A new wave modeling method and a level of detail (LOD) scheme are proposed for ocean surface simulation in this paper.The modeling method describes ocean wave by modifying the sine wave,and gets wave direction at any ...A new wave modeling method and a level of detail (LOD) scheme are proposed for ocean surface simulation in this paper.The modeling method describes ocean wave by modifying the sine wave,and gets wave direction at any position of ocean surface under any ocean floor conditions using wave num decomposition.LOD scheme is proposed based on quad-tree block,which simplifies the ocean surface regular mesh and realizes the real-time rendering of large-scale ocean surface.Experimental results show that these methods can get realistic effect and fast rendering speed,which are appropriated to the applications of 3D games and battlefield simulation.展开更多
Abstract. Due to the incapability of high frequency surface wave radar (HFSWR) to detect undercurrent parameters, a new algorithm is proposed to apply a three-dimensional (3D) nonlinear barotropic shallow sea and ...Abstract. Due to the incapability of high frequency surface wave radar (HFSWR) to detect undercurrent parameters, a new algorithm is proposed to apply a three-dimensional (3D) nonlinear barotropic shallow sea and continental shelf model in coordinate system to the inversion of undercurrent. The calculation domain of this model is the area detected by HFSWR. Considering the benthal topography of the detected area and the ocean dynamic parameters, such as surface current, wind and wave detected by HFSWR, the relation between surface current and undercurrent is established in this model, Accordingly, the undercurrent parameters of corresponding area are obtained. The inversion results agree with the law of ocean dynamics and reproduce the movement of undercurrent.展开更多
In this work,we apply an efficient analytical algorithm namely homotopy perturbation Sumudu transform method(HPSTM)to find the exact and approximate solutions of linear and nonlinear time-fractional regularized long w...In this work,we apply an efficient analytical algorithm namely homotopy perturbation Sumudu transform method(HPSTM)to find the exact and approximate solutions of linear and nonlinear time-fractional regularized long wave(RLW)equations.The RLW equations describe the nature of ion acoustic waves in plasma and shallow water waves in oceans.The derived results are very significant and imperative for explaining various physical phenomenons.The suggested method basically demonstrates how two efficient techniques,the Sumudu transform scheme and the homotopy perturbation technique can be integrated and applied to find exact and approximate solutions of linear and nonlinear time-fractional RLW equations.The nonlinear expressions can be simply managed by application of He’s polynomials.The result shows that the HPSTM is very powerful,efficient,and simple and it eliminates the round-off errors.It has been observed that the proposed technique can be widely employed to examine other real world problems.展开更多
文摘A new wave modeling method and a level of detail (LOD) scheme are proposed for ocean surface simulation in this paper.The modeling method describes ocean wave by modifying the sine wave,and gets wave direction at any position of ocean surface under any ocean floor conditions using wave num decomposition.LOD scheme is proposed based on quad-tree block,which simplifies the ocean surface regular mesh and realizes the real-time rendering of large-scale ocean surface.Experimental results show that these methods can get realistic effect and fast rendering speed,which are appropriated to the applications of 3D games and battlefield simulation.
文摘Abstract. Due to the incapability of high frequency surface wave radar (HFSWR) to detect undercurrent parameters, a new algorithm is proposed to apply a three-dimensional (3D) nonlinear barotropic shallow sea and continental shelf model in coordinate system to the inversion of undercurrent. The calculation domain of this model is the area detected by HFSWR. Considering the benthal topography of the detected area and the ocean dynamic parameters, such as surface current, wind and wave detected by HFSWR, the relation between surface current and undercurrent is established in this model, Accordingly, the undercurrent parameters of corresponding area are obtained. The inversion results agree with the law of ocean dynamics and reproduce the movement of undercurrent.
文摘In this work,we apply an efficient analytical algorithm namely homotopy perturbation Sumudu transform method(HPSTM)to find the exact and approximate solutions of linear and nonlinear time-fractional regularized long wave(RLW)equations.The RLW equations describe the nature of ion acoustic waves in plasma and shallow water waves in oceans.The derived results are very significant and imperative for explaining various physical phenomenons.The suggested method basically demonstrates how two efficient techniques,the Sumudu transform scheme and the homotopy perturbation technique can be integrated and applied to find exact and approximate solutions of linear and nonlinear time-fractional RLW equations.The nonlinear expressions can be simply managed by application of He’s polynomials.The result shows that the HPSTM is very powerful,efficient,and simple and it eliminates the round-off errors.It has been observed that the proposed technique can be widely employed to examine other real world problems.