The static behavior of piezoelectric circular spherical shallow shells under both electrical and mechanical loads is studied by using the differential quadrature element method (DQEM). Geometrical nonlinearity effect ...The static behavior of piezoelectric circular spherical shallow shells under both electrical and mechanical loads is studied by using the differential quadrature element method (DQEM). Geometrical nonlinearity effect is considered. Detailed formulations and procedures are given for the first time. Several examples are analyzed and accurate results are obtained by the DQEM. Based on the results in this paper, one may conclude that the DQEM is a useful tool for obtaining solutions of structural elements. It can be seen that the shell shape may be theore tically controlled and snap through may occur when the applied voltage reaches a critical value even without mechanical load for certain geometric configurations.展开更多
If the parameter , which measures the thickness-to-rise of the sliell, is small, the axismnnetrie polar dimpling oj .shallow .spherical .shell due to quadratic pressure distribution i.s dynamic instability, i.e., a sm...If the parameter , which measures the thickness-to-rise of the sliell, is small, the axismnnetrie polar dimpling oj .shallow .spherical .shell due to quadratic pressure distribution i.s dynamic instability, i.e., a small perturbation can change il to an asymmetric polar dimple mode. In two cases, the problem can be reduced to an eigenvalue problem where T can approximately be reduced to a Sturm-Liouvi/le operator if The existence of at least one real eigenvalue of T, which means that the axisyntmetric polar dimpling is dynamically unstable, i.s proved by spectral theorem or Hilbert theorem. Furthermore, an eigenfunction, which represents one of the asymmetric modes of the unstable dimple shell, belonging to an eigenvalue of T, is found.展开更多
In this paper, the nonlinear equations of motion for shallow spherical shells with axisymmetric deformation including transverse shear are derived. The nonlinear static and dynamic response and dynamic buckling of sha...In this paper, the nonlinear equations of motion for shallow spherical shells with axisymmetric deformation including transverse shear are derived. The nonlinear static and dynamic response and dynamic buckling of shallow spherical shells with circular hole on elastically restrained edge are investigated. By using the orthogonal point collocation method for space and Newmarh-β scheme for time, the displacement functions are separated and the nonlinear differential equations are replaced by linear algebraic equations to seek solutions. The numerical results are presented for different cases and compared with available data.展开更多
This paper deals with nonlinear free vibration of reticulated shallow spherical shells taking into account the effect of transverse shear deformation. The shell is formed by beam members placed in two orthogonal direc...This paper deals with nonlinear free vibration of reticulated shallow spherical shells taking into account the effect of transverse shear deformation. The shell is formed by beam members placed in two orthogonal directions. The nondimensional fundamental governing equations in terms of the deflection, rotational angle, and force function are presented, and the solution for the nonlinear free frequency is derived by using the asymptotic iteration method. The asymptotic solution can be used readily to perform the parameter analysis of such space structures with numerous geometrical and material parameters. Numerical examples are given to illustrate the characteristic amplitudefrequency relation and softening and hardening nonlinear behaviors as well as the effect of transverse shear on the linear and nonlinear frequencies of reticulated shells and plates.展开更多
The nonlinear thermal buckling of symmetrically laminated cylindrically orthotropic shallow spherical shell under temperature field and uniform pressure including transverse shear is studied. Also the analytic formula...The nonlinear thermal buckling of symmetrically laminated cylindrically orthotropic shallow spherical shell under temperature field and uniform pressure including transverse shear is studied. Also the analytic formulas for determining the critical buckling loads under different temperature fields are obtained by using the modified iteration method. The effect of transverse shear deformation and different temperature fields on critical buckling load is discussed.展开更多
The problem of axisymmetric nonlinear vibration for shallow thin spherical and conical shells when temperature and strain fields are coupled is studied. Based on the large deflection theories of von Krmn and the theor...The problem of axisymmetric nonlinear vibration for shallow thin spherical and conical shells when temperature and strain fields are coupled is studied. Based on the large deflection theories of von Krmn and the theory of thermoelasticity, the whole governing equations and their simplified type are derived. The time-spatial variables are separated by Galerkin's technique, thus reducing the governing equations to a system of time-dependent nonlinear ordinary differential equation. By means of regular perturbation method and multiple-scales method, the first-order approximate analytical solution for characteristic relation of frequency vs amplitude parameters along with the decay rate of amplitude are obtained, and the effects of different geometric parameters and coupling factors as well as boundary conditions on thermoelastically coupled nonlinear vibration behaviors are discussed.展开更多
In this paper, the axisymmetric nonlinear free vibration problems of cylindrically orthotropic shallow thin spherical and conical shells under uniformly distributed static loads are studied by using MWR and Lindstedt-...In this paper, the axisymmetric nonlinear free vibration problems of cylindrically orthotropic shallow thin spherical and conical shells under uniformly distributed static loads are studied by using MWR and Lindstedt-Poincare perturbation method, from which, the characteristic relation between frequency ratio and amplitude is obtained. The effects of static loads, geometric and material parameters on vibrational behavior of shells are also discussed.展开更多
A set of nonlinearly coupled algebraic and differential eigenvalue equations of nonlinear axisymmetric free vibration of orthotropic shallow thin spherical and conical shells are formulated following an assumed time-m...A set of nonlinearly coupled algebraic and differential eigenvalue equations of nonlinear axisymmetric free vibration of orthotropic shallow thin spherical and conical shells are formulated following an assumed time-mode approach suggested in this paper. Analytic solutions are presented and an asymptotic relation for the amplitude-frequency response of the shells is derived. The effects of geometrical and material parameters on vibrations of the shells are investigated.展开更多
Nonlinear stability of sensor elastic element- corrugated shallow spherical shell in coupled multi-field is studied. With the equivalent orthotropic parameter obtairled by the author, the corrugated shallow spherical ...Nonlinear stability of sensor elastic element- corrugated shallow spherical shell in coupled multi-field is studied. With the equivalent orthotropic parameter obtairled by the author, the corrugated shallow spherical shell is considered as an orthotropic shallow spherical shell, and geometrical nonlinearity and transverse shear deformation are taken into account. Nonlinear governing equations are obtained. The critical load is obtained using a modified iteration method. The effect of temperature variation and shear rigidity variation on stability is analyzed.展开更多
Based on the variational equation of the nonlinear bending theory of doubledeck reticulated shallow shells, equations of large deflection and boundary conditions for a double-deck reticulated circular shallow spherica...Based on the variational equation of the nonlinear bending theory of doubledeck reticulated shallow shells, equations of large deflection and boundary conditions for a double-deck reticulated circular shallow spherical shell under a uniformly distributed pressure are derived by using coordinate transformation means and the principle of stationary complementary energy. The characteristic relationship and critical buckling pressure for the shell with two types of boundary conditions are obtained by taking the modified iteration method. Effects of geometrical parameters on the buckling behavior are also discussed.展开更多
The idea of quasi-Green's function method is clarified by considering a free vibration problem of the simply-supported trapezoidal shallow spherical shell. A quasi- Green's function is established by using the funda...The idea of quasi-Green's function method is clarified by considering a free vibration problem of the simply-supported trapezoidal shallow spherical shell. A quasi- Green's function is established by using the fundamental solution and boundary equation of the problem. This function satisfies the homogeneous boundary condition of the prob- lem. The mode shape differential equations of the free vibration problem of a simply- supported trapezoidal shallow spherical shell are reduced to two simultaneous Fredholm integral equations of the second kind by the Green formula. There are multiple choices for the normalized boundary equation. Based on a chosen normalized boundary equa- tion, a new normalized boundary equation can be established such that the irregularity of the kernel of integral equations is overcome. Finally, natural frequency is obtained by the condition that there exists a nontrivial solution to the numerically discrete algebraic equations derived from the integral equations. Numerical results show high accuracy of the quasi-Green's function method.展开更多
In this paper, to begin with. the nonlinear differential equations of a truncaled shallow spherical shell with variable thickness under uniformal distributed load are linearized by step-by-step loading method. The lin...In this paper, to begin with. the nonlinear differential equations of a truncaled shallow spherical shell with variable thickness under uniformal distributed load are linearized by step-by-step loading method. The linear differential equations can be solved by spline collocanon method. Critical loads have been obtained accordingly.展开更多
The idea of Green quasifunction method is clarified in detail by considering a free vibration problem of simply-supported trapezoidal shallow spherical shell on Winkler foundation.A Green quasifunction is established ...The idea of Green quasifunction method is clarified in detail by considering a free vibration problem of simply-supported trapezoidal shallow spherical shell on Winkler foundation.A Green quasifunction is established by using the fundamental solution and boundary equation of the problem.This function satisfies the homogeneous boundary condition of the problem.The mode shape differential equation of the free vibration problem of simply-supported trapezoidal shallow spherical shell on Winkler foundation is reduced to two simultaneous Fredholm integral equations of the second kind by Green formula.There are multiple choices for the normalized boundary equation.Based on a chosen normalized boundary equation, the irregularity of the kernel of integral equations is avoided.Finally, natural frequency is obtained by the condition that there exists a nontrivial solution in the numerically discrete algebraic equations derived from the integral equations.Numerical results show high accuracy of the Green quasifunction method.展开更多
文摘The static behavior of piezoelectric circular spherical shallow shells under both electrical and mechanical loads is studied by using the differential quadrature element method (DQEM). Geometrical nonlinearity effect is considered. Detailed formulations and procedures are given for the first time. Several examples are analyzed and accurate results are obtained by the DQEM. Based on the results in this paper, one may conclude that the DQEM is a useful tool for obtaining solutions of structural elements. It can be seen that the shell shape may be theore tically controlled and snap through may occur when the applied voltage reaches a critical value even without mechanical load for certain geometric configurations.
基金The Project Supported by National Natural Science Foundation of ChinaThis paper was accepted to present at ICTAM 88(Grenoble)
文摘If the parameter , which measures the thickness-to-rise of the sliell, is small, the axismnnetrie polar dimpling oj .shallow .spherical .shell due to quadratic pressure distribution i.s dynamic instability, i.e., a small perturbation can change il to an asymmetric polar dimple mode. In two cases, the problem can be reduced to an eigenvalue problem where T can approximately be reduced to a Sturm-Liouvi/le operator if The existence of at least one real eigenvalue of T, which means that the axisyntmetric polar dimpling is dynamically unstable, i.s proved by spectral theorem or Hilbert theorem. Furthermore, an eigenfunction, which represents one of the asymmetric modes of the unstable dimple shell, belonging to an eigenvalue of T, is found.
文摘In this paper, the nonlinear equations of motion for shallow spherical shells with axisymmetric deformation including transverse shear are derived. The nonlinear static and dynamic response and dynamic buckling of shallow spherical shells with circular hole on elastically restrained edge are investigated. By using the orthogonal point collocation method for space and Newmarh-β scheme for time, the displacement functions are separated and the nonlinear differential equations are replaced by linear algebraic equations to seek solutions. The numerical results are presented for different cases and compared with available data.
文摘This paper deals with nonlinear free vibration of reticulated shallow spherical shells taking into account the effect of transverse shear deformation. The shell is formed by beam members placed in two orthogonal directions. The nondimensional fundamental governing equations in terms of the deflection, rotational angle, and force function are presented, and the solution for the nonlinear free frequency is derived by using the asymptotic iteration method. The asymptotic solution can be used readily to perform the parameter analysis of such space structures with numerous geometrical and material parameters. Numerical examples are given to illustrate the characteristic amplitudefrequency relation and softening and hardening nonlinear behaviors as well as the effect of transverse shear on the linear and nonlinear frequencies of reticulated shells and plates.
基金the National Natural Science Foundation of China(No.10572054)
文摘The nonlinear thermal buckling of symmetrically laminated cylindrically orthotropic shallow spherical shell under temperature field and uniform pressure including transverse shear is studied. Also the analytic formulas for determining the critical buckling loads under different temperature fields are obtained by using the modified iteration method. The effect of transverse shear deformation and different temperature fields on critical buckling load is discussed.
文摘The problem of axisymmetric nonlinear vibration for shallow thin spherical and conical shells when temperature and strain fields are coupled is studied. Based on the large deflection theories of von Krmn and the theory of thermoelasticity, the whole governing equations and their simplified type are derived. The time-spatial variables are separated by Galerkin's technique, thus reducing the governing equations to a system of time-dependent nonlinear ordinary differential equation. By means of regular perturbation method and multiple-scales method, the first-order approximate analytical solution for characteristic relation of frequency vs amplitude parameters along with the decay rate of amplitude are obtained, and the effects of different geometric parameters and coupling factors as well as boundary conditions on thermoelastically coupled nonlinear vibration behaviors are discussed.
文摘In this paper, the axisymmetric nonlinear free vibration problems of cylindrically orthotropic shallow thin spherical and conical shells under uniformly distributed static loads are studied by using MWR and Lindstedt-Poincare perturbation method, from which, the characteristic relation between frequency ratio and amplitude is obtained. The effects of static loads, geometric and material parameters on vibrational behavior of shells are also discussed.
基金Project supported by the National Natural Science Foundation of China
文摘A set of nonlinearly coupled algebraic and differential eigenvalue equations of nonlinear axisymmetric free vibration of orthotropic shallow thin spherical and conical shells are formulated following an assumed time-mode approach suggested in this paper. Analytic solutions are presented and an asymptotic relation for the amplitude-frequency response of the shells is derived. The effects of geometrical and material parameters on vibrations of the shells are investigated.
基金Project supported by the National Natural Science Foundation of China(No.10572054)the Key Project of the National Science Foundation of China(No.11032005)
文摘Nonlinear stability of sensor elastic element- corrugated shallow spherical shell in coupled multi-field is studied. With the equivalent orthotropic parameter obtairled by the author, the corrugated shallow spherical shell is considered as an orthotropic shallow spherical shell, and geometrical nonlinearity and transverse shear deformation are taken into account. Nonlinear governing equations are obtained. The critical load is obtained using a modified iteration method. The effect of temperature variation and shear rigidity variation on stability is analyzed.
基金Project supported by the National Natural Science Foundation of China (No. 19972024)the Key Laboratory of Disaster Forecast and Control in Engineering, Ministry of Education of Chinathe Key Laboratory of Diagnosis of Fault in Engineering Structures of Guangdong Province of China
文摘Based on the variational equation of the nonlinear bending theory of doubledeck reticulated shallow shells, equations of large deflection and boundary conditions for a double-deck reticulated circular shallow spherical shell under a uniformly distributed pressure are derived by using coordinate transformation means and the principle of stationary complementary energy. The characteristic relationship and critical buckling pressure for the shell with two types of boundary conditions are obtained by taking the modified iteration method. Effects of geometrical parameters on the buckling behavior are also discussed.
文摘The idea of quasi-Green's function method is clarified by considering a free vibration problem of the simply-supported trapezoidal shallow spherical shell. A quasi- Green's function is established by using the fundamental solution and boundary equation of the problem. This function satisfies the homogeneous boundary condition of the prob- lem. The mode shape differential equations of the free vibration problem of a simply- supported trapezoidal shallow spherical shell are reduced to two simultaneous Fredholm integral equations of the second kind by the Green formula. There are multiple choices for the normalized boundary equation. Based on a chosen normalized boundary equa- tion, a new normalized boundary equation can be established such that the irregularity of the kernel of integral equations is overcome. Finally, natural frequency is obtained by the condition that there exists a nontrivial solution to the numerically discrete algebraic equations derived from the integral equations. Numerical results show high accuracy of the quasi-Green's function method.
文摘In this paper, to begin with. the nonlinear differential equations of a truncaled shallow spherical shell with variable thickness under uniformal distributed load are linearized by step-by-step loading method. The linear differential equations can be solved by spline collocanon method. Critical loads have been obtained accordingly.
基金supported by Foundation of MOE Key Laboratory of Disaster Forecast and Control in Engineering
文摘The idea of Green quasifunction method is clarified in detail by considering a free vibration problem of simply-supported trapezoidal shallow spherical shell on Winkler foundation.A Green quasifunction is established by using the fundamental solution and boundary equation of the problem.This function satisfies the homogeneous boundary condition of the problem.The mode shape differential equation of the free vibration problem of simply-supported trapezoidal shallow spherical shell on Winkler foundation is reduced to two simultaneous Fredholm integral equations of the second kind by Green formula.There are multiple choices for the normalized boundary equation.Based on a chosen normalized boundary equation, the irregularity of the kernel of integral equations is avoided.Finally, natural frequency is obtained by the condition that there exists a nontrivial solution in the numerically discrete algebraic equations derived from the integral equations.Numerical results show high accuracy of the Green quasifunction method.