期刊文献+
共找到5,142篇文章
< 1 2 250 >
每页显示 20 50 100
Formation,evolution,reconstruction of black shales and their influence on shale oil and gas resource
1
作者 Shi-zhen Li Qiu-chen Xu +11 位作者 Mu Liu Guo-heng Liu Yi-fan Li Wen-yang Wang Xiao-guang Yang Wei-bin Liu Yan-fei An Peng Sun Tao Liu Jiang-hui Ding Qian-chao Li Chao-gang Fang 《China Geology》 CAS CSCD 2024年第3期551-585,共35页
Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential en... Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential energy and mineral resources for the development of human society.They also record the evolution process of the earth and improve the understanding of the earth.This review focuses on the diagenesis and formation mechanisms of black shales sedimentation,composition,evolution,and reconstruction,which have had a significant impact on the formation and enrichment of shale oil and gas.In terms of sedimentary environment,black shales can be classified into three types:Marine,terrestrial,and marine-terrestrial transitional facies.The formation processes include mechanisms such as eolian input,hypopycnal flow,gravity-driven and offshore bottom currents.From a geological perspective,the formation of black shales is often closely related to global or regional major geological events.The enrichment of organic matter is generally the result of the interaction and coupling of several factors such as primary productivity,water redox condition,and sedimentation rate.In terms of evolution,black shales have undergone diagenetic evolution of inorganic minerals,thermal evolution of organic matter and hydrocarbon generation,interactions between organic matter and inorganic minerals,and pore evolution.In terms of reconstruction,the effects of fold deformation,uplift and erosion,and fracturing have changed the stress state of black shale reservoirs,thereby having a significant impact on the pore structure.Fluid activity promotes the formation of veins,and have changed the material composition,stress structure,and reservoir properties of black shales.Regarding resource effects,the deposition of black shales is fundamental for shale oil and gas resources,the evolution of black shales promotes the shale oil and gas formation and storage,and the reconstruction of black shales would have caused the heterogeneous distribution of oil and gas in shales.Exploring the formation mechanisms and interactions of black shales at different scales is a key to in-depth research on shale formation and evolution,as well as the key to revealing the mechanism controlling shale oil and gas accumulation.The present records can reveal how these processes worked in geological history,and improve our understanding of the coupling mechanisms among regional geological events,black shales evolution,and shale oil and gas formation and enrichment. 展开更多
关键词 Black shales shale oil and gas Resource effects Sedimentary environment Sedimentary process Organic matter accumulation Diagenetic evolution Thermal evolution Organic matter and inorganic minerals Tectonic reconstruction oil and gas exploration engineering VEINS Fluid activity
下载PDF
Experimental and numerical simulation study on the erosion behavior of the elbow of gathering pipeline in shale gas field
2
作者 En-Bin Liu Shen Huang +3 位作者 Ding-Chao Tian Lai-Min Shi Shan-Bi Peng He Zheng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1257-1274,共18页
During the production period of shale gas, proppant particles and rock debris are produced together,which will seriously erode the elbows of gathering pipelines. In response to this problem, this paper takes the elbow... During the production period of shale gas, proppant particles and rock debris are produced together,which will seriously erode the elbows of gathering pipelines. In response to this problem, this paper takes the elbow of the gathering pipeline in the Changning Shale Gas Field as an example to test the erosion rate and material removal mechanism of the test piece at different angles of the elbow through experiments and compares the four erosion models with the experimental results. Through analysis, it is found that the best prediction model for quartz sand-carbon steel erosion is the Oka model. Based on the Oka model, FLUENT software was used to simulate and analyze the law of erosion of the elbow of the gas gathering pipeline under different gas flow velocities, gas gathering pressure, particle size, length of L1,and bending directions of the elbow. And a spiral pipeline structure is proposed to reduce the erosion rate of the elbow under the same working conditions. The results show that this structure can reduce erosion by 34%. 展开更多
关键词 shale gas gas gathering pipeline ELBOW EROSION CFD
下载PDF
CO_(2)flooding in shale oil reservoir with radial borehole fracturing for CO_(2)storage and enhanced oil recovery
3
作者 Jia-Cheng Dai Tian-Yu Wang +3 位作者 Jin-Tao Weng Kang-Jian Tian Li-Ying Zhu Gen-Sheng Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期519-534,共16页
This study introduces a novel method integrating CO_(2)flooding with radial borehole fracturing for enhanced oil recovery and CO_(2)underground storage,a solution to the limited vertical stimulation reservoir volume i... This study introduces a novel method integrating CO_(2)flooding with radial borehole fracturing for enhanced oil recovery and CO_(2)underground storage,a solution to the limited vertical stimulation reservoir volume in horizontal well fracturing.A numerical model is established to investigate the production rate,reservoir pressure field,and CO_(2)saturation distribution corresponding to changing time of CO_(2)flooding with radial borehole fracturing.A sensitivity analysis on the influence of CO_(2)injection location,layer spacing,pressure difference,borehole number,and hydraulic fractures on oil production and CO_(2)storage is conducted.The CO_(2)flooding process is divided into four stages.Reductions in layer spacing will significantly improve oil production rate and gas storage capacity.However,serious gas channeling can occur when the spacing is lower than 20 m.Increasing the pressure difference between the producer and injector,the borehole number,the hydraulic fracture height,and the fracture width can also increase the oil production rate and gas storage rate.Sensitivity analysis shows that layer spacing and fracture height greatly influence gas storage and oil production.Research outcomes are expected to provide a theoretical basis for the efficient development of shale oil reservoirs in the vertical direction. 展开更多
关键词 shale oil Radial borehole fracturing Embedded discrete fracture model Enhanced oil recovery Carbon storage
下载PDF
Development characteristics and controlling factors of fractures in lacustrine shale and their geological significance for evaluating shale oil sweet spots in the third member of the Shahejie Formation in the Qikou Sag, Bohai Bay Basin
4
作者 Xu Zeng Tao Yang +5 位作者 Jian-Wei Feng Cong-Sheng Bian Ming Guan Wei Liu Bing-Cheng Guo Jin Dong 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期791-805,共15页
Natural fractures are critical for shale oil and gas enrichment and development. Due to the extremely high heterogeneity of shale, the factors controlling the formation of internal fractures, especially horizontal fra... Natural fractures are critical for shale oil and gas enrichment and development. Due to the extremely high heterogeneity of shale, the factors controlling the formation of internal fractures, especially horizontal fractures, remain controversial. In this study, we integrate thin section analysis and microcomputed tomography(CT) data from several lacustrine shale samples from the third member(Es3) of the Shahejie Formation, Qikou Sag, Bohai Bay Basin, to assess the fractures in detail. The goal is to reveal the development characteristics, controlling factors, and geological significance for evaluating sweet spots in a shale oil play. The fractures in the Es3contain high-angle structural and horizontal bed-parallel fractures that are mostly shear and extensional. Various factors influence fracture development,including lithofacies, mineral composition, organic matter content, and the number of laminae. Structural fractures occur predominantly in siltstone, whereas bed-parallel fractures are abundant in laminated shale and layered mudstone. A higher quartz content results in higher shale brittleness, causing fractures, whereas the transformation between clay minerals contributes to the development of bedparallel fractures. Excess pore pressure due to hydrocarbon generation and expulsion during thermal advance can cause the formation of bed-parallel fractures. The density of the bed-parallel and structural fractures increases with the lamina density, and the bed-parallel fractures are more sensitive to the number of laminae. The fractures are critical storage spaces and flow conduits and are indicative of sweet spots. The laminated shale in the Es3with a high organic matter content contains natural fractures and is an organic-rich, liquid-rich, self-sourced shale play. Conversely, the siltstone, massive mudstone, and argillaceous carbonate lithofacies contain lower amounts of organic matter and do not have bed-parallel fractures. However, good reservoirs can form in these areas when structural fractures are present and the source, and storage spaces are separated. 展开更多
关键词 FRACTURES Development characteristics Controlling factors shale oil Sweet spot
下载PDF
Experiment of dynamic seepage of tight/shale oil under matrix fracture coupling
5
作者 DU Meng YANG Zhengming +10 位作者 LYU Weifeng LI Zhongcheng WANG Guofeng CHEN Xinliang QI Xiang YAO Lanlan ZHANG Yuhao JIA Ninghong LI Haibo CHANG Yilin HUO Xu 《Petroleum Exploration and Development》 SCIE 2024年第2期403-415,共13页
A physical simulation method with a combination of dynamic displacement and imbibition was established by integrating nuclear magnetic resonance(NMR)and CT scanning.The microscopic production mechanism of tight/shale ... A physical simulation method with a combination of dynamic displacement and imbibition was established by integrating nuclear magnetic resonance(NMR)and CT scanning.The microscopic production mechanism of tight/shale oil in pore throat by dynamic imbibition and the influencing factors on the development effect of dynamic imbibition were analyzed.The dynamic seepage process of fracking-soaking-backflow-production integration was simulated,which reveals the dynamic production characteristics at different development stages and their contribution to enhancing oil recovery(EOR).The seepage of tight/shale reservoirs can be divided into three stages:strong displacement and weak imbibition as oil produced rapidly by displacement from macropores and fractures,weak displacement and strong imbibition as oil produced slowly by reverse imbibition from small pores,and weak displacement and weak imbibition at dynamic equilibrium.The greater displacement pressure results in the higher displacement recovery and the lower imbibition recovery.However,if the displacement pressure is too high,the injected water is easy to break through the front and reduce the recovery degree.The higher the permeability,the greater the imbibition and displacement recovery,the shorter the time of imbibition balance,and the higher the final recovery.The fractures can effectively increase the imbibition contact area between matrix and water,reduce the oil-water seepage resistance,promote the oil-water displacement between matrix and fracture,and improve the oil displacement rate and recovery of the matrix.The soaking after fracturing is beneficial to the imbibition replacement and energy storage of the fluid;also,the effective use of the carrying of the backflow fluid and the displacement in the mining stage is the key to enhancing oil recovery. 展开更多
关键词 tight oil shale oil physical simulation nuclear magnetic resonance CT scanning dynamic imbibition production performance EOR
下载PDF
Development review and the prospect of oil shale in-situ catalysis conversion technology
6
作者 Li Wang Chen-Hao Gao +2 位作者 Rui-Ying Xiong Xiao-Jun Zhang Ji-Xiang Guo 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1385-1395,共11页
As an unconventional resource, oil shale possesses abundant reserves and significant potential for industrial applications. The rational and efficient development of oil shale resources holds immense importance in red... As an unconventional resource, oil shale possesses abundant reserves and significant potential for industrial applications. The rational and efficient development of oil shale resources holds immense importance in reducing national energy demand. In-situ catalytic technology, characterized by its high efficiency, low pollution, and minimal energy consumption, represents a key direction for future oil shale development. This paper provides a comprehensive review of research progress in in-situ oil shale mining technology, oil shale pyrolysis catalysts, the pyrolysis mechanism of kerogen, and the compatibility of different heating processes and catalysts. Furthermore, the paper proposes future research directions and prospects for oil shale in-situ catalytic technology, including reservoir modification, highefficiency catalyst synthesis, injection processes, and high-efficiency heating technology. These insights serve as valuable technical references for the advancement of oil shale in-situ catalytic technology. 展开更多
关键词 oil shale In-situ catalytic technology Pyrolysis catalyst Kerogen pyrolysis mechanism
下载PDF
The occurrence characteristics of oil in shales matrix from organic geochemical screening data and pore structure properties:An experimental study Author links open overlay panel
7
作者 Zi-Zhi Lin Jun-Qian Li +8 位作者 Shuang-Fang Lu Qin-Hong Hu Peng-Fei Zhang Jun-Jie Wang Qi Zhi Hong-Sheng Huang Na Yin Yue Wang Tian-Chen Ge 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期1-13,共13页
The occurrence characteristics of shale oil are of great significance to the movability of shale oil.In this study,the occurrence characteristics of oil in the shale matrix at Funing Formation shale in Subei Basin wer... The occurrence characteristics of shale oil are of great significance to the movability of shale oil.In this study,the occurrence characteristics of oil in the shale matrix at Funing Formation shale in Subei Basin were quantitatively evaluated by organic geochemistry and microscopic pore structure characterization experiments.The Multiple Isothermal Stages Pyrolysis(MIS)experiment results show that the content of total oil,adsorbed oil,and free oil in the shales are 3.15-11.25 mg/g,1.41-4.95 mg/g,and 1.74-6.51 mg/g,respectively.among which the silicon-rich shale has the best oil-bearing.The relative content of free oil shows an increasing trend in pores with pore diameters greater than 3 nm.When the relative content of free oil reaches 100%,the pore size of silicon-rich shale is about 200 nm,while that of calcium-rich shale,clay-rich shale,and siliceous mixed shale is about 10 nm.The occurrence law of adsorbed oil is opposite to that of free oil,which indicates that shale oil will occur in the pores and fractures in a free state in a more extensive pore size range(>200 nm).This study also enables us to further understand the occurrence characteristics of shale oil under the interaction of occurrence state and occurrence space. 展开更多
关键词 shale oil Occurrence characteristics Sequential solvent extraction Low-temperature nitrogen adsorption Funing Formation Dongtai Depression
下载PDF
Optimization method of refracturing timing for old shale gas wells
8
作者 WANG Qiang ZHAO Jinzhou +2 位作者 HU Yongquan LI Yongming WANG Yufeng 《Petroleum Exploration and Development》 SCIE 2024年第1期213-222,共10页
Based on the elastic theory of porous media,embedded discrete fracture model and finite volume method,and considering the micro-seepage mechanism of shale gas,a fully coupled seepage-geomechanical model suitable for f... Based on the elastic theory of porous media,embedded discrete fracture model and finite volume method,and considering the micro-seepage mechanism of shale gas,a fully coupled seepage-geomechanical model suitable for fractured shale gas reservoirs is established,the optimization method of refracturing timing is proposed,and the influencing factors of refracturing timing are analyzed based on the data from shale gas well in Fuling of Sichuan Basin.The results show that due to the depletion of formation pressure,the percentage of the maximum horizontal principal stress reversal area in the total area increases and then decreases with time.The closer the area is to the hydraulic fracture,the shorter the time for the peak of the stress reversal area percentage curve to appear,and the shorter the time for the final zero return(to the initial state).The optimum time of refracturing is affected by matrix permeability,initial stress difference and natural fracture approach angle.The larger the matrix permeability and initial stress difference is,the shorter the time for stress reversal area percentage curve to reach peak and return to the initial state,and the earlier the time to take refracturing measures.The larger the natural fracture approach angle is,the more difficult it is for stress reversal to occur near the fracture,and the earlier the optimum refracturing time is.The more likely the stress reversal occurs at the far end of the artificial fracture,the later the optimal time of refracturing is.Reservoirs with low matrix permeability have a rapid decrease in single well productivity.To ensure economic efficiency,measures such as shut-in or gas injection can be taken to restore the stress,and refracturing can be implemented in advance. 展开更多
关键词 shale gas well fully coupled seepage-geomechanical model REFRACTURING timing optimization influencing factor
下载PDF
Wellbore Cleaning Degree and Hydraulic Extension in Shale Oil Horizontal Wells
9
作者 Xin Ai Mian Chen 《Fluid Dynamics & Materials Processing》 EI 2024年第3期661-670,共10页
The efficient development and exploitation of shale oil depends on long-distance horizontal wells. As the degreeof cleaning of the wellbore plays a key role in these processes, in this study, this problem is investiga... The efficient development and exploitation of shale oil depends on long-distance horizontal wells. As the degreeof cleaning of the wellbore plays a key role in these processes, in this study, this problem is investigated experimentallyby focusing on the dimensionless cuttings bed height. A method is proposed to calculate the horizontalwellhydraulic extension taking into account the influence of the wellbore cleaning degree on the wellborepressure distribution and assess the effect of a variety of factors such as the bottom hole pressure, the circulatingpressure drop, the drilling pump performance and the formation properties. The analysis shows that the hydraulicextension of horizontal wells decreases with an increase in the cuttings bed height, and the higher the displacementof drilling fluid, the faster the hydraulic extension declines. The annular pressure drop of the horizontalsection increases with the increase of the cuttings bed height, resulting in a higher bottom-hole pressure. Severalarguments are provided to guide the safe drilling of shale oil horizontal wells and overcome the limits of currenttechnological approaches. 展开更多
关键词 shale oil horizontal well hydraulic extension wellbore cleaning degree pressure distribution mechanism analysis
下载PDF
Effects of acid-rock reaction on physical properties during CO_(2)-rich industrial waste gas(CO_(2)-rich IWG)injection in shale reservoirs
10
作者 Yi-Fan Wang Jing Wang +2 位作者 Hui-Qing Liu Xiao-Cong Lv Ze-Min Ji 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期272-285,共14页
"Carbon peaking and carbon neutrality"is an essential national strategy,and the geological storage and utilization of CO_(2)is a hot issue today.However,due to the scarcity of pure CO_(2)gas sources in China... "Carbon peaking and carbon neutrality"is an essential national strategy,and the geological storage and utilization of CO_(2)is a hot issue today.However,due to the scarcity of pure CO_(2)gas sources in China and the high cost of CO_(2)capture,CO_(2)-rich industrial waste gas(CO_(2)-rich IWG)is gradually emerging into the public's gaze.CO_(2)has good adsorption properties on shale surfaces,but acidic gases can react with shale,so the mechanism of the CO_(2)-rich IWG-water-shale reaction and the change in reservoir properties will determine the stability of geological storage.Therefore,based on the mineral composition of the Longmaxi Formation shale,this study constructs a thermodynamic equilibrium model of water-rock reactions and simulates the regularity of reactions between CO_(2)-rich IWG and shale minerals.The results indicate that CO_(2)consumed 12%after reaction,and impurity gases in the CO_(2)-rich IWG can be dissolved entirely,thus demonstrating the feasibility of treating IWG through water-rock reactions.Since IWG inhibits the dissolution of CO_(2),the optimal composition of CO_(2)-rich IWG is 95%CO_(2)and 5%IWG when CO_(2)geological storage is the main goal.In contrast,when the main goal is the geological storage of total CO_(2)-rich IWG or impurity gas,the optimal CO_(2)-rich IWG composition is 50%CO_(2)and 50%IWG.In the CO_(2)-rich IWG-water-shale reaction,temperature has less influence on the water-rock reaction,while pressure is the most important parameter.SO2 has the greatest impact on water-rock reaction in gas.For minerals,clay minerals such as illite and montmorillonite had a significant effect on water-rock reaction.The overall reaction is dominated by precipitation and the volume of the rock skeleton has increased by 0.74 cm3,resulting in a decrease in shale porosity,which enhances the stability of CO_(2)geological storage to some extent.During the reaction between CO_(2)-rich IWG-water-shale at simulated temperatures and pressures,precipitation is the main reaction,and shale porosity decreases.However,as the reservoir water content increases,the reaction will first dissolve and then precipitate before dissolving again.When the water content is less than 0.0005 kg or greater than 0.4 kg,it will lead to an increase in reservoir porosity,which ultimately reduces the long-term geological storage stability of CO_(2)-rich IWG. 展开更多
关键词 CO_(2)-rich industrial waste gas Geological storage Acid-rock reaction shale Geochemical modelling
下载PDF
Geochemical prerequisites for the formation of oil and gas accumulation zones in the South Turgay basin,Kazakhstan
11
作者 Rima Kopbosynkyzy Madisheva Vassiliy Sergeevich Portnov +3 位作者 Gulmadina Bulatovna Amangeldiyeva Akmaral Bakhytbekovna Demeuova Yessimkhan Sherekhanovich Seitkhaziyev Dulat Kalimovich Azhgaliev 《Acta Geochimica》 EI CAS CSCD 2024年第3期520-534,共15页
This study predicts favorable oil and gas source-rock formation conditions in the Aryskum Depression of the South Turgay Basin,Kazakhstan.This study assesses the thermal maturity and characteristics of organic matter ... This study predicts favorable oil and gas source-rock formation conditions in the Aryskum Depression of the South Turgay Basin,Kazakhstan.This study assesses the thermal maturity and characteristics of organic matter by determining its environmental conditions using data from geochemical analysis of core(pyrolysis)and oil(biomarkers and carbon isotopic compositions)samples.According to the geochemical parameters obtained by pyrolysis,the oil generation potential of the original rocks of most studied samples varies from poor to rich.The facies–genetic organic matter is predominantly humic and less frequently humus–sapropel,indicating organic matter accumulation in the studied samples were under moderately reducing conditions(kerogenⅢand Ⅱ types)and coastal–marine environments(kerogen typeⅠ).The carbon isotopic compositions of oils derived from the Jurassic deposits of the Aryskum Depression also indicate the sapropelic and mixed humic–sapropelic type of organic matter(kerogenⅡandⅠ).Biomarker analysis of oils indicates original organic matter formation in an anoxic environment. 展开更多
关键词 South Turgay Basin oil and gas potential Source rock Organic matter KEROGEN
下载PDF
Stress corrosion cracking behavior of buried oil and gas pipeline steel under the coexistence of magnetic field and sulfate-reducing bacteria
12
作者 Jian-Yu He Fei Xie +3 位作者 Dan Wang Guang-Xin Liu Ming Wu Yue Qin 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1320-1332,共13页
Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil env... Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence. 展开更多
关键词 Magnetic field Sulfate-reducing bacteria Film layer Stress corrosion cracking oil and gas pipelines
下载PDF
Optimizing the Diameter of Plugging Balls in Deep Shale Gas Wells
13
作者 Yi Song Zheyu Hu +5 位作者 Cheng Shen Lan Ren Xingwu Guo Ran Lin Kun Wang Zhiyong Zhao 《Fluid Dynamics & Materials Processing》 EI 2024年第3期609-624,共16页
Deep shale gas reserves that have been fractured typically have many relatively close perforation holes. Due to theproximity of each fracture during the formation of the fracture network, there is significant stress i... Deep shale gas reserves that have been fractured typically have many relatively close perforation holes. Due to theproximity of each fracture during the formation of the fracture network, there is significant stress interference,which results in uneven fracture propagation. It is common practice to use “balls” to temporarily plug fractureopenings in order to lessen liquid intake and achieve uniform propagation in each cluster. In this study, a diameteroptimization model is introduced for these plugging balls based on a multi-cluster fracture propagationmodel and a perforation dynamic abrasion model. This approach relies on proper consideration of the multiphasenature of the considered problem and the interaction force between the involved fluid and solid phases. Accordingly,it can take into account the behavior of the gradually changing hole diameter due to proppant continuousperforation erosion. Moreover, it can provide useful information about the fluid-dynamic behavior of the consideredsystem before and after plugging. It is shown that when the diameter of the temporary plugging ball is1.2 times that of the perforation hole, the perforation holes of each cluster can be effectively blocked. 展开更多
关键词 Deep shale gas fracture propagation fluid mechanics fluid-solid coupling perforation hole abrasion
下载PDF
Risk assessment of oil and gas investment environment in countries along the Belt and Road Initiative
14
作者 Bao-Jun Tang Chang-Jing Ji +3 位作者 Yu-Xian Zheng Kang-Ning Liu Yi-Fei Ma Jun-Yu Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1429-1443,共15页
With the implementation of the Belt and Road Initiative, China is deepening its cooperation in oil and gas resources with countries along the Initiative. In order to better mitigate risks and enhance the safety of inv... With the implementation of the Belt and Road Initiative, China is deepening its cooperation in oil and gas resources with countries along the Initiative. In order to better mitigate risks and enhance the safety of investments, it is of significant importance to research the oil and gas investment environment in these countries for China's overseas investment macro-layout. This paper proposes an indicator system including 27 indicators from 6 dimensions. On this basis, game theory models combined with global entropy method and analytic hierarchy process are applied to determine the combined weights, and the TOPSIS-GRA model is utilized to assess the risks of oil and gas investment in 76 countries along the Initiative from 2014 to 2021. Finally, the GM(1,1) model is employed to predict risk values for 2022-2025. In conclusion, oil and gas resources and political factors have the greatest impact on investment environment risk, and 12 countries with greater investment potential are selected through cluster analysis in conjunction with the predicted results. The research findings may provide scientific decisionmaking recommendations for the Chinese government and oil enterprises to strengthen oil and gas investment cooperation with countries along the Belt and Road Initiative. 展开更多
关键词 Belt and Road Initiative oil and gas Investment Risk assessment
下载PDF
Identification and evaluation of shale oil micromigration and its petroleum geological significance
15
作者 HU Tao JIANG Fujie +10 位作者 PANG Xiongqi LIU Yuan WU Guanyun ZHOU Kuo XIAO Huiyi JIANG Zhenxue LI Maowen JIANG Shu HUANG Liliang CHEN Dongxia MENG Qingyang 《Petroleum Exploration and Development》 SCIE 2024年第1期127-140,共14页
Taking the Lower Permian Fengcheng Formation shale in Mahu Sag of Junggar Basin,NW China,as an example,core observation,test analysis,geological analysis and numerical simulation were applied to identify the shale oil... Taking the Lower Permian Fengcheng Formation shale in Mahu Sag of Junggar Basin,NW China,as an example,core observation,test analysis,geological analysis and numerical simulation were applied to identify the shale oil micro-migration phenomenon.The hydrocarbon micro-migration in shale oil was quantitatively evaluated and verified by a self-created hydrocarbon expulsion potential method,and the petroleum geological significance of shale oil micro-migration evaluation was determined.Results show that significant micro-migration can be recognized between the organic-rich lamina and organic-poor lamina.The organic-rich lamina has strong hydrocarbon generation ability.The heavy components of hydrocarbon preferentially retained by kerogen swelling or adsorption,while the light components of hydrocarbon were migrated and accumulated to the interbedded felsic or carbonate organic-poor laminae as free oil.About 69% of the Fengcheng Formation shale samples in Well MY1 exhibit hydrocarbon charging phenomenon,while 31% of those exhibit hydrocarbon expulsion phenomenon.The reliability of the micro-migration evaluation results was verified by combining the group components based on the geochromatography effect,two-dimension nuclear magnetic resonance analysis,and the geochemical behavior of inorganic manganese elements in the process of hydrocarbon migration.Micro-migration is a bridge connecting the hydrocarbon accumulation elements in shale formations,which reflects the whole process of shale oil generation,expulsion and accumulation,and controls the content and composition of shale oil.The identification and evaluation of shale oil micro-migration will provide new perspectives for dynamically differential enrichment mechanism of shale oil and establishing a“multi-peak model in oil generation”of shale. 展开更多
关键词 shale oil micro-migration identification micro-migration evaluation Junggar Basin Mahu Sag Lower Permian Fengcheng Formation hydrocarbon expulsion potential method
下载PDF
Production Capacity Prediction Method of Shale Oil Based on Machine Learning Combination Model
16
作者 Qin Qian Mingjing Lu +3 位作者 Anhai Zhong Feng Yang Wenjun He Min Li 《Energy Engineering》 EI 2024年第8期2167-2190,共24页
The production capacity of shale oil reservoirs after hydraulic fracturing is influenced by a complex interplay involving geological characteristics,engineering quality,and well conditions.These relationships,nonlinea... The production capacity of shale oil reservoirs after hydraulic fracturing is influenced by a complex interplay involving geological characteristics,engineering quality,and well conditions.These relationships,nonlinear in nature,pose challenges for accurate description through physical models.While field data provides insights into real-world effects,its limited volume and quality restrict its utility.Complementing this,numerical simulation models offer effective support.To harness the strengths of both data-driven and model-driven approaches,this study established a shale oil production capacity prediction model based on a machine learning combination model.Leveraging fracturing development data from 236 wells in the field,a data-driven method employing the random forest algorithm is implemented to identify the main controlling factors for different types of shale oil reservoirs.Through the combination model integrating support vector machine(SVM)algorithm and back propagation neural network(BPNN),a model-driven shale oil production capacity prediction model is developed,capable of swiftly responding to shale oil development performance under varying geological,fluid,and well conditions.The results of numerical experiments show that the proposed method demonstrates a notable enhancement in R2 by 22.5%and 5.8%compared to singular machine learning models like SVM and BPNN,showcasing its superior precision in predicting shale oil production capacity across diverse datasets. 展开更多
关键词 shale oil production capacity data-driven model model-driven method machine learning
下载PDF
Simulation of Two-Phase Flowback Phenomena in Shale Gas Wells
17
作者 Yongwei Duan Zhaopeng Zhu +2 位作者 Hui He Gaoliang Xuan Xuemeng Yu 《Fluid Dynamics & Materials Processing》 EI 2024年第2期349-364,共16页
The gas-water two-phaseflow occurring as a result of fracturingfluidflowback phenomena is known to impact significantly the productivity of shale gas well.In this work,this two-phaseflow has been simulated in the framework... The gas-water two-phaseflow occurring as a result of fracturingfluidflowback phenomena is known to impact significantly the productivity of shale gas well.In this work,this two-phaseflow has been simulated in the framework of a hybrid approach partially relying on the embedded discrete fracture model(EDFM).This model assumes the region outside the stimulated reservoir volume(SRV)as a single-medium while the SRV region itself is described using a double-medium strategy which can account for thefluid exchange between the matrix and the micro-fractures.The shale gas adsorption,desorption,diffusion,gas slippage effect,fracture stress sensitivity,and capillary imbibition have been considered.The shale gas production,pore pressure distribution and water saturation distribution in the reservoir have been simulated.The influences of hydraulic fracture geometry and nonorthogonal hydraulic fractures on gas production have been determined and discussed accordingly.The simulation results show that the daily gas production has an upward and downward trend due to the presence of a large amount of fracturingfluid in the reservoir around the hydraulic fracture.The smaller the angle between the hydraulic fracture and the wellbore,the faster the daily production of shale gas wells decreases,and the lower the cumulative production.Nonplanar fractures can increase the control volume of hydraulic fractures and improve the production of shale gas wells. 展开更多
关键词 shale gas fracturingfluid backflow the stimulated reservoir volume gas-water two-phase production
下载PDF
Influence of lithospheric thickness distribution on oil and gas basins,China seas and adjacent areas
18
作者 Jing Ma Wanyin Wang +4 位作者 Hermann Zeyen Yimi Zhang Zhongsheng Li Tao He Dingding Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第4期1-14,共14页
The distribution of oil and gas resources is intricately connected to the underlying structure of the lithosphere.Therefore,investigating the characteristics of lithospheric thickness and its correlation with oil and ... The distribution of oil and gas resources is intricately connected to the underlying structure of the lithosphere.Therefore,investigating the characteristics of lithospheric thickness and its correlation with oil and gas basins is highly important.This research utilizes recently enhanced geological–geophysical data,including topographic,geoid,rock layer thickness,variable rock layer density,and interface depth data.Employing the principles of lithospheric isostasy and heat conduction,we compute the laterally varying lithospheric thickness in the China seas and adjacent areas.From these results,two pivotal parameters for different types of oil and gas basins were statistically analyzed:the minimum lithospheric thickness and the relative fluctuation in lithospheric thickness.A semiquantitative analysis was used to explore the connection between these parameters and the hydrocarbon abundance within the oil and gas basins.This study unveils distinct variations in lithospheric thickness among basins,with oil and gas rich basins exhibiting a thicker lithosphere in the superimposed basins of central China and a thinner lithosphere in the rift basins of eastern China.Notably,the relative fluctuations in lithospheric thickness in basins demonstrate significant disparities:basins rich in oil and gas often exhibit greater thickness fluctuations.Additionally,in the offshore basins of China,a conspicuous negative linear correlation is observed between the minimum lithospheric thickness and the relative fluctuation in lithospheric thickness.This study posits that deep-seated thermal upwelling results in lithospheric undulations and extensional thinning in oil and gas basins.Concurrently,sustained deep-seated heat influences sedimentary materials in basins,creating favorable conditions for oil and gas generation.The insights derived from this study contribute to a quantitative understanding of the intricate relationships between deep lithospheric structures and oil and gas basins.These findings provide valuable guidance for future oil and gas exploration in the studied areas. 展开更多
关键词 China seas and adjacent areas lithospheric thickness oil and gas basins
下载PDF
Shale oil development techniques and application based on ternary-element storage and flow concept in Jiyang Depression,Bohai Bay Basin,East China
19
作者 YANG Yong 《Petroleum Exploration and Development》 SCIE 2024年第2期380-393,共14页
The ternary-element storage and flow concept for shale oil reservoirs in Jiyang Depression of Bohai Bay Basin,East China,was proposed based on the data of more than 10000 m cores and the production of more than 60 hor... The ternary-element storage and flow concept for shale oil reservoirs in Jiyang Depression of Bohai Bay Basin,East China,was proposed based on the data of more than 10000 m cores and the production of more than 60 horizontal wells.The synergy of three elements(storage,fracture and pressure)contributes to the enrichment and high production of shale oil in Jiyang Depression.The storage element controls the enrichment of shale oil;specifically,the presence of inorganic pores and fractures,as well as laminae of lime-mud rocks,in the saline lake basin,is conducive to the storage of shale oil,and the high hydrocarbon generating capacity and free hydrocarbon content are the material basis for high production.The fracture element controls the shale oil flow;specifically,natural fractures act as flow channels for shale oil to migrate and accumulate,and induced fractures communicate natural fractures to form complex fracture network,which is fundamental to high production.The pressure element controls the high and stable production of shale oil;specifically,the high formation pressure provides the drive force for the migration and accumulation of hydrocarbons,and fracturing stimulation significantly increases the elastic energy of rock and fluid,improves the imbibition replacement of oil in the pores/fractures,and reduces the stress sensitivity,guaranteeing the stable production of shale oil for a long time.Based on the ternary-element storage and flow concept,a 3D development technology was formed,with the core techniques of 3D well pattern optimization,3D balanced fracturing,and full-cycle optimization of adjustment and control.This technology effectively guides the production and provides a support to the large-scale beneficial development of shale oil in Jiyang Depression. 展开更多
关键词 Jiyang Depression continental shale oil reservoir space fracturing stimulation fracture network storage and flow theory 3D development high and stable production
下载PDF
Miscibility of light oil and flue gas under thermal action
20
作者 XI Changfeng WANG Bojun +7 位作者 ZHAO Fang HUA Daode QI Zongyao LIU Tong ZHAO Zeqi TANG Junshi ZHOU You WANG Hongzhuang 《Petroleum Exploration and Development》 SCIE 2024年第1期164-171,共8页
The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and hi... The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and high pressure,the miscible displacement of flue gas and light oil is possible.At the same temperature,there is a linear relationship between oil displacement efficiency and pressure.At the same pressure,the oil displacement efficiency increases gently and then rapidly to more than 90% to achieve miscible displacement with the increase of temperature.The rapid increase of oil displacement efficiency is closely related to the process that the light components of oil transit in phase state due to distillation with the rise of temperature.Moreover,at the same pressure,the lighter the oil,the lower the minimum miscibility temperature between flue gas and oil,which allows easier miscibility and ultimately better performance of thermal miscible flooding by air injection.The miscibility between flue gas and light oil at high temperature and high pressure is more typically characterized by phase transition at high temperature in supercritical state,and it is different from the contact extraction miscibility of CO_(2) under conventional high pressure conditions. 展开更多
关键词 light oil flue gas flooding thermal miscible flooding miscible law distillation phase transition minimum miscible pressure minimum miscible temperature
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部