline,and the combination of structural styles,fault and fracture development,and the distribution of the regional unconformity boundary between the upper Sinian Dengying Formation(Z2d)and theЄ_(1)n^(2) are the three most important factors affecting the gas content.The favorable areas must meet the following conditions:a deep shelf environment,the presence of theЄ_(1)n^(1),wide and gentle folds,far from large normal faults that are more than 5 km,moderate thermal evolution,and greater than 500 m burial depth;this includes the block with the YD2–ZD2 wells,and the block with the Y1 and YD4 wells,which are distributed in the southern portion of the Huangling anticline and northern portion of the Xiannvshan fault.
基金supported by the Certificate of China Postdoctoral Science Foundation (No. 2015M582165)the National Natural Science Foundation of China (Nos. 41602142, 41772090)the National Science and Technology Special (No. 2017ZX05009-002)
文摘Fine-grained sedimentary rocks are defined as rocks which mainly compose of fine grains(〈62.5 μm). The detailed studies on these rocks have revealed the need of a more unified, comprehensive and inclusive classification. The study focuses on fine-grained rocks has turned from the differences of inorganic mineral components to the significance of organic matter and microorganisms. The proposed classification is based on mineral composition, and it is noted that organic matters have been taken as a very important parameter in this classification scheme. Thus, four parameters, the TOC content, silica(quartz plus feldspars), clay minerals and carbonate minerals, are considered to divide the fine-grained sedimentary rocks into eight categories, and the further classification within every category is refined depending on subordinate mineral composition. The nomenclature consists of a root name preceded by a primary adjective. The root names reflect mineral constituent of the rock, including low organic(TOC〈2%), middle organic(2%4%) claystone, siliceous mudstone, limestone, and mixed mudstone. Primary adjectives convey structure and organic content information, including massive or limanited. The lithofacies are closely related to the reservoir storage space, porosity, permeability, hydrocarbon potential and shale oil/gas sweet spot, and are the key factor for the shale oil and gas exploration. The classification helps to systematically and practicably describe variability within fine-grained sedimentary rocks, what's more, it helps to guide the hydrocarbon exploration.