A method of analyzing the stability of twin shallow tunnels was presented using both limit analysis with nonlinear failure criterion and reliability theory.In the condition of nonlinear failure criterion,the critical ...A method of analyzing the stability of twin shallow tunnels was presented using both limit analysis with nonlinear failure criterion and reliability theory.In the condition of nonlinear failure criterion,the critical clear distancesof twin shallow tunnels were obtained by analyzing the change of surrounding pressure.A reliability model was established based on limit state equation,and the failure probability was solved by virtue of Monte Carlo method.Safety factor and corresponding clear distance of different safety levels were obtained by introducing a target reliability index.The scope of clear distance for different safety levels is described,which can be used as a supplement and improvement to the design codes of tunnels.展开更多
According to the interaction of three shallow tunnels with large section, the analytical solution to rock pressure has been derived and discussed. The load model is given when the bilateral tunnels are excavated. Acco...According to the interaction of three shallow tunnels with large section, the analytical solution to rock pressure has been derived and discussed. The load model is given when the bilateral tunnels are excavated. According to the model, the stresses of three tunnels and single tunnel are calculated and compared to analyze the distribution characteristics, where the stresses are influenced by controlling factors of clear distance, covering depth and inclination angle of ground surface. The results show that, in general, the bias distribution is more serious. Therefore, it is significant to settle down the load model of three shallow tunnels so as to determine the measure of reinforcement and design the structure of support. The model and results can be used as a theoretical basis in designation and further research of the three shallow tunnels.展开更多
Based on nonlinear Mohr-Coulomb failure criterion, the analytical solutions of stability number and supporting force on twin shallow tunnels were derived using upper bound theorem of limit analysis. The optimized solu...Based on nonlinear Mohr-Coulomb failure criterion, the analytical solutions of stability number and supporting force on twin shallow tunnels were derived using upper bound theorem of limit analysis. The optimized solutions were obtained by the technique of sequential quadratic programming. When nonlinear coefficient equals 1 and internal friction angle equals 0, the nonlinear Mohr-Coulomb failure criterion degenerates into linear failure criterion. The calculated results of stability number in this work were compared with previous results, and the agreement verifies the effectiveness of the present method. Under the condition of nonlinear Mohr-Coulomb failure criterion, the results show that the supporting force on twin shallow tunnels obviously increases when the nonlinear coefficient, burial depth, ground load or pore water pressure coefficients increase. When the clear distance is 0.5to 1.0 times the diameter of tunnel, the supporting force of twin shallow tunnels reaches its maximum value, which means that the tunnels are the easiest to collapse. While the clear distance increases to 3.5 times the diameter of tunnel, the calculation for twin shallow tunnels can be carried out by the method for independent single shallow tunnel. Therefore, 3.5 times the diameter of tunnel serves as a critical value to determine whether twin shallow tunnels influence each other. In designing twin shallow tunnels,appropriate clear distance value must be selected according to its change rules and actual topographic conditions, meanwhile, the influences of nonlinear failure criterion of soil materials and pore water must be completely considered. During the excavation process, supporting system should be intensified at the positions of larger burial depth or ground load to avoid collapses.展开更多
依托南通轨道交通1号线孩环区间(孩儿巷站—环城东路站)三线并行小净距盾构隧道工程,采用离散元法(Discrete Element Method,DEM)—有限差分法(Finite Difference Method,FDM)耦合的数值仿真,分析桩基础长度、桩隧距对桩基础变形的影响...依托南通轨道交通1号线孩环区间(孩儿巷站—环城东路站)三线并行小净距盾构隧道工程,采用离散元法(Discrete Element Method,DEM)—有限差分法(Finite Difference Method,FDM)耦合的数值仿真,分析桩基础长度、桩隧距对桩基础变形的影响。结果表明:三线小净距隧道施工会引起邻近桩基沉降;桩底和隧道顶部位于同一深度时,桩基水平位移最大值出现在桩底,桩基变形以倾斜为主;桩底与隧道底部位于同一深度和桩底位于隧道底部以下时桩基水平位移最大值出现在隧道轴线位置,桩基变形以弯曲为主,但桩底位于隧道底部以下时桩基对隧道施工表现出更强的敏感性;三种长度的桩基最大拉应力所在截面靠近隧道一侧和远离隧道一侧拉压应力状态均完全相反;桩长一定时,随桩隧距增大,桩基的沉降、最大水平位移、最大轴向拉应力均减小。展开更多
基金Project(51378514)supported by the National Natural Science Foundation of China
文摘A method of analyzing the stability of twin shallow tunnels was presented using both limit analysis with nonlinear failure criterion and reliability theory.In the condition of nonlinear failure criterion,the critical clear distancesof twin shallow tunnels were obtained by analyzing the change of surrounding pressure.A reliability model was established based on limit state equation,and the failure probability was solved by virtue of Monte Carlo method.Safety factor and corresponding clear distance of different safety levels were obtained by introducing a target reliability index.The scope of clear distance for different safety levels is described,which can be used as a supplement and improvement to the design codes of tunnels.
基金Projects(2013CB036004, 2011CB013800) supported by the National Basic Research Program of ChinaProject(51178468, 50908234) supported by the National Natural Science Foundation of ChinaProject(2011G103-B) supported by the Science and Technology Development of Railway in China
文摘According to the interaction of three shallow tunnels with large section, the analytical solution to rock pressure has been derived and discussed. The load model is given when the bilateral tunnels are excavated. According to the model, the stresses of three tunnels and single tunnel are calculated and compared to analyze the distribution characteristics, where the stresses are influenced by controlling factors of clear distance, covering depth and inclination angle of ground surface. The results show that, in general, the bias distribution is more serious. Therefore, it is significant to settle down the load model of three shallow tunnels so as to determine the measure of reinforcement and design the structure of support. The model and results can be used as a theoretical basis in designation and further research of the three shallow tunnels.
基金Project(2013CB036004)supported by the National Basic Research Program of ChinaProject(51378510)supported by the NationalNatural Science Foundation of ChinaProject(CX2013B077)supported by Hunan Provincial Innovation Foundation for Postgraduate,China
文摘Based on nonlinear Mohr-Coulomb failure criterion, the analytical solutions of stability number and supporting force on twin shallow tunnels were derived using upper bound theorem of limit analysis. The optimized solutions were obtained by the technique of sequential quadratic programming. When nonlinear coefficient equals 1 and internal friction angle equals 0, the nonlinear Mohr-Coulomb failure criterion degenerates into linear failure criterion. The calculated results of stability number in this work were compared with previous results, and the agreement verifies the effectiveness of the present method. Under the condition of nonlinear Mohr-Coulomb failure criterion, the results show that the supporting force on twin shallow tunnels obviously increases when the nonlinear coefficient, burial depth, ground load or pore water pressure coefficients increase. When the clear distance is 0.5to 1.0 times the diameter of tunnel, the supporting force of twin shallow tunnels reaches its maximum value, which means that the tunnels are the easiest to collapse. While the clear distance increases to 3.5 times the diameter of tunnel, the calculation for twin shallow tunnels can be carried out by the method for independent single shallow tunnel. Therefore, 3.5 times the diameter of tunnel serves as a critical value to determine whether twin shallow tunnels influence each other. In designing twin shallow tunnels,appropriate clear distance value must be selected according to its change rules and actual topographic conditions, meanwhile, the influences of nonlinear failure criterion of soil materials and pore water must be completely considered. During the excavation process, supporting system should be intensified at the positions of larger burial depth or ground load to avoid collapses.
文摘依托南通轨道交通1号线孩环区间(孩儿巷站—环城东路站)三线并行小净距盾构隧道工程,采用离散元法(Discrete Element Method,DEM)—有限差分法(Finite Difference Method,FDM)耦合的数值仿真,分析桩基础长度、桩隧距对桩基础变形的影响。结果表明:三线小净距隧道施工会引起邻近桩基沉降;桩底和隧道顶部位于同一深度时,桩基水平位移最大值出现在桩底,桩基变形以倾斜为主;桩底与隧道底部位于同一深度和桩底位于隧道底部以下时桩基水平位移最大值出现在隧道轴线位置,桩基变形以弯曲为主,但桩底位于隧道底部以下时桩基对隧道施工表现出更强的敏感性;三种长度的桩基最大拉应力所在截面靠近隧道一侧和远离隧道一侧拉压应力状态均完全相反;桩长一定时,随桩隧距增大,桩基的沉降、最大水平位移、最大轴向拉应力均减小。