期刊文献+
共找到2,852篇文章
< 1 2 143 >
每页显示 20 50 100
Quantitative characterization of the brittleness of deep shales by integrating mineral content,elastic parameters,in situ stress conditions and logging analysis
1
作者 Tongtong Luo Jianguo Wang +3 位作者 Li Chen Chaoya Sun Qian Liu Fenggang Wang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期167-179,共13页
Deep shale reservoirs(3500–4500 m)exhibit significantly different stress states than moderately deep shale reservoirs(2000–3500 m).As a result,the brittleness response mechanisms of deep shales are also different.It... Deep shale reservoirs(3500–4500 m)exhibit significantly different stress states than moderately deep shale reservoirs(2000–3500 m).As a result,the brittleness response mechanisms of deep shales are also different.It is urgent to investigate methods to evaluate the brittleness of deep shales to meet the increasingly urgent needs of deep shale gas development.In this paper,the quotient of Young’s modulus divided by Poisson’s ratio based on triaxial compression tests under in situ stress conditions is taken as SSBV(Static Standard Brittleness Value).A new and pragmatic technique is developed to determine the static brittleness index that considers elastic parameters,the mineral content,and the in situ stress conditions(BIEMS).The coefficient of determination between BIEMS and SSBV reaches 0.555 for experimental data and 0.805 for field data.This coefficient is higher than that of other brittleness indices when compared to SSBV.BIEMS can offer detailed insights into shale brittleness under various conditions,including different mineral compositions,depths,and stress states.This technique can provide a solid data-based foundation for the selection of‘sweet spots’for single-well engineering and the comparison of the brittleness of shale gas production layers in different areas. 展开更多
关键词 Deep shale reservoirs brittleness Pressure effect Evaluation method Longmaxi formation Sichuan Basin
下载PDF
A hybrid physics-informed data-driven neural network for CO_(2) storage in depleted shale reservoirs
2
作者 Yan-Wei Wang Zhen-Xue Dai +3 位作者 Gui-Sheng Wang Li Chen Yu-Zhou Xia Yu-Hao Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期286-301,共16页
To reduce CO_(2) emissions in response to global climate change,shale reservoirs could be ideal candidates for long-term carbon geo-sequestration involving multi-scale transport processes.However,most current CO_(2) s... To reduce CO_(2) emissions in response to global climate change,shale reservoirs could be ideal candidates for long-term carbon geo-sequestration involving multi-scale transport processes.However,most current CO_(2) sequestration models do not adequately consider multiple transport mechanisms.Moreover,the evaluation of CO_(2) storage processes usually involves laborious and time-consuming numerical simulations unsuitable for practical prediction and decision-making.In this paper,an integrated model involving gas diffusion,adsorption,dissolution,slip flow,and Darcy flow is proposed to accurately characterize CO_(2) storage in depleted shale reservoirs,supporting the establishment of a training database.On this basis,a hybrid physics-informed data-driven neural network(HPDNN)is developed as a deep learning surrogate for prediction and inversion.By incorporating multiple sources of scientific knowledge,the HPDNN can be configured with limited simulation resources,significantly accelerating the forward and inversion processes.Furthermore,the HPDNN can more intelligently predict injection performance,precisely perform reservoir parameter inversion,and reasonably evaluate the CO_(2) storage capacity under complicated scenarios.The validation and test results demonstrate that the HPDNN can ensure high accuracy and strong robustness across an extensive applicability range when dealing with field data with multiple noise sources.This study has tremendous potential to replace traditional modeling tools for predicting and making decisions about CO_(2) storage projects in depleted shale reservoirs. 展开更多
关键词 Deep learning Physics-informed data-driven neural network Depleted shale reservoirs CO_(2)storage Transport mechanisms
下载PDF
Formation damage mechanism and control strategy of the compound function of drilling fluid and fracturing fluid in shale reservoirs
3
作者 SUN Jinsheng XU Chengyuan +6 位作者 KANG Yili JING Haoran ZHANG Jie YANG Bin YOU Lijun ZHANG Hanshi LONG Yifu 《Petroleum Exploration and Development》 SCIE 2024年第2期430-439,共10页
For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture ... For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture extension due to shale minerals erosion by oil-based drilling fluid.With the evaluation for the damage of natural and hydraulic fractures caused by mechanical properties weakening of shale fracture surface,fracture closure and rock powder blocking,the formation damage pattern is proposed with consideration of the compound effect of drilling fluid and fracturing fluid.The formation damage mechanism during drilling and completion process in shale reservoir is revealed,and the protection measures are raised.The drilling fluid can deeply invade into the shale formation through natural and induced fractures,erode shale minerals and weaken the mechanical properties of shale during the drilling process.In the process of hydraulic fracturing,the compound effect of drilling fluid and fracturing fluid further weakens the mechanical properties of shale,results in fracture closure and rock powder shedding,and thus induces stress-sensitive damage and solid blocking damage of natural/hydraulic fractures.The damage can yield significant conductivity decrease of fractures,and restrict the high and stable production of shale oil and gas wells.The measures of anti-collapse and anti-blocking to accelerate the drilling of reservoir section,forming chemical membrane to prevent the weakening of the mechanical properties of shale fracture surface,strengthening the plugging of shale fracture and reducing the invasion range of drilling fluid,optimizing fracturing fluid system to protect fracture conductivity are put forward for reservoir protection. 展开更多
关键词 shale oil and gas drilling fluid fracturing fluid stress-sensitive solid blocking formation damage reservoir protection
下载PDF
A two-phase type-curve method with multiscale fluid transport mechanisms in hydraulically fractured shale reservoirs 被引量:1
4
作者 Feng-Yuan Zhang Lin-Jun Zou +3 位作者 Zhen-Hua Rui Hamid Emami-Meybodi Luis F.Ayala Zheng-Xin Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2253-2267,共15页
The quantitative understanding of hydraulic fracture(HF)properties guides accurate production forecasts and reserve estimation.Type curve is a powerful technique to characterize HF and reservoir properties from flowba... The quantitative understanding of hydraulic fracture(HF)properties guides accurate production forecasts and reserve estimation.Type curve is a powerful technique to characterize HF and reservoir properties from flowback and long-term production data.However,two-phase flow of water and hydrocarbon after an HF stimulation together with the complex transport mechanisms in shale nanopores exacerbate the nonlinearity of the transport equation,causing errors in type-curve analysis.Accordingly,we propose a new two-phase type-curve method to estimate HF properties,such as HF volume and permeability of fracture,through the analysis of flowback data of multi-fractured shale wells.The proposed type curve is based on a semianalytical solution that couples the two-phase flow from the matrix with the flow in HF by incorporating matrix influx,slippage effect,stress dependence,and the spatial variation of fluid properties in inorganic and organic pores.For the first time,multiple fluid transport mechanisms are considered into two-phase type-curve analysis for shale reservoirs.We analyze the flowback data from a multi-fractured horizontal well in a shale gas reservoir to verify the field application of the proposed method.The results show that the fracture properties calculated by the type-curve method are in good agreement with the long-time production data. 展开更多
关键词 Type curve Two-phase flow Flowback analysis Fluid transport mechanisms shale reservoir
下载PDF
The construction of shale rock physics model and brittleness prediction for high-porosity shale gas-bearing reservoir 被引量:5
5
作者 Xin-Peng Pan Guang-Zhi Zhang Jiao-Jiao Chen 《Petroleum Science》 SCIE CAS CSCD 2020年第3期658-670,共13页
Due to the huge differences between the unconventional shale and conventional sand reservoirs in many aspects such as the types and the characteristics of minerals,matrix pores and fluids,the construction of shale roc... Due to the huge differences between the unconventional shale and conventional sand reservoirs in many aspects such as the types and the characteristics of minerals,matrix pores and fluids,the construction of shale rock physics model is significant for the exploration and development of shale reservoirs.To make a better characterization of shale gas-bearing reservoirs,we first propose a new but more suitable rock physics model to characterize the reservoirs.We then use a well A to demonstrate the feasibility and reliability of the proposed rock physics model of shale gas-bearing reservoirs.Moreover,we propose a new brittleness indicator for the high-porosity and organic-rich shale gas-bearing reservoirs.Based on the parameter analysis using the constructed rock physics model,we finally compare the new brittleness indicator with the commonly used Young’s modulus in the content of quartz and organic matter,the matrix porosity,and the types of filled fluids.We also propose a new shale brittleness index by integrating the proposed new brittleness indicator and the Poisson’s ratio.Tests on real data sets demonstrate that the new brittleness indicator and index are more sensitive than the commonly used Young’s modulus and brittleness index for the high-porosity and high-brittleness shale gas-bearing reservoirs. 展开更多
关键词 shale gas Rock physics model brittleness prediction
下载PDF
Study on brittleness templates for shale gas reservoirs——A case study of Longmaxi shale in Sichuan Basin,southern China 被引量:1
6
作者 Qamar Yasin Ghulam Mohyuddin Sohail +2 位作者 Ke-Yu Liu Qi-Zhen Du Cyril DBoateng 《Petroleum Science》 SCIE CAS CSCD 2021年第5期1370-1389,共20页
Differentiating brittle zones from ductile zones in low permeability shale formations is imperative for efficient hydraulic fracturing stimulation.The brittleness index(BI) is used to describe the rock resistance to h... Differentiating brittle zones from ductile zones in low permeability shale formations is imperative for efficient hydraulic fracturing stimulation.The brittleness index(BI) is used to describe the rock resistance to hydraulic fracture initiation and propagation and measures the ease at which complex fracture networks can be created.In this study,we constructed brittleness templates through the correlation of fundamental rock properties and geomechanical characterization.We then employed the templates to distinguish the brittle,ductile,and brittle-ductile transition zones in the Longmaxi shale gas reservoir,Sichuan Basin of southern China.The approach works in two steps.First,we suggest a new expression for the mineralogical BI by their respective weights based on the analysis of correlation coefficients between mechanical testing and XRD results.Second,we correlate TOC,porosity,pore fluid,natural fractures,and improved BI model with multiple elastic properties to define the brittle,ductile,and transitional zones in the Longmaxi shale gas reservoir of China.Compared with the traditional mineralogy-based BI definition,the improved BI model differentiates the brittle and ductile zones and provides a better sense of the most suitable fracturing regions.Our results show that the brittleness templates,which combine fundamental rock properties,improved BI model,and geomechanical characterization led to identifying favorable zones for hydraulic fracturing and enhanced shale characterization.The proposed brittleness templates’ effectiveness was verified using data from horizontal wells,offset wells,shale gas wells from different origins,laboratory core testing,and seismic inversion of BI across the studied wells. 展开更多
关键词 brittleness index Geomechanical properties Petrophysical parameters Longmaxi shale
下载PDF
Simulation of methane adsorption in diverse organic pores in shale reservoirs with multi-period geological evolution 被引量:4
7
作者 Shangbin Chen Chu Zhang +2 位作者 Xueyuan Li Yingkun Zhang Xiaoqi Wang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第5期844-855,共12页
In shale reservoirs,the organic pores with various structures formed during the thermal evolution of organic matter are the main storage site for adsorbed methane.However,in the process of thermal evolution,the adsorp... In shale reservoirs,the organic pores with various structures formed during the thermal evolution of organic matter are the main storage site for adsorbed methane.However,in the process of thermal evolution,the adsorption characteristics of methane in multi type and multi-scale organic matter pores have not been sufficiently studied.In this study,the molecular simulation method was used to study the adsorption characteristics of methane based on the geological conditions of Longmaxi Formation shale reservoir in Sichuan Basin,China.The results show that the characteristics of pore structure will affect the methane adsorption characteristics.The adsorption capacity of slit-pores for methane is much higher than that of cylindrical pores.The groove space inside the pore will change the density distribution of methane molecules in the pore,greatly improve the adsorption capacity of the pore,and increase the pressure sensitivity of the adsorption process.Although the variation of methane adsorption characteristics of different shapes is not consistent with pore size,all pores have the strongest methane adsorption capacity when the pore size is about 2 nm.In addition,the changes of temperature and pressure during the thermal evolution are also important factors to control the methane adsorption characteristics.The pore adsorption capacity first increases and then decreases with the increase of pressure,and increases with the increase of temperature.In the early stage of thermal evolution,pore adsorption capacity is strong and pressure sensitivity is weak;while in the late stage,it is on the contrary. 展开更多
关键词 Adsorption mechanism shale reservoir Diverse pores Multi-period geological evolution Thermal evolution
下载PDF
Acid-base alternation diagenesis and its influence on shale reservoirs in the Permian Lucaogou Formation, Jimusar Sag, Junggar Basin, NW China 被引量:2
8
作者 WANG Jian ZHOU Lu +3 位作者 LIU Jin ZHANG Xinji ZHANG Fan ZHANG Baozhen 《Petroleum Exploration and Development》 2020年第5期962-976,共15页
The diagenesis and diagenetic facies of shale reservoirs in Lucaogou Formation of Jimusar Sag were studied by means of microscopic observation and identification of ordinary thin sections and cast thin sections,X-ray ... The diagenesis and diagenetic facies of shale reservoirs in Lucaogou Formation of Jimusar Sag were studied by means of microscopic observation and identification of ordinary thin sections and cast thin sections,X-ray diffraction,scanning electron microscope and electron probe tests.The results show that alkaline and acidic diagenetic processes occurred alternately during the deposition of Permian Lucaogou Formation in Jimusar Sag.The evolution of porosity in the shale reservoirs was influenced by compaction and alternate alkaline and acidic diagenetic processes jointly,and has gone through three stages,namely,stage of porosity reduction and increase caused by alkaline compaction,stage of porosity increase caused by acid dissolution,and stage of porosity increase and reduction caused by alkaline dissolution.Correspondingly,three secondary pore zones developed in Lucaogou Formation.The shale reservoirs are divided into three diagenetic facies:tuff residual intergranular pore-dissolution pore facies,tuff organic micrite dolomite mixed pore facies,and micrite alga-dolomite intercrystalline pore facies.With wide distribution,good pore structure and high oil content,the first two facies are diagenetic facies of favorable reservoirs in Lucaogou Formation.The research results provide a basis for better understanding and exploration and development of the Lucaogou Formation shale reservoirs. 展开更多
关键词 acid-base alternation diagenesis porosity evolution shale oil shale reservoir Permian Lucaogou Formation Jimusar Sag Junggar Basin
下载PDF
Pore-Fracture Distribution Heterogeneity of Shale Reservoirs Determined by using HPMI and LPN_(2 )GA Tests
9
作者 ZHANG Junjian QIN Zhengyuan +8 位作者 HAN Yanning WANG Huaimeng HOU Maoguo YAN Gaoyuan FENG Guangjun ZHANG Xiaoyang YIN Tingting ZHANG Hainan WEN Shupeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第5期1659-1672,共14页
The compressibility of shale matrix reflects the effects of reservoir lithology, material composition, pore structure and tectonic deformation. It is important to understand the factors that influence shale matrix com... The compressibility of shale matrix reflects the effects of reservoir lithology, material composition, pore structure and tectonic deformation. It is important to understand the factors that influence shale matrix compressibility(SMC) and their effects on pore size distribution(PSD) heterogeneity in order to evaluate the properties of unconventional reservoirs.In this study, the volumes of pores whose diameters were in the range 6–100 nm were corrected for SMC for 17 shale samples from basins in China using high-pressure mercury intrusion and low-temperature nitrogen gas adsorption analyses,in order to investigate the factors influencing the SMC values. In addition, the variations in fractal dimensions before and after pore volume correction were determined, using single and multifractal models to explain the effects of SMC on PSD heterogeneity. In this process, the applicability of each fractal model for characterizing PSD heterogeneity was determined using statistical analyses. The Menger and Sierpinski single fractal models, the thermodynamic fractal model and a multifractal model were all used in this study. The results showed the following. The matrix compression restricts the segmentation of the fractal dimension curves for the single fractal Menger and Sierpinski models, which leads to a uniformity of PSD heterogeneity for different pore diameters. However, matrix compression has only a weak influence on the results calculated using a thermodynamic model. The SMC clearly affects the multifractal value variations, showing that the fractal dimension values of shale samples under matrix compression are small. Overall PSD heterogeneity becomes small for pores with diameters below 100 nm and the SMC primarily affects the PSD heterogeneity of higher pore volume areas. The comparison of fractal curves before and after correction and the variance analysis indicate that the thermodynamic model is applicable to quantitatively characterize PSD heterogeneity of shale collected from this sampling area. The results show that PSD heterogeneity increases gradually as micro-pore volumes increase. 展开更多
关键词 shale reservoirs matrix compressibility pore structure fractal dimension MULTIFRACTAL
下载PDF
Microscopic pore-fracture configuration and gas-filled mechanism of shale reservoirs in the western Chongqing area,Sichuan Basin,China
10
作者 FU Yonghong JIANG Yuqiang +8 位作者 DONG Dazhong HU Qinhong LEI Zhi'an PENG Hao GU Yifan MA Shaoguang WANG Zimeng YIN Xingping WANG Zhanlei 《Petroleum Exploration and Development》 CSCD 2021年第5期1063-1076,共14页
Taking the Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Formation shale reservoirs in western Chongqing area as the study target,the argon ion polishing scanning electron microscope and nuclear magneti... Taking the Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Formation shale reservoirs in western Chongqing area as the study target,the argon ion polishing scanning electron microscope and nuclear magnetic resonance(NMR)experiments of different saturated wetting media were carried out.Based on the image processing technology and the results of gas desorption,the pore-fracture configuration of the shale reservoirs and its influence on gas-filled mechanism were analyzed.(1)The reservoir space includes organic pores,inorganic pores and micro-fractures and there are obvious differences between wells in the development characteristics of micro-fractures;the organic pores adjacent to the micro-fractures are poorly developed,while the inorganic pores are well preserved.(2)According to the type,development degree and contact relationship of organic pore and micro-fracture,the pore-fracture configuration of the shale reservoir is divided into four types.(3)Based on the differences in NMR T_(2) spectra of shale samples saturated with oil and water,an evaluation parameter of pore-fracture configuration was constructed and calculated.The smaller the parameter,the better the pore-fracture configuration is.(4)The shale reservoir with good pore-fracture configuration has well-developed organic pores,high porosity,high permeability and high gas content,while the shale reservoir with poor pore-fracture configuration has micro-fractures developed,which improves the natural gas conductivity and leads to low porosity and gas content of the reservoir.(5)Based on pore-fracture configuration,from the perspective of organic matter generating hydrocarbon,micro-fracture providing migration channel,three types of micro gas-filled models of shale gas were established. 展开更多
关键词 shale reservoir microscopic pore-fracture configuration quality parameter gas bearing characteristics shale gas Upper Ordovician Wufeng Formation Lower Silurian Longmaxi Formation Sichuan Basin
下载PDF
Acoustic emission-based numerical simulation of tectonic stress field for tectoclase prediction in shale reservoirs of the northern Guizhou area, China
11
作者 Zhonghu Wu Motian Tang +4 位作者 Yujun Zuo Yili Lou Wentao Wang Hao Liu Wenjibin Sun 《Energy Geoscience》 2022年第4期436-443,共8页
Natural fractures,like tectoclases,are essential in the formation of shale gas reservoirs and have been the focus of study for shale gas development.Tectoclases provide most storage space for gas and are largely contr... Natural fractures,like tectoclases,are essential in the formation of shale gas reservoirs and have been the focus of study for shale gas development.Tectoclases provide most storage space for gas and are largely controlled by the paleo-tectonic stress field in shale reservoirs of the Niutitang Formation,northern Guizhou area,China.An accurate prediction of the development and distribution of tectoclases in the reservoirs is of great significance to exploring and developing shale gas sweet spots in the area.Based on geological structure evolution and fracture characterization,this study is focused on factors that control the fracture development in the Niutitang Formation shale reservoirs in northern Guizhou through characterization and modeling of geomechanisms and tectonic movements.A geomechanical model is formulated for the shale reservoirs against the geological background of the area.On this basis,the fractures are predicted by using the acoustic emission data.Numerical simulation results show that the development and distribution of tectoclase is controlled by fault zones,some of which have no obvious turning points with tectoclase in the middle sections being more developed and fragmented than those at the two ends.Some of these have obvious S-shaped turning points where tectoclases are the most developed and fragmented. 展开更多
关键词 shale reservoir Tectonic stress field Numerical simulation Tectoclase Acoustic emission
下载PDF
Construction of a novel brittleness index equation and analysis of anisotropic brittleness characteristics for unconventional shale formations 被引量:7
12
作者 Ke-Ran Qian Tao Liu +3 位作者 Jun-Zhou Liu Xi-Wu Liu Zhi-Liang He Da-Jian Jiang 《Petroleum Science》 SCIE CAS CSCD 2020年第1期70-85,共16页
The brittleness prediction of shale formations is of interest to researchers nowadays.Conventional methods of brittleness prediction are usually based on isotropic models while shale is anisotropic.In order to obtain ... The brittleness prediction of shale formations is of interest to researchers nowadays.Conventional methods of brittleness prediction are usually based on isotropic models while shale is anisotropic.In order to obtain a better prediction of shale brittleness,our study firstly proposed a novel brittleness index equation based on the Voigt–Reuss–Hill average,which combines two classical isotropic methods.The proposed method introduces upper and lower brittleness bounds,which take the uncertainty of brittleness prediction into consideration.In addition,this method can give us acceptable predictions by using limited input values.Secondly,an anisotropic rock physics model was constructed.Two parameters were introduced into our model,which can be used to simulate the lamination of clay minerals and the dip angle of formation.In addition,rock physics templates have been built to analyze the sensitivity of brittleness parameters.Finally,the effects of kerogen,pore structure,clay lamination and shale formation dip have been investigated in terms of anisotropy.The prediction shows that the vertical/horizontal Young’s modulus is always below one while the vertical/horizontal Poisson’s ratio(PR)can be either greater or less than 1.Our study finds different degrees of shale lamination may be the explanation for the random distribution of Vani(the ratio of vertical PR to horizontal PR). 展开更多
关键词 brittleness shale Rock Physics ANISOTROPY Voigt–Reuss–Hill AVERAGE
下载PDF
Pre-stack basis pursuit seismic inversion for brittleness of shale 被引量:8
13
作者 Xing-Yao Yin Xiao-Jing Liu Zhao-Yun Zong 《Petroleum Science》 SCIE CAS CSCD 2015年第4期618-627,共10页
Brittleness of rock plays a significant role in exploration and development of shale gas reservoirs. Young's modulus and Poisson's ratio are the key param- eters for evaluating the rock brittleness in shale gas expl... Brittleness of rock plays a significant role in exploration and development of shale gas reservoirs. Young's modulus and Poisson's ratio are the key param- eters for evaluating the rock brittleness in shale gas exploration because their combination relationship can quantitatively characterize the rock brittleness. The high- value anomaly of Young's modulus and the low-value anomaly of Poisson's ratio represent high brittleness of shale. The technique of pre-stack amplitude variation with angle inversion allows geoscientists to estimate Young's modulus and Poisson's ratio from seismic data. A model constrained basis pursuit inversion method is proposed for stably estimating Young's modulus and Poisson's ratio. Test results of synthetic gather data show that Young's modulus and Poisson's ratio can be estimated reasonably. With the novel method, the inverted Young's modulus and Poisson's ratio of real field data focus the layer boundaries better, which is helpful for us to evaluate the brittleness of shale gas reservoirs. The results of brittleness evaluation show a good agreement with the results of well interpretation. 展开更多
关键词 brittleness shale gas Amplitude variationwith angle Basis pursuit Bayesian framework
下载PDF
Differential Characteristics of the Upper Ordovician-Lower Silurian Wufeng-Longmaxi Shale Reservoir and its Implications for Exploration and Development of Shale Gas in/around the Sichuan Basin 被引量:9
14
作者 WANG Ruyue HU Zongquan +6 位作者 LONG Shengxiang LIU Guangxiang ZHAO Jianhua DONG Li DU Wei WANG Pengwei YIN Shuai 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第3期520-535,共16页
The Upper Ordovician Wufeng-Lower Silurian Longmaxi shale is widely distributed in the Sichuan Basin and its periphery,which is the key stratum for marine shale gas exploration and development(E&D)in China.Based o... The Upper Ordovician Wufeng-Lower Silurian Longmaxi shale is widely distributed in the Sichuan Basin and its periphery,which is the key stratum for marine shale gas exploration and development(E&D)in China.Based on sedimentary environment,material basis,storage space,fracability and reservoir evolution data,the reservoir characteristics of the Wufeng-Longmaxi shale and their significance for shale gas E&D are systematically compared and analyzed in this paper.The results show that(1)the depocenter of the Wufeng(WF)-Longmaxi(LM)shale gradually migrates from east to west.The high-quality shale reservoirs in the eastern Sichuan Basin are mainly siliceous shales,which are primarily distributed in the graptolite shale interval of WF2-LM5.The high-quality reservoirs in the southern Sichuan Basin are mainly calcareous-siliceous and organic-rich argillaceous shales,which are distributed in the graptolite shale interval of WF2-LM7.(2)Deep shale gas(the burial depth>3500 m)in the Sichuan Basin has high-ultrahigh pressure and superior physical properties.The organic-rich siliceous,calcareous-siliceous and organic-rich argillaceous shales have suitable reservoir properties.The marginal area of the Sichuan Basin has a higher degree of pressure relief,which leads to the argillaceous and silty shales evolving into direct cap rocks with poor reservoir/good sealing capacity.(3)Combining shale gas exploration practices and impacts of lithofacies,depth,pressure coefficient and brittle-ductile transition on the reservoir properties,it is concluded that the favorable depth interval of the Wufeng-Longmaxi shale gas is 2200~4000 m under current technical conditions.(4)Aiming at the differential reservoir properties of the Wufeng-Longmaxi shale in the Sichuan Basin and its periphery,several suggestions for future research directions and E&D of shale gas are formulated. 展开更多
关键词 shale gas reservoir physical property fracability evolution Wufeng FORMATION Longmaxi Formation Sichuan BASIN
下载PDF
Prediction of brittleness based on anisotropic rock physics model for kerogen-rich shale 被引量:4
15
作者 Qian Ke-Ran He Zhi-Liang +2 位作者 Chen Ye-Quan Liu Xi-Wu Li Xiang-Yang 《Applied Geophysics》 SCIE CSCD 2017年第4期463-479,620,共18页
The construction of a shale rock physics model and the selection of an appropriate brittleness index (B/) are two significant steps that can influence the accuracy of brittleness prediction. On one hand, the existin... The construction of a shale rock physics model and the selection of an appropriate brittleness index (B/) are two significant steps that can influence the accuracy of brittleness prediction. On one hand, the existing models of kerogen-rich shale are controversial, so a reasonable rock physics model needs to be built. On the other hand, several types of equations already exist for predicting the BI whose feasibility needs to be carefully considered. This study constructed a kerogen-rich rock physics model by performing the self- consistent approximation and the differential effective medium theory to model intercoupled clay and kerogen mixtures. The feasibility of our model was confirmed by comparison with classical models, showing better accuracy. Templates were constructed based on our model to link physical properties and the BL Different equations for the BI had different sensitivities, making them suitable for different types of formations. Equations based on Young's Modulus were sensitive to variations in lithology, while those using Lame's Coefficients were sensitive to porosity and pore fluids. Physical information must be considered to improve brittleness prediction. 展开更多
关键词 Rock physics modeling brittleness shale ANISOTROPY
下载PDF
Numerical simulation of hydraulic fracture propagation in laminated shale reservoirs 被引量:5
16
作者 ZHOU Tong WANG Haibo +3 位作者 LI Fengxia LI Yuanzhao ZOU Yushi ZHANG Chi 《Petroleum Exploration and Development》 2020年第5期1117-1130,共14页
The main area of the Jiaoshiba anticline of the Fuling shale gas field was taken as the research object,laboratory rock mechanical experiments and direct shear experiments were conducted to clarify the mechanical anis... The main area of the Jiaoshiba anticline of the Fuling shale gas field was taken as the research object,laboratory rock mechanical experiments and direct shear experiments were conducted to clarify the mechanical anisotropy characteristics and parameters of rock samples with rich beddings.Based on the experimental results,a 3D fracture propagation model of the target reservoir taking mechanical anisotropy,weak bedding plane and vertical stress difference into account was established by the discrete element method to analyze distribution patterns of hydraulic fractures under different bedding densities,mechanical properties,and fracturing engineering parameters(including perforation clusters,injection rates and fracturing fluid viscosity).The research results show that considering the influence of the weak bedding plane and longitudinal stress difference,the interlayer stress difference 3–4 MPa in the study area can control the fracture height within the zone of stress barrier,and the fracture height is less than 40 m.If the influence of the weak bedding plane is not considered,the simulation result of fracture height is obviously higher.Although the opening of high-density bedding fractures increases the complexity of hydraulic fractures,it significantly limited the propagation of fracture height.By reducing the number of clusters,increasing the injection rate,and increasing the volume and proportion of high-viscosity fracturing fluid in the pad stage,the restriction on fracture height due to the bedding plane and vertical stress difference can be reduced,and the longitudinal propagation of fractures can be promoted.The fracture propagation model was used to simulate one stage of Well A in Fuling shale gas field,and the simulation results were consistent with the micro-seismic monitoring results. 展开更多
关键词 shale LAMINA hydraulic fracturing fracture propagation law longitudinal stress difference Jiaoshiba anticline shale gas reservoir
下载PDF
Carbon Dioxide Storage and Sequestration in Unconventional Shale Reservoirs 被引量:2
17
作者 S. Sina Hosseini Boosari Umut Aybar Mohammad O. Eshkalak 《Journal of Geoscience and Environment Protection》 2015年第1期7-15,共9页
Carbon Dioxide (CO2) storage and sequestration in unconventional shale resources has been attracting interest since last couple of years due to the very unique characteristics of such formations have made them a feasi... Carbon Dioxide (CO2) storage and sequestration in unconventional shale resources has been attracting interest since last couple of years due to the very unique characteristics of such formations have made them a feasible option for this object. Shale formations are found all around the world and the conventional assets are easily accessible, and also the huge move of operators toward developing unconventional reservoirs during past years leaves many of such formations ready for sequestering CO2. Today, the use of long horizontal wells that are drilled on a pad has the lowest amount of environmental footprint in which for storage and sequestration purpose also provides much more underground pore spaces available for CO2. In this paper we study the state of the art of the technology of CO2 storage and sequestration and provide different and fresh look for its complex phenomena from a mathematical modeling point of view. Moreover, we hope this study provides valuable insights into the use of depleted shale gas reservoirs for carbon sequestration, which as a result, a cleaner atmosphere will be achieved for the life of our next generations. Also, we present that the depleted shale gas reservoirs are very adequate for this purpose as they already have much of the infrastructure required to perform CO2 injection available in sites. 展开更多
关键词 Carbon Dioxide SEQUESTRATION shale reservoirS Modeling and Simulation CLEAN Environment
下载PDF
Effect of Shale Reservoir Characteristics on Shale Oil Movability in the Lower Third Member of the Shahejie Formation, Zhanhua Sag
18
作者 NING Chuanxiang MA Zhongliang +5 位作者 JIANG Zhenxue SU Siyuan LI Tingwei ZHENG Lunju WANG Guozhen LI Fengxun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第2期352-363,共12页
To reveal the effect of shale reservoir characteristics on the movability of shale oil and its action mechanism in the lower third member of the Shahejie Formation(Es3l), samples with different features were selected ... To reveal the effect of shale reservoir characteristics on the movability of shale oil and its action mechanism in the lower third member of the Shahejie Formation(Es3l), samples with different features were selected and analyzed using N2 adsorption, high-pressure mercury injection capillary pressure(MICP), nuclear magnetic resonance(NMR), high-speed centrifugation, and displacement image techniques. The results show that shale pore structure characteristics control shale oil movability directly. Movable oil saturation has a positive relationship with pore volume for radius > 2 μm, as larger pores often have higher movable oil saturation, indicating that movable oil is present in relatively larger pores. The main reasons for this are as follows. The relatively smaller pores often have oil-wetting properties because of organic matter, which has an unfavorable effect on the flow of oil, while the relatively larger pores are often wetted by water, which is helpful to shale oil movability. The rich surface provided by the relatively smaller pores is beneficial to the adsorption of immovable oil. Meanwhile, the relatively larger pores create significant pore volume for movable oil. Moreover, the larger pores often have good pore connectivity. Pores and fractures are interconnected to form a complex fracture network, which provides a good permeability channel for shale oil flow. The smaller pores are mostly distributed separately;thus, they are not conducive to the flow of shale oil. The mineral composition and fabric macroscopically affect the movability of shale oil. Calcite plays an active role in shale oil movability by increasing the brittleness of shale and is more likely to form micro-cracks under the same stress background. Clay does not utilize shale oil flow because of its large specific surface area and its block effect. The bedding structure increases the large-scale storage space and improves the connectivity of pores at different scales, which is conducive to the movability of shale oil. 展开更多
关键词 shale oil MOVABILITY shale reservoirS pore structure characteristics LOWER THIRD MEMBER of the Shahejie Formation
下载PDF
Method and practice of deep favorable shale reservoirs prediction based on machine learning
19
作者 CHENG Bingjie XU Tianji +3 位作者 LUO Shiyi CHEN Tianjie LI Yongsheng TANG Jianming 《Petroleum Exploration and Development》 CSCD 2022年第5期1056-1068,共13页
A set of methods for predicting the favorable reservoir of deep shale gas based on machine learning is proposed through research of parameter correlation feature analysis principle, intelligent prediction method based... A set of methods for predicting the favorable reservoir of deep shale gas based on machine learning is proposed through research of parameter correlation feature analysis principle, intelligent prediction method based on convolution neural network(CNN), and integrated fusion characterization method based on kernel principal component analysis(KPCA) nonlinear dimension reduction principle.(1) High-dimensional correlation characteristics of core and logging data are analyzed based on the Pearson correlation coefficient.(2) The nonlinear dimension reduction method of KPCA is used to characterize complex high-dimensional data to efficiently and accurately understand the core and logging response laws to favorable reservoirs.(3) CNN and logging data are used to train and verify the model similar to the underground reservoir.(4) CNN and seismic data are used to intelligently predict favorable reservoir parameters such as organic carbon content, gas content, brittleness and in-situ stress to effectively solve the problem of nonlinear and complex feature extraction in reservoir prediction.(5) KPCA is used to eliminate complex redundant information, mine big data characteristics of favorable reservoirs, and integrate and characterize various parameters to comprehensively evaluate reservoirs. This method has been used to predict the spatial distribution of favorable shale reservoirs in the Ordovician Wufeng Formation to the Silurian Longmaxi Formation of the Weirong shale gas field in the Sichuan Basin, SW China. The predicted results are highly consistent with the actual core, logging and productivity data, proving that this method can provide effective support for the exploration and development of deep shale gas. 展开更多
关键词 Sichuan Basin Ordovician-Silurian shale gas reservoir prediction machine learning convolution neural network kernel principal component analysis
下载PDF
Modeling and Simulation of Natural Gas Production from Unconventional Shale Reservoirs
20
作者 Gary Feast S. Sina Hosseini Boosari +3 位作者 Kim Wu John Walton Zufang Cheng Bao Chen 《International Journal of Clean Coal and Energy》 2015年第2期23-32,共10页
Modeling and simulation of unconventional reservoirs are much more complicated than the conventional reservoir modeling, because of their complex flow characteristics. Mechanisms, which control the flow in the reservo... Modeling and simulation of unconventional reservoirs are much more complicated than the conventional reservoir modeling, because of their complex flow characteristics. Mechanisms, which control the flow in the reservoir, are still under the investigation of researchers. However, it is important to investigate applications of mechanisms which are present to our knowledge. This paper presents the theory and applications of flow mechanisms in unconventional reservoir modeling. It is a well-known fact that most of the reservoir flow problems are non-linear due to pressure dependency of particular parameters. It is also widely accepted that fully numerical solutions are costly both computational and time wise. Therefore, the presented model in this paper follows semi-analytical solution methods. Gas adsorption in unconventional reservoirs is the major pressure dependent mechanism;in addition existence of natural fractures is also taken considerable attention. This paper aims to investigate combined effect of existence of natural fractures gas adsorption, and gas slippage effect while keeping the computational effort in acceptable range. Unlike the existing literature (Langmuir is widely used), BET multi-layer isotherm employed in this paper for gas adsorption modeling. A modified dual porosity modeling is used for natural fracture and gas slippage effect modeling. For model verification purposes a history matched is performed with real field data from Marcellus shale. The proposed model in this paper shows a good agreement with the field data. It is observed that BET isotherm models early time production performance more accurately than Langmuir isotherm. It is also concluded that gas adsorption significantly improves the production performances of unconventional reservoirs, with natural fractures. In addition, gas slippage has a slight effect in long term production. 展开更多
关键词 BET DESORPTION ISOTHERM shale Gas reservoirS Hydraulic FRACTURING
下载PDF
上一页 1 2 143 下一页 到第
使用帮助 返回顶部