目前网购平台的搜索对象仍以文字为主,致使搜索效率低下。文章以广受女性欢迎的浅口高跟鞋为例,对利用图片进行款式自动识别的技术进行探索。以网购平台上收集的3类浅口高跟鞋(粗跟、细跟、坡跟)共900张图片(每款随机抽取200张作为训练...目前网购平台的搜索对象仍以文字为主,致使搜索效率低下。文章以广受女性欢迎的浅口高跟鞋为例,对利用图片进行款式自动识别的技术进行探索。以网购平台上收集的3类浅口高跟鞋(粗跟、细跟、坡跟)共900张图片(每款随机抽取200张作为训练集,剩余100张作为测试集)为研究对象,然后利用深度学习中的Faster R CNN检测模型对浅口高跟鞋款式进行训练和测试识别。结果表明:无论以鞋跟为目标区域,还是以整只鞋为检测区域,利用该模型都能对浅口高跟鞋图像实现良好的款式识别,准确率可达94%以上,且不用经过人为特征提取,方便可行;Faster R CNN检测模型的总体精度和检测速度比R CNN、SPP-Net、FAST R CNN更优。展开更多
文摘目前网购平台的搜索对象仍以文字为主,致使搜索效率低下。文章以广受女性欢迎的浅口高跟鞋为例,对利用图片进行款式自动识别的技术进行探索。以网购平台上收集的3类浅口高跟鞋(粗跟、细跟、坡跟)共900张图片(每款随机抽取200张作为训练集,剩余100张作为测试集)为研究对象,然后利用深度学习中的Faster R CNN检测模型对浅口高跟鞋款式进行训练和测试识别。结果表明:无论以鞋跟为目标区域,还是以整只鞋为检测区域,利用该模型都能对浅口高跟鞋图像实现良好的款式识别,准确率可达94%以上,且不用经过人为特征提取,方便可行;Faster R CNN检测模型的总体精度和检测速度比R CNN、SPP-Net、FAST R CNN更优。