The impact energy prediction model of low carbon steel was investigated based on industrial data. A three-layer neural network, extreme learning machine, and deep neural network were compared with different activation...The impact energy prediction model of low carbon steel was investigated based on industrial data. A three-layer neural network, extreme learning machine, and deep neural network were compared with different activation functions, structure parameters, and training functions. Bayesian optimization was used to determine the optimal hyper-parameters of the deep neural network. The model with the best performance was applied to investigate the importance of process parameter variables on the impact energy of low carbon steel. The results show that the deep neural network obtains better prediction results than those of a shallow neural network because of the multiple hidden layers improving the learning ability of the model. Among the models, the Bayesian optimization deep neural network achieves the highest correlation coefficient of 0.9536, the lowest mean absolute relative error of 0.0843, and the lowest root mean square error of 17.34 J for predicting the impact energy of low carbon steel. Among the variables, the main factors affecting the impact energy of low carbon steel with a final thickness of7.5 mm are the thickness of the original slab, the thickness of intermediate slab, and the rough rolling exit temperature from the specific hot rolling production line.展开更多
Nowadays in the medicalfield,imaging techniques such as Optical Coherence Tomography(OCT)are mainly used to identify retinal diseases.In this paper,the Central Serous Chorio Retinopathy(CSCR)image is analyzed for vari...Nowadays in the medicalfield,imaging techniques such as Optical Coherence Tomography(OCT)are mainly used to identify retinal diseases.In this paper,the Central Serous Chorio Retinopathy(CSCR)image is analyzed for various stages and then compares the difference between CSCR before as well as after treatment using different application methods.Thefirst approach,which was focused on image quality,improves medical image accuracy.An enhancement algorithm was implemented to improve the OCT image contrast and denoise purpose called Boosted Anisotropic Diffusion with an Unsharp Masking Filter(BADWUMF).The classifier used here is tofigure out whether the OCT image is a CSCR case or not.150 images are checked for this research work(75 abnormal from Optical Coherence Tomography Image Retinal Database,in-house clinical database,and 75 normal images).This article explicitly decides that the approaches suggested aid the ophthalmologist with the precise retinal analysis and hence the risk factors to be minimized.The total precision is 90 percent obtained from the Two Class Support Vector Machine(TCSVM)classifier and 93.3 percent is obtained from Shallow Neural Network with the Powell-Beale(SNNWPB)classifier using the MATLAB 2019a program.展开更多
基金financially supported by the National Natural Science Foundation of China (No.U1960202)the China Post-doctoral Science Foundation funded Projects (No.2019M651467)the Natural Science Foundation Joint Fund Project of Liaoning Province, China (No.2019-KF-2506)。
文摘The impact energy prediction model of low carbon steel was investigated based on industrial data. A three-layer neural network, extreme learning machine, and deep neural network were compared with different activation functions, structure parameters, and training functions. Bayesian optimization was used to determine the optimal hyper-parameters of the deep neural network. The model with the best performance was applied to investigate the importance of process parameter variables on the impact energy of low carbon steel. The results show that the deep neural network obtains better prediction results than those of a shallow neural network because of the multiple hidden layers improving the learning ability of the model. Among the models, the Bayesian optimization deep neural network achieves the highest correlation coefficient of 0.9536, the lowest mean absolute relative error of 0.0843, and the lowest root mean square error of 17.34 J for predicting the impact energy of low carbon steel. Among the variables, the main factors affecting the impact energy of low carbon steel with a final thickness of7.5 mm are the thickness of the original slab, the thickness of intermediate slab, and the rough rolling exit temperature from the specific hot rolling production line.
文摘Nowadays in the medicalfield,imaging techniques such as Optical Coherence Tomography(OCT)are mainly used to identify retinal diseases.In this paper,the Central Serous Chorio Retinopathy(CSCR)image is analyzed for various stages and then compares the difference between CSCR before as well as after treatment using different application methods.Thefirst approach,which was focused on image quality,improves medical image accuracy.An enhancement algorithm was implemented to improve the OCT image contrast and denoise purpose called Boosted Anisotropic Diffusion with an Unsharp Masking Filter(BADWUMF).The classifier used here is tofigure out whether the OCT image is a CSCR case or not.150 images are checked for this research work(75 abnormal from Optical Coherence Tomography Image Retinal Database,in-house clinical database,and 75 normal images).This article explicitly decides that the approaches suggested aid the ophthalmologist with the precise retinal analysis and hence the risk factors to be minimized.The total precision is 90 percent obtained from the Two Class Support Vector Machine(TCSVM)classifier and 93.3 percent is obtained from Shallow Neural Network with the Powell-Beale(SNNWPB)classifier using the MATLAB 2019a program.