期刊文献+
共找到165篇文章
< 1 2 9 >
每页显示 20 50 100
Optimization of Gas-Flooding Fracturing Development in Ultra-Low Permeability Reservoirs
1
作者 Lifeng Liu Menghe Shi +3 位作者 Jianhui Wang Wendong Wang Yuliang Su Xinyu Zhuang 《Fluid Dynamics & Materials Processing》 EI 2024年第3期595-607,共13页
Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection f... Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection floodingapproach is analyzed in the framework of numerical simulations. In particular, the sequence and timing of fracturechanneling and the related impact on production are considered for horizontal wells with different fracturemorphologies. Useful data and information are provided about the regulation of gas channeling and possible strategiesto delay gas channeling and optimize the gas injection volume and fracture parameters. It is shown that inorder to mitigate gas channeling and ensure high production, fracture length on the sides can be controlled andlonger fractures can be created in the middle by which full gas flooding is obtained at the fracture location in themiddle of the horizontal well. A Differential Evolution (DE) algorithm is provided by which the gas injectionvolume and the fracture parameters of gas injection flooding can be optimized. It is shown that an improvedoil recovery factor as high as 6% can be obtained. 展开更多
关键词 Ultra-low permeability reservoir gas injection flooding component simulation fracture parameters intelligent optimization differential evolution
下载PDF
Electrical structure identification of deep shale gas reservoir in complex structural area using wide field electromagnetic method
2
作者 Gu Zhi-Wen Li Yue-Gang +6 位作者 Yu Chang-Heng Zou Zhong-Ping Hu Ai-Guo Yin Xue-Bo Wang Qinag Ye Heng Tan Zhang-Kun 《Applied Geophysics》 SCIE CSCD 2024年第3期564-578,619,620,共17页
To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the con... To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored. 展开更多
关键词 complex tectonic area in southern Sichuan wide field electromagnetic method deep exploration shale gas reservoir electrical structure
下载PDF
Simulation of the Production Performances of Horizontal Wells with a Fractured Shale Gas Reservoir
3
作者 Hongsha Xiao Ruihan Zhang +6 位作者 Man Chen Cui Jing Shangjun Gao Chao Chen Huiyan Zhao Xin Huang Bo Kang 《Fluid Dynamics & Materials Processing》 EI 2023年第7期1803-1815,共13页
The production performances of a well with a shale gas reservoir displaying a complex fracture network are simulated.In particular,a micro-seismic cloud diagram is used to describe the fracture network,and accordingly... The production performances of a well with a shale gas reservoir displaying a complex fracture network are simulated.In particular,a micro-seismic cloud diagram is used to describe the fracture network,and accordingly,a production model is introduced based on a multi-scale flow mechanism.A finite volume method is then exploited for the integration of the model equations.The effects of apparent permeability,conductivity,Langmuir volume,and bottom hole pressure on gas well production are studied accordingly.The simulation results show that ignoring the micro-scale flow mechanism of the shale gas leads to underestimating the well gas production.It is shown that after ten years of production,the cumulative gas production difference between the two scenarios with and without considering the micro-scale flow mechanisms is 19.5%.The greater the fracture conductivity,the higher the initial gas production of the gas well and the cumulative gas production.The larger the Langmuir volume,the higher the gas production rate and the cumulative gas production.With the reduction of the bottom hole pressure,the cumulative gas production increases,but the growth rate gradually decreases. 展开更多
关键词 shale gas reservoir complex fracture network fractured horizontal well numerical simulation
下载PDF
Adaptability of Development Methods for Offshore Gas Cap Edge Water Reservoirs under Different Permeability Levels
4
作者 Shaopeng Wang Pengfei Mu +2 位作者 Jie Tan Rong Fu Mo Zhang 《Open Journal of Applied Sciences》 2023年第7期1029-1038,共10页
The BZ 34-1 oilfield is a typical gas cap edge water reservoir in the Bohai oilfield. The main characteristics of the oilfield were multi-phase sand body stacking and the sand body was composed of three parts: gas cap... The BZ 34-1 oilfield is a typical gas cap edge water reservoir in the Bohai oilfield. The main characteristics of the oilfield were multi-phase sand body stacking and the sand body was composed of three parts: gas cap, oil reservoir, and edge water. The actual production site results show that the permeability difference of multi-layer sand bodies has a serious impact on the development effect. This article establishes a typical reservoir model numerical model based on the total recovery degree of the reservoir and the recovery degree of each layer, and analyzes the impact of permeability gradient. As the permeability gradient increases, the total recovery degree of all four well patterns decreases, and the total recovery degree gradually decreases. The recovery degree of low permeability layers gradually decreases, and the recovery degree of high permeability layers gradually increases. As the permeability gradient increases, the degree of recovery gradually decreases under different water contents. As the permeability gradient increases, the reduction rate of remaining oil saturation in low permeability layers is slower, while the reduction rate of remaining oil saturation in high permeability layers was faster. By analyzing the impact of permeability gradient on the development effect of oil fields, we could further deepen our understanding of gas cap edge water reservoirs and guide the development of this type of oil field. 展开更多
关键词 Bohai Sea gas Cap and Bottom Water reservoir permeability Gradient Well Pattern Recovery Degree
下载PDF
Coupling effects of temperature,confining pressure,and pore pressure on permeability and average pore size of Longmaxi shale
5
作者 Xiaoyan Zhang Hongsen Li +2 位作者 Xue Tan Guoliang Li Hua Jiang 《Deep Underground Science and Engineering》 2023年第4期359-370,共12页
The evolution due to temperature and pressure of shale reservoir permeability affects the productivity evaluation and development decision of shale gas reservoirs,which is very important for the exploration and develo... The evolution due to temperature and pressure of shale reservoir permeability affects the productivity evaluation and development decision of shale gas reservoirs,which is very important for the exploration and development of unconventional gas reservoirs.This study analyzed the coupling effects of temperature(25,50,and 75°C),effective stress(15 and 30 MPa),and pore pressure(0.5,2.0,4.0,and 8.0 MPa)on the permeability of the shale sample in the Longmaxi Formation.As the temperature and pressure increased,the apparent permeability exhibited a downward trend,and the absolute permeability decreased with the rise of temperature or effective stress.An in‐depth analysis of the gas slippage factors under the conditions of different temperature and pressure was conducted to evaluate the trend of the average pore width with temperature and pressure.The results were then verified by scanning electron microscopy(SEM).The results provide new insights into evaluating the permeability of the Longmaxi shale and can be used to enhance the gas recovery rate of deep shale gas reservoirs. 展开更多
关键词 absolute permeability apparent permeability gas slippage factors pore width shale
下载PDF
Geochemical characteristics and genetic mechanism of the high-N2 shale gas reservoir in the Longmaxi Formation, Dianqianbei Area, China 被引量:6
6
作者 Ji-Lin Li Ting-Shan Zhang +6 位作者 Yan-Jun Li Xing Liang Xin Wang Jie-Hui Zhang Zhao Zhang Hong-Lin Shu Da-Qian Rao 《Petroleum Science》 SCIE CAS CSCD 2020年第4期939-953,共15页
As an important pilot target for shale gas exploration and development in China,the Longmaxi Formation shale in the Dianqianbei Area is characterized by high content of nitrogen,which severely increases exploration ri... As an important pilot target for shale gas exploration and development in China,the Longmaxi Formation shale in the Dianqianbei Area is characterized by high content of nitrogen,which severely increases exploration risk.Accordingly,this study explores the genesis of shale gas reservoir and the mechanism of nitrogen enrichment through investigating shale gas compositions,isotope features,and geochemical characteristics of associated gases.The high-nitrogen shale gas reservoir in the Longmaxi Formation is demonstrated to be a typical dry gas reservoir.Specifically,the alkane carbon isotope reversal is ascribed to the secondary cracking of crude oil and the Rayleigh fractionation induced by the basalt mantle plume.Such a thermogenic oil-type gas reservoir is composed of both oil-cracking gas and kerogen-cracking gas.The normally high nitrogen content(18.05%-40.92%) is attributed to organic matter cracking and thermal ammoniation in the high-maturity stage.Specifically,the high heat flow effect of the Emeishan mantle plume exacerbates the thermal cracking of organic matter in the Longmaxi Formation shale,accompanied by nitrogen generation.In comparison,the abnormally high nitrogen content(86.79%-98.54%) is ascribed to the communication between the atmosphere and deep underground fluids by deep faults,which results in hydrocarbon loss and nitrogen intrusion,acting as the key factor for deconstruction of the primary shale gas reservoir.Results of this study not only enrich research on genetic mechanism of high-maturity N_@ shale gas reservoirs,but also provide theoretical guidance for subsequent gas reservoir resource evaluation and well-drilling deployment in this area. 展开更多
关键词 Longmaxi Formation shale gas reservoir ISOTOPE High nitrogen content Genetic mechanism
下载PDF
Analysis on nonlinear effect of unsteady percolation in the inhomogeneous shale gas reservoir 被引量:2
7
作者 Xinchun SHANG Jiaxuan LIU +1 位作者 Xuhua GAO Weiyao ZHU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第1期105-122,共18页
The nonlinear effects of unsteady multi-scale shale gas percolation,such as desorption,slippage,diffusion,pressure-dependent viscosity,and compressibility,are investigated by numerical simulation.A new general mathema... The nonlinear effects of unsteady multi-scale shale gas percolation,such as desorption,slippage,diffusion,pressure-dependent viscosity,and compressibility,are investigated by numerical simulation.A new general mathematical model of the problem is built,in which the Gaussian distribution is used to describe the inhomogeneous intrinsic permeability.Based on the Boltzmann transformation,an efficient semi-analytical method is proposed.The problem is then converted into a nonlinear equation in an integral form for the pressure field,and a related explicit iteration scheme is constructed by numerical discretization.The validation examples show that the proposed method has good convergence,and the simulation results also agree well with the results obtained from both numerical and actual data of two vertical fractured test wells in the literature.Desorption,slippage,and diffusion have significant influence on shale gas flows.The accuracy of the usual technique that the product of viscosity and compressibility is approximated as its value at the average formation pressure is examined. 展开更多
关键词 shale gas nonlinear effect inhomogeneous permeability unsteady percolation mathematical model semi-analytical method
下载PDF
Geological characteristics and high production control factors of shale gas reservoirs in Silurian Longmaxi Formation, southern Sichuan Basin, SW China 被引量:7
8
作者 MA Xinhua XIE Jun +1 位作者 YONG Rui ZHU Yiqing 《Petroleum Exploration and Development》 2020年第5期901-915,共15页
Marine shale gas resources have great potential in the south of the Sichuan Basin in China.At present,the high-quality shale gas resources at depth of 2000–3500 m are under effective development,and strategic breakth... Marine shale gas resources have great potential in the south of the Sichuan Basin in China.At present,the high-quality shale gas resources at depth of 2000–3500 m are under effective development,and strategic breakthroughs have been made in deeper shale gas resources at depth of 3500–4500 m.To promote the effective production of shale gas in this area,this study examines key factors controlling high shale gas production and presents the next exploration direction in the southern Sichuan Basin based on summarizing the geological understandings from the Lower Silurian Longmaxi Formation shale gas exploration combined with the latest results of geological evaluation.The results show that:(1)The relative sea depth in marine shelf sedimentary environment controls the development and distribution of reservoirs.In the relatively deep water area in deep-water shelf,grade-I reservoirs with a larger continuous thickness develop.The relative depth of sea in marine shelf sedimentary environment can be determined by redox conditions.The research shows that the uranium to thorium mass ratio greater than 1.25 indicates relatively deep water in anoxic reduction environment,and the uranium to thorium mass ratio of 0.75–1.25 indicates semi-deep water in weak reduction and weak oxidation environment,and the uranium to thorium mass ratio less than 0.75 indicates relatively shallow water in strong oxidation environment.(2)The propped fractures in shale reservoirs subject to fracturing treatment are generally 10–12 m high,if grade-I reservoirs are more than 10 m in continuous thickness,then all the propped section would be high-quality reserves;in this case,the longer the continuous thickness of penetrated grade-I reservoirs,the higher the production will be.(3)The shale gas reservoirs at 3500–4500 m depth in southern Sichuan are characterized by high formation pressure,high pressure coefficient,well preserved pores,good pore structure and high proportion of free gas,making them the most favorable new field for shale gas exploration;and the pressure coefficient greater than 1.2 is a necessary condition for shale gas wells to obtain high production.(4)High production wells in the deep shale gas reservoirs are those in areas where Long11-Long13 sub-beds are more than 10 m thick,with 1500 m long horizontal section,grade-I reservoirs penetration rate of over 90%,and fractured by dense cutting+high intensity sand injection+large displacement+large liquid volume.(5)The relatively deep-water area in the deep-water shelf and the area at depth of 3500–4500 m well overlap in the southern Sichuan,and the overlapping area is the most favorable shale gas exploration and development zones in the southern Sichuan in the future.With advancement in theory and technology,annual shale gas production in the southern Sichuan is expected to reach 450×108 m3. 展开更多
关键词 southern Sichuan Basin Lower Silurian Longmaxi Formation deeply buried shale gas high production control factors deep water and deep burial shale gas reservoir
下载PDF
A New Discovery on the Deformation Behavior of Shale Gas Reservoirs Affecting Pore Morphology in the Juhugeng Coal Mining Area of Qinghai Province, Northwest China 被引量:5
9
作者 WANG Anmin CAO Daiyong +2 位作者 LI Jing JIANG Ailin YANG Chengwei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第5期1932-1933,共2页
Objective The Juhugeng mining area in Qinghai Province of northwest China has attracted wide attention among geologists for it hosts typical coal measure gases.The shale gas reservoirs were reformed by intensive struc... Objective The Juhugeng mining area in Qinghai Province of northwest China has attracted wide attention among geologists for it hosts typical coal measure gases.The shale gas reservoirs were reformed by intensive structural movements during geological periods, 展开更多
关键词 A New Discovery on the Deformation Behavior of shale gas reservoirs Affecting Pore Morphology in the Juhugeng Coal Mining Area of Qinghai Province Northwest China
下载PDF
Porosity, permeability and rock mechanics of Lower Silurian Longmaxi Formation deep shale under temperature-pressure coupling in the Sichuan Basin, SW China 被引量:3
10
作者 SUN Chuanxiang NIE Haikuan +5 位作者 SU Haikun DU Wei LU Ting CHEN Yalin LIU Mi LI Jingchang 《Petroleum Exploration and Development》 2023年第1期85-98,共14页
To investigate the porosity, permeability and rock mechanics of deep shale under temperature-pressure coupling, we selected the core samples of deep shale from the Lower Silurian Longmaxi Formation in the Weirong and ... To investigate the porosity, permeability and rock mechanics of deep shale under temperature-pressure coupling, we selected the core samples of deep shale from the Lower Silurian Longmaxi Formation in the Weirong and Yongchuan areas of the Sichuan Basin for porosity and permeability experiments and a triaxial compression and sound wave integration experiment at the maximum temperature and pressure of 120 ℃ and 70 MPa. The results show that the microscopic porosity and permeability change and the macroscopic rock deformation are mutually constrained, both showing the trend of steep and then gentle variation. At the maximum temperature and pressure, the porosity reduces by 34%–71%, and the permeability decreases by 85%–97%. With the rising temperature and pressure, deep shale undergoes plastic deformation in which organic pores and clay mineral pores are compressed and microfractures are closed, and elastic deformation in which brittle mineral pores and rock skeleton particles are compacted. Compared with previous experiments under high confining pressure and normal temperature,the experiment under high temperature and high pressure coupling reveals the effect of high temperature on stress sensitivity of porosity and permeability. High temperature can increase the plasticity of the rock, intensify the compression of pores due to high confining pressure, and induce thermal stress between the rock skeleton particles, allowing the reopening of shale bedding or the creation of new fractures along weak planes such as bedding, which inhibits the decrease of permeability with the increase of temperature and confining pressure. Compared with the triaxial mechanical experiment at normal temperature, the triaxial compression experiment at high temperature and high pressure demonstrates that the compressive strength and peak strain of deep shale increase significantly due to the coupling of temperature and pressure. The compressive strength is up to 435 MPa and the peak strain exceeds 2%, indicating that high temperature is not conducive to fracture initiation and expansion by increasing rock plasticity. Lithofacies and mineral composition have great impacts on the porosity, permeability and rock mechanics of deep shale. Shales with different lithologies are different in the difficulty and extent of brittle failure. The stress-strain characteristics of rocks under actual geological conditions are key support to the optimization of reservoir stimulation program. 展开更多
关键词 Sichuan Basin Longmaxi Formation deep shale gas POROSITY permeability rock mechanics high temperature and high pressure triaxial compression
下载PDF
Extensive application of rate transient method in performance analysis for low permeability gas reservoirs
11
作者 WANG Shao-jun HE Shun-li TIAN Shu-bao ZHANG Jun-jing 《Journal of Energy and Power Engineering》 2009年第3期29-33,共5页
Rate transient method is a recently-developed performance analysis tool specially designed for low-permeability or tight gas reservoirs. This method, theoretically based on pressure transient analysis, integrates mate... Rate transient method is a recently-developed performance analysis tool specially designed for low-permeability or tight gas reservoirs. This method, theoretically based on pressure transient analysis, integrates material balance principle and the concept of material balance pseudo-time proposed by Blansingame. With daily production data of gas well, it could be used to calculate OGIP, current formation pressure, permeability, skin factor, to identify complex geologic boundaries, to determine whether drainage boundary has been reached, to calculate drainage area and drainage radius for single well and to predict performance. It has been extensively employed in more than ten low-permeability gas fields. It proves that most problems in performance analysis for low permeability gas reservoirs could be solved by this method. Field practices show great economical benefits could be achieved by employing this method in gas field development. 展开更多
关键词 low permeability gas reservoir performance analysis rate transient method
下载PDF
Geological Features and Reservoiring Mode of Shale Gas Reservoirs in Longmaxi Formation of the Jiaoshiba Area 被引量:30
12
作者 GUO Xusheng HU Dongfeng +2 位作者 LI Yuping LIU Ruobing WANG Qingbo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第6期1811-1821,共11页
This study is based on the sedimentation conditions, organic geochemistry, storage spaces, physical properties, lithology and gas content of the shale gas reservoirs in Longmaxi Formation of the Jiaoshiba area and the... This study is based on the sedimentation conditions, organic geochemistry, storage spaces, physical properties, lithology and gas content of the shale gas reservoirs in Longmaxi Formation of the Jiaoshiba area and the gas accumulation mode is summarized and then compared with that in northern America. The shale gas reservoirs in the Longmaxi Formation in Jiaoshiba have good geological conditions, great thickness of quality shales, high organic content, high gas content, good physical properties, suitable depth, good preservation conditions and good reservoir types. The quality shales at the bottom of the deep shelf are the main target interval for shale gas exploration and development. Shale gas in the Longmaxi Formation has undergone three main reservoiring stages:the early stage of hydrocarbon generation and compaction when shale gas reservoirs were first formed; the middle stage of deep burial and large-scale hydrocarbon generation, which caused the enrichment of reservoirs with shale gas; the late stage of uplift, erosion and fracture development when shale gas reservoirs were finally formed. 展开更多
关键词 reservoiring mode shale gas Jiaoshiba area gas reservoir features Longmaxi Formation Sichuan Basin
下载PDF
Types and Characteristics of the Lower Silurian Shale Gas Reservoirs in and Around the Sichuan Basin 被引量:17
13
作者 NIE Haikuan ZHANG Jinchuan JIANG Shengling 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第6期1973-1985,共13页
This study analyzed the characteristics and types of the Lower Silurian shale gas reservoirs in and around Sichuan Basin through field observations, slices, Ar-ion-beam milling, scanning electron microscopy, and x-ray... This study analyzed the characteristics and types of the Lower Silurian shale gas reservoirs in and around Sichuan Basin through field observations, slices, Ar-ion-beam milling, scanning electron microscopy, and x-ray diffraction analysis of 25 black shale outcrops and samples. Two main types of shale gas reservoirs were determined, i.e., fractures and pores. Fractures were classified into five categories, i.e., giant, large, medium, small, and micro, according to the features of the shale gas reservoirs, effect of fracture on gas accumulation, and fracture nature. Pore types include organic matter pores, mineral pores(mineral surface, intraparticle, interparticle, and corrosional pore), and nanofractures. The various fracture types, fracture scales, pore types, and pore sizes exert different controls over the gas storage and production capacity. Pores serve as a reservoir for gas storage and, the gas storage capacity can be determined using pores; fractures serve as pathways for gas migration, and gas production capacity can be determined using them. 展开更多
关键词 FRACTURE PORE reservoir types shale gas Sichuan Basin
下载PDF
The oldest shale gas reservoirs in southern margin of Huangling uplift,Yichang, Hubei,China 被引量:7
14
作者 Xiao-hong Chen Sheng-yuan Luo +1 位作者 An Liu Hai Li 《China Geology》 2018年第1期158-159,共2页
1.Objective Large-scale commercial production of shale gas started in Fuling,Changning and Weiyuan areas of the Sichuan Basin (Zou et al.,2016)since 2010.The most notable shale gas success is the Longmaxi organic rich... 1.Objective Large-scale commercial production of shale gas started in Fuling,Changning and Weiyuan areas of the Sichuan Basin (Zou et al.,2016)since 2010.The most notable shale gas success is the Longmaxi organic rich Shale in Jiaoshiba field, Sichuan Basin.The Yichang slope is located in the north of middle Yangtze region.This eastward dipping slope is a new prospective area for shale gas exploration in recent 5 years. 展开更多
关键词 oldest shale gas reservoirS SOUTHERN MARGIN Huangling UPLIFT
下载PDF
Shale Gas Reservoir Evaluation by Geophysical Measurements:A Case Study of the Upper Ordovician–Lower Silurian in the Fenggang Block,Northern Guizhou Province 被引量:1
15
作者 XIA Peng FU Yong +3 位作者 GUO Chuan YANG Zhen HUANG Jinqiang MOU Yuliang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第4期1310-1321,共12页
With the aid of geophysical measurements,including seventeen two-dimensional(2 D)seismic lines and the well logging curves of well FGY1,the structure and reservoir characteristics of the Upper Ordovician–Lower Siluri... With the aid of geophysical measurements,including seventeen two-dimensional(2 D)seismic lines and the well logging curves of well FGY1,the structure and reservoir characteristics of the Upper Ordovician–Lower Silurian strata in the Fenggang block,northern Guizhou Province,were analyzed thoroughly to identify desert areas and favorable intervals.The results show that Longmaxi-Wufeng is the most prospect-rich formation,consisting of a thick succession of overmature black shale,this formation remaining partially in the Suiyang,Fenggang and Jianchaxi synclines.The Longmaxi-Wufeng shale,especially the lower member,was deposited in a reducing low-energy environment with relatively high U content and a low Th/U value.In this shale,the organic matter type(sapropelic and humic-sapropelic),total organic carbon(TOC)content,gas content,gas adsorption capacity,vitrinite reflectance and brittle mineral content are profitable for shale gas preservation and development.The fractures of this shale were closed because of its high overburden pressure.The gas adsorption capacity of this shale increases with increasing TOC content and Ro.In the Longmaxi-Wufeng Formation at well FGY1,the most favorable intervals are in the depth ranges of 2312.4–2325.1 m and 2325.8–2331.1 m. 展开更多
关键词 shale gas reservoir property GEOPHYSICS Longmaxi-Wufeng GUIZHOU
下载PDF
A review and research on comprehensive characterization of microscopic shale gas reservoir space 被引量:5
16
作者 Yu-ru Yang Xiao-chen Liu +12 位作者 Hui Zhang Gang-yi Zhai Jiao-dong Zhang Zhi-fang Hu Shu-jing Bao Cong Zhang Xiang-hua Wang Xiao Yang Zheng-zhuang Liu Ting Xie Juan Chen Liyu Fang Li-juan Qin 《China Geology》 2019年第4期541-556,共16页
In this paper,substantial domestic and foreign research results of microscopic shale reservoir space were systemically reviewed,the research history consisting of simple observation and qualitative classification,quan... In this paper,substantial domestic and foreign research results of microscopic shale reservoir space were systemically reviewed,the research history consisting of simple observation and qualitative classification,quantitative research,the combination of qualitative and quantitative research successively as well as the characteristics of each research stage were summarized.In addition,the current problems existing in the characterization methods of shale reservoir space were also analyzed.Furthermore,based on massive actual detection of typical core samples obtained from more than 50 global shale gas wells and relevant practical experience,a comprehensive characterization method of combining qualitative with the semiquantitative characterization was put forward.In detail,the indicators of the qualitative characterization include pore combination type and organic-matter microscopic morphology type,while the core elements of the semi-quantitative characterization include the percentage of the organic-matter area and the plane porosity of the pores of different types.Based on the reference of the naming and classification of rocks,the three-end-member diagram method was used to characterize microscopic shale reservoir space.This is achieved by plotting the three end-member diagram of 3 kinds of first-order critical reservoir spaces,i.e.,organic-matter pores,matrix pores,and micro-fractures,in order to intuitively present the features of the microscopic pore combination.Meanwhile,statistic histograms of organic-matter microscopic morphology type and the plane porosity of different types of pores were adopted to characterize the development degree of second-order pores quantitatively.By this comprehensive characterization method,the importance of both pore combination and the microscopic morphology of organic matter were emphasized,revealing the control of organic-matter microscopic morphology over the organic-matter pores.What is more,high-resolution FE-SEM was adopted to obtain semi-quantitative statistics results.In this way,the features of pore development and pore combination were quantified,not only reflecting the types and storage capacity of the microscopic shale reservoir space,but also presenting the hydrocarbongenerating potential of organic matter in shale.Therefore,the results of this research are capable of providing in-depth microscopic information for the assessment and exploration and development of shale gas resources. 展开更多
关键词 shale shale gas reservoir space RESEARCH status Types of PORE COMBINATIONS Oil-gas exploration engineering Longmaxi FORMATION Niutitang FORMATION Shahejie FORMATION Yanchang FORMATION China USA
下载PDF
Production analysis in shale gas reservoirs based on fracturing-enhanced permeability areas 被引量:3
17
作者 Chuang Liu YongKuan Shen +3 位作者 JiaNing Zhang DeTang Lu He Liu HengAn Wu 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2019年第10期103-111,共9页
Hydraulic fracturing has been widely applied in shale gas exploitation because it improves the permeability of the rock matrix.Fracturing stimulation parameters such as the pumping rate, the fracturing sequence, and t... Hydraulic fracturing has been widely applied in shale gas exploitation because it improves the permeability of the rock matrix.Fracturing stimulation parameters such as the pumping rate, the fracturing sequence, and the fracture spacing significantly influence the distribution of the stimulated reservoir volume(SRV). In this research, we built a numerical model that incorporates the hydraulic fracturing process and predicts gas production. The simulation of fracture propagation is based on the extended finite element method(XFEM), which helps to calculate aspects of the fractures and the SRV; we imported the results into a production analysis model as the initial conditions for production prediction. Using the model, we investigated the effects of some key parameters such as rock cohesion, fracture spacing, pumping rate, and fracturing sequence on the shale gas production.Our results proved that the SRV was distributed in the vicinity of the main fractures, and the SRVs were connected between the fractures in a small fracture spacing. We obtained optimal spacing by analyzing the production increment. High pumping-rate treatment greatly changes the in-situ stress around the hydraulic fractures and enlarges the field of SRV. Simultaneous fracturing treatment improves the flow conductivity of formation more than sequential fracturing. This study provides insights into the hydraulic fracturing design for economical production. 展开更多
关键词 shale gas PRODUCTION prediction numerical simulation ENHANCED permeability area HYDRAULIC FRACTURING
原文传递
Advances in enhanced oil recovery technologies for low permeability reservoirs 被引量:10
18
作者 Wan-Li Kang Bo-Bo Zhou +1 位作者 Miras Issakhov Marabek Gabdullin 《Petroleum Science》 SCIE CAS CSCD 2022年第4期1622-1640,共19页
Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploi... Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploitation, there is still a large amount of remaining oil that has not been recovered.Therefore, in recent years, enhanced oil recovery(EOR) technologies for low permeability reservoirs have been greatly developed to further improve crude oil production. This study presents a comprehensive review of EOR technologies in low permeability reservoirs with an emphasis on gas flooding, surfactant flooding, nanofluid flooding and imbibition EOR technologies. In addition, two kinds of gel systems are introduced for conformance control in low permeability reservoirs with channeling problems. Finally,the technical challenges, directions and outlooks of EOR in low permeability reservoirs are addressed. 展开更多
关键词 Enhanced oil recovery Low permeability reservoir gas flooding Surfactant flooding Nanofluid flooding IMBIBITION Conformance control
下载PDF
Profile improvement during CO_2 flooding in ultra-low permeability reservoirs 被引量:13
19
作者 Zhao Fenglan Zhang Lei +1 位作者 Hou Jirui Cao Shujun 《Petroleum Science》 SCIE CAS CSCD 2014年第2期279-286,共8页
Gas flooding such as CO2 flooding may be effectively applied to ultra-low permeability reservoirs, but gas channeling is inevitable due to low viscosity and high mobility of gas and formation heterogeneity. In order t... Gas flooding such as CO2 flooding may be effectively applied to ultra-low permeability reservoirs, but gas channeling is inevitable due to low viscosity and high mobility of gas and formation heterogeneity. In order to mitigate or prevent gas channeling, ethylenediamine is chosen for permeability profile control. The reaction mechanism of ethylenediamine with CO2, injection performance, swept volume, and enhanced oil recovery were systematically evaluated. The reaction product of ethylenediamine and CO2 was a white solid or a light yellow viscous liquid, which would mitigate or prevent gas channeling. Also, ethylenediamine could be easily injected into ultra-low permeability cores at high temperature with protective ethanol slugs. The core was swept by injection of 0.3 PV ethylenediamine. Oil displacement tests performed on heterogeneous models with closed fractures, oil recovery was significantly enhanced with injection of ethylenediamine. Experimental results showed that using ethylenediamine to plug high permeability layers would provide a new research idea for the gas injection in fractured, heterogeneous and ultra-low permeability reservoirs. This technology has the potential to be widely applied in oilfields. 展开更多
关键词 ETHYLENEDIAMINE organic amine profile improvement ultra-low permeability reservoirs mitigation of gas channeling CO2 flooding
下载PDF
Numerical simulation-based correction of relative permeability hysteresis in water-invaded underground gas storage during multi-cycle injection and production
20
作者 ZHU Sinan SUN Junchang +4 位作者 WEI Guoqi ZHENG Dewen WANG Jieming SHI Lei LIU Xianshan 《Petroleum Exploration and Development》 CSCD 2021年第1期190-200,共11页
By conducting relative permeability experiments of multi-cycle gas-water displacement and imbibition on natural cores,we discuss relative permeability hysteresis effect in underground gas storage during multi-cycle in... By conducting relative permeability experiments of multi-cycle gas-water displacement and imbibition on natural cores,we discuss relative permeability hysteresis effect in underground gas storage during multi-cycle injection and production.A correction method for relative permeability hysteresis in numerical simulation of water-invaded gas storage has been worked out using the Carlson and Killough models.A geologic model of water-invaded sandstone gas storage with medium-low permeability is built to investigate the impacts of relative permeability hysteresis on fluid distribution and production performance during multi-cycle injection and production of the gas storage.The study shows that relative permeability hysteresis effect occurs during high-speed injection and production in gas storage converted from water-invaded gas reservoir,and leads to increase of gas-water transition zone width and thickness,shrinkage of the area of high-efficiency gas storage,and decrease of the peak value variation of pore volume containing gas,and then reduces the storage capacity,working gas volume,and high-efficiency operation span of the gas storage.Numerical simulations exhibit large prediction errors of performance indexes if this hysteresis effect is not considered.Killough and Carlson methods can be used to correct the relative permeability hysteresis effect in water-invaded underground gas storage to improve the prediction accuracy.The Killough method has better adaptability to the example model. 展开更多
关键词 water-invaded gas reservoir underground gas storage multicycle injection-production relative permeability hysteresis model-based correction index prediction
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部