期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
Coupling Effects on Gold Mineralization of Deep and Shallow Structures in the Northwestern Jiaodong Peninsula, Eastern China 被引量:42
1
作者 YANG Liqiang DENG Jun +1 位作者 WANG Qingfei ZHOU Yinghua 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2006年第3期400-411,共12页
For understanding the possible deep-seated processes and geodynamic constrains on gold mineralization, comprehensive physicochemical and geochemical studies of gold mineralization have been undertaken within the paleo... For understanding the possible deep-seated processes and geodynamic constrains on gold mineralization, comprehensive physicochemical and geochemical studies of gold mineralization have been undertaken within the paleo-lithosphere framework during the metailogenic epoch from the northwestern part of the Jiaodong Peninsula in this paper. A general image of the paleo-crust has been remained although it has been superimposed and reformed by post-metailogenic tectonic movements. The gold ore deposits occur usually in local uplifts and gradient belts featuring a turn from steep to gentle in granite-metamorphic contact zones, relative uplifts of gradient zones of the Curier isothermal interfaces, depressions of the Moho discontinuity and areas where depth contours are cut by isotherms perpendicularly. Gold mineralization and lithogenesis are characterized by high temperature, low pressure and high strength of thermal flux. The depth of mineralization ranges from 0.8 to 4.5 km. The depth of the top interface of the granitic complex in the metallogenic epoch is about 3 km. There is a low-velocity layer (LVL) at the bottom of the upper crust with a depth close to 19.5 km, which may be a detachment belt in the crust. The appearance of the LVL indicates the existence of paleo-hyperthermal fluid or relics of molten magma chambers, which reflects partial melting within the crust during the diagenetic and metallogenic epochs and the superposition effects of strike-slip shearing of the Taulu fault zone. The subsidence of the Moho is probably attributed to the coupling process of the NW-SE continental collision between North China and the Yangtze Block and the strike-slip movement of the Tanlu fault accompanied with underplating of mantle magma in the northwestern part of the Jiaodong Peninsula. The underplating of mantle magma may result in partial melting and make granite magma transfer upwards. This is favorable for the migration of metallogenic materials from deep to shallow to be enriched to form deposits. Coupling interactions between the strike-slip of the Taulu fault, the underplating of mantle magma, partial melting within the crust, and hyperthermal fluid, etc. may be the important factors controlling the gold mineralization and spatial structures in the metailogenic system. 展开更多
关键词 coupling of deep and shallow structures metallogenic dynamics Jiaodong Peninsula
下载PDF
Imaging shallow structure with active-source surface wave signal recorded by distributed acoustic sensing arrays 被引量:4
2
作者 Zhenghong Song Xiangfang Zeng +2 位作者 Clifford H.Thurber Hebert F.Wang Dante Fratta 《Earthquake Science》 CSCD 2018年第4期208-214,共7页
Distributed acoustic sensing(DAS) is one recently developed seismic acquisition technique that is based on fiber-optic sensing. DAS provides dense spatial spacing that is useful to image shallow structure with surface... Distributed acoustic sensing(DAS) is one recently developed seismic acquisition technique that is based on fiber-optic sensing. DAS provides dense spatial spacing that is useful to image shallow structure with surface waves.To test the feasibility of DAS in shallow structure imaging,the PoroTomo team conducted a DAS experiment with the vibroseis truck T-Rex in Brady’s Hot Springs, Nevada, USA.The Rayleigh waves excited by the vertical mode of the vibroseis truck were analyzed with the Multichannel Analysis of Surface Waves(MASW) method. Phase velocities between5 and 20 Hz were successfully extracted for one segment of cable and were employed to build a shear-wave velocity model for the top 50 meters. The dispersion curves obtained with DAS agree well with the ones extracted from co-located geophones data and from the passive source Noise Correlation Functions(NCF). Comparing to the co-located geophone array, the higher sensor density that DAS arrays provides help reducing aliasing in dispersion analysis, and separating different surface wave modes. This study demonstrates the feasibility and advantage of DAS in imaging shallow structure with surface waves. 展开更多
关键词 distributed acoustic sensing surface wave multiple channel analysis shallow structure
下载PDF
Study on coupling between deep and shallow structures of Xingtai area and some significant questions 被引量:1
3
作者 顾梦林 刘保金 +1 位作者 赵成彬 孙振国 《Acta Seismologica Sinica(English Edition)》 CSCD 2000年第4期413-423,共11页
In the light of results from study on coupling between deep and shallow structures in Xingtai earthquake area during the 'Ninth Five-Year Plan' period and other previous results from deep seismic refraction/re... In the light of results from study on coupling between deep and shallow structures in Xingtai earthquake area during the 'Ninth Five-Year Plan' period and other previous results from deep seismic refraction/reflection and seismic prospecting of petroleum, we infer that there exist a series of shallow faults in the upper crust above the 8 km-deep detachment surface in Xingtai macroseismic focal region, where none of the faults, including Aixinzhuang fault reaches the Quaternary stratum, except that the Xinhe fault cuts through the mid-Pleistocene formation upwards. Aixinzhuang fault and other faults extend downwards into Xinhe fault whereas the Xinhe listric fault stretches downwards at a low dip angle into the detachment surface. The abyssal fault with high dip angle under the detachment surface cutting through the middle and lower crust to Moho is the causative fault for the large Xingtai earthquake, whose dislocation can cause strong earthquakes, shallow fault activity and the motion of surface material. The shallow faults in the upper crust are not causative faults for strong earthquakes, although they may be active faults. The existence of the detachment surface brings about a special relationship between shallow and deep structures, i.e. they are relatively independent of each other and have effects on each other It not only transmits partial energy and deformation between the upper and lower crust,but also has a certain decoupling effect. Finally we conclude that active faults do not necessarily reach the latest stratum, and the age of uppermost faulted stratum cannot represent the latest active period of the fault. This put to us a significant question in regard to the age determination and study of active faults. Other noticeable questions are also inferred to in this study. 展开更多
关键词 coupling between deep and shallow structures earthquake fault active fault
下载PDF
Study on relationship between deep and shallow structures along north boundary fault of Yanqing-Fanshan basin
4
作者 YU Gui-hua(于贵华) +15 位作者 XU Xi-wei(徐锡伟) ZHU Ai-lan(朱艾澜) MA Wen-tao(马文涛) DIAO Gui-ling(刁桂苓) ZHANG Si-chang(张四昌) ZHANG Xian-kang(张先康) LIU Bao-jin(刘保金) SUN Zhen-guo(孙振国) 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第1期70-79,共10页
Based on the results of surface geology, shallow and deep seismic survey, features of micro-earthquake activity along the north boundary fault of Yanqing-Fanshan sub-basin and their relationship with the surface activ... Based on the results of surface geology, shallow and deep seismic survey, features of micro-earthquake activity along the north boundary fault of Yanqing-Fanshan sub-basin and their relationship with the surface active faults and the deep-seated crustal structure are analyzed using the recordings from the high-resolution digital seismic network. The focal mechanism solutions of micro-earthquakes, whose locations are precisely determined by the seismic network, have confirmed the structural characteristics to be the rotational planar normal fault and demon-strated the surface traces of the north boundary fault of Yanqing-Fanshan sub-basin. By using the digital recordings of earthquakes with the high resolutions and analyzing the mechanism solutions, our study has revealed the rela-tionship between the geological phenomena in the shallow and deep structures in Yanqing-Huailai basin and the transition features from the brittle to ductile deformation with the crustal depth. 展开更多
关键词 shallow and deep structures rotational planar normal fault focal mechanism
下载PDF
Detailed sedimentary structure of the Mianning segment of the Anninghe fault zone revealed by H/V spectral ratio 被引量:1
5
作者 Zeqiang Chen Huajian Yao +2 位作者 Xihui Shao Song Luo Hongfeng Yang 《Earthquake Research Advances》 CSCD 2023年第3期19-29,共11页
The Anninghe fault is a major left-lateral strike-slip fault in southwest China and a seismic gap with a potential earthquake larger than MW 7.0 lies in the Mianning-Xichang segment according to recent observations.Th... The Anninghe fault is a major left-lateral strike-slip fault in southwest China and a seismic gap with a potential earthquake larger than MW 7.0 lies in the Mianning-Xichang segment according to recent observations.The shallow structure of this region can offer a glimpse into the geometry of the fault,which plays an important role in earthquake hazard mitigation.To further investigate the sedimentary structure of the Anninghe fault zone,two dense linear arrays with a station spacing of around 80 m were deployed across the fault.In this study,the H/V spectral ratio(HVSR),together with its peak frequency at each station site,was obtained by applying the Nakamura method.Our findings demonstrate that the peak frequency behaves in high correlation with lithology and is controlled by topography.HVSR in foothills or regions with magmatic intrusion shows a single peak at about 2–3 Hz.In locations with abundant Quaternary sedimentation,such as Anninghe valleys and fracture zones,another low-frequency peak around 0.4 Hz can be noticed in HVSR.By using the empirical relationship,the thickness of the sedimentary layer around the fault fracture zone is estimated to be 300–600 m.Furthermore,the sedimentary interface shows a downward dip to the east,possibly influenced by the east-west extrusion stress.Considering the resonance effect,buildings with 6–9 stories in the valley area of the Anninghe require additional attention in earthquake hazard prevention. 展开更多
关键词 HVSR shallow structure Anninghe fault zone SEDIMENT Earthquake hazard prevention
下载PDF
3-D shear wave velocity structure in the shallow crust of the Tan-Lu fault zone in Lujiang,Anhui,and adjacent areas,and its tectonic implications 被引量:13
6
作者 Cheng Li HuaJian Yao +5 位作者 Yuan Yang Song Luo KangDong Wang KeSong Wan Jian Wen Bin Liu 《Earth and Planetary Physics》 CSCD 2020年第3期317-328,共12页
The Tan-Lu fault zone is a large NNE-trending fault zone in eastern China.Investigations of the structures of the fault zone and its surrounding areas have attracted much attention.In this study,we used dense-array am... The Tan-Lu fault zone is a large NNE-trending fault zone in eastern China.Investigations of the structures of the fault zone and its surrounding areas have attracted much attention.In this study,we used dense-array ambient noise tomography to construct a threedimensional shear wave velocity model of shallow crust in an area about 80km×70km in Lujiang,Anhui Province,eastern China.For approximately one month we collected continuous ambient noise signals recorded by 90 short-period seismographs in the region,and obtained the short-period Rayleigh wave empirical Green's functions between stations by the cross-correlation method;we also extracted 0.5–8 s fundamental mode Rayleigh wave group velocity and phase velocity dispersion curves.Based on the direct surface wave tomography method,we jointly inverted the group velocity and phase velocity dispersion data of all paths and obtained the 3-D shear wave velocity structure in the depth range of 0–5 km.The results revealed important geological structural features of the study area.In the north region,the sedimentary center of the Hefei Basin—the southwestern part of the Chaohu Lake—shows a significant low-velocity anomaly to a depth of at least 5 km.The southwestern and southeastern regions of the array are the eastern margin of the Dabie orogenic belt and the intrusion area of Luzong volcanic rocks,respectively,and both show obvious high-speed anomalies;the sedimentary area within the Tan-Lu fault zone(about 10 km wide)shows low-velocity anomalies.However,the volcanic rock intrusion area in the fault zone is shown as high velocity.Our shallow crustal imaging results reflect the characteristics of different structures in the study area,especially the high-speed intrusive rocks in the Tan-Lu fault zone,which were probably partially derived from the magmatic activity of Luzong volcanic basin.From the Late Cretaceous to Early Tertiary,the Tan-Lu fault zone was in a period of extensional activity;the special stress environment and the fractured fault zone morphology provided conditions for magma in the Luzong volcanic basin to intrude into the Tan-Lu fault zone in the west.Our 3-D model can also provide important information for deep resource exploration and earthquake strong ground motion simulation. 展开更多
关键词 Tan-Lu fault zone Lujiang of Anhui ambient noise tomography shallow crust structure intrusive rocks
下载PDF
A two-step multi-frequency receiver function inversion method for shallow crustal S-wave velocity structure and its application across the basin-mountain range belts in Northeast China
7
作者 Ruihao YANG Xu WANG +2 位作者 Ling CHEN Mingye FENG Qifu CHEN 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第3期687-703,共17页
A shallow crustal velocity structure(above 10 km depth) is essential for understanding the crustal structures and deformation and assessing the exploration prospect of natural resources, and also provides priori infor... A shallow crustal velocity structure(above 10 km depth) is essential for understanding the crustal structures and deformation and assessing the exploration prospect of natural resources, and also provides priori information for imaging deeper crustal and mantle structure. Passive-source seismic methods are cost-effective and advantageous for regional-scale imaging of shallow crustal structures compared to active-source methods. Among these passive methods, techniques utilizing receiver function waveforms and/or body-wave amplitude ratios have recently gained prominence due to their relatively high spatial resolution. However, in basin regions, reverberations caused by near-surface unconsolidated sedimentary layers often introduce strong non-uniqueness and uncertainty, limiting the applicability of such methods. To address these challenges, we propose a two-step inversion method that uses multi-frequency P-RF waveforms and P-RF horizontal-to-vertical amplitude ratios. Synthetic tests indicate that our two-step inversion method can mitigate the non-uniqueness of the inversion and enhance the stability of the results. Applying this method to teleseismic data from a linear seismic array across the sedimentary basins in Northeast China, we obtain a high-resolution image of the shallow crustal S-wave velocity structure along the array. Our results reveal significant differences between the basins and mountains. The identification of low-velocity anomalies(<2.8 km s^(-1)) at depths less than 1.0 km beneath the Erlian Basin and less than 2.5 km beneath the Songliao Basin suggests the existence of sedimentary layers. Moreover, the high-velocity anomalies(~3.4–3.8 km s^(-1)) occurring at depths greater than 7 km in the Songliao Basin may reflect mafic intrusions emplaced during the Early Cretaceous. Velocity anomaly distribution in our imaging result is consistent with the location of the major faults, uplifts, and sedimentary depressions, as well as active-source seismic results. This application further validates the effectiveness of our method in constraining the depth-dependent characteristics of the S-wave velocity in basins with unconsolidated sedimentary cover. 展开更多
关键词 Receiver function Frequency dependence Two-step inversion shallow crustal velocity structures Unconsolidated sedimentary basins
原文传递
Study on shallow structural features in Changbaishan Tianchi volcanic region
8
作者 潘纪顺 顾梦林 +1 位作者 赵成斌 潘素珍 《Acta Seismologica Sinica(English Edition)》 CSCD 2006年第4期428-437,共10页
A seismic survey by 10 shallow profiles and 6 ultra-shallow profiles was performed in Changbaishan Tianchi volcanic region in 2002. The result shows that there are three (in some areas as many as seven) stable inter... A seismic survey by 10 shallow profiles and 6 ultra-shallow profiles was performed in Changbaishan Tianchi volcanic region in 2002. The result shows that there are three (in some areas as many as seven) stable interfaces in the survey region, but no reflection phases are found in depths greater than 500 m. The number of interfaces in the southwestern part is obviously greater than in the northwestern part of Tianchi volcano, which suggests that the faults in the southwest have a stronger controlling power over the flow direction of volcano-spewed lava as compared with those in the northwest. Six shallow faults exist in the survey region. The shallow faults are nearly vertical graben-like faults and are mostly distributed on the southwest of Tianchi crater, indicating that volcanic activities in the southwest are stronger than in the northwest. On this ground, it could be further deduced that the NE-trending major fault of Tianchi volcano ( the Liudaogou-Tianchi-Zengfengshan fault) is more active than the NW-trending Baishanzhen-Tianchi-Jince fault. 展开更多
关键词 Tianchi volcano seismic survey shallow structure STRATUM FAULT
下载PDF
The heterogeneous characteristics of crust-mantle structures and the seismic activities in the northwest Beijing region
9
作者 赵金仁 张先康 +5 位作者 张成科 张建狮 刘宝峰 任青芳 潘素珍 海燕 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2005年第2期125-134,254,共11页
In this paper, the abnormal characteristics of the crustal structures in the seismic active region, Yanqing-Huailai and Zhangbei-Shangyi, are obtained by means of comprehensively interpreting and studying the data of ... In this paper, the abnormal characteristics of the crustal structures in the seismic active region, Yanqing-Huailai and Zhangbei-Shangyi, are obtained by means of comprehensively interpreting and studying the data of deep seis- mic sounding profiles passing through the northwestern part of Zhangjiakou-Bohai seismic zone. The results show that the fluctuation of crystalline basement in the study region is obvious and that there exist considerable differ- ences in depth in different geological units. The locally abrupt variation of crystalline basement depths may be regarded as a mark of existence of crystalline basement faults. These crystalline basement faults and deep crustal faults provide a pass for the magma upwelling, resulting in the strong inhomogeneity of crustal structures. These phenomena of the complex seismic reflected waves and locally discontinuous reflection zones with different en- ergy indicate that the intensive squeeze and deformation of crust took place, which have led to the complex crustal structures and offered the dynamic source for the earthquake occurrence in this region. The low velocity bodies in different depths of crust and the local interface C1 in Zhangbei-Shangyi region may result from repeated magmatic activities. The certain stress accumulation in the brittle upper crust can cause the occurrence of earthquake under the action of local tectonic activity. 展开更多
关键词 northwest Beijing region seismic sounding shallow and deep structures earthquake-generating backgrounds
下载PDF
Structural Mapping of Kakobola and Its Surroundings by Analyzing Geomagnetic Data
10
作者 Jonathan Musitu Muliwavyo Albert Mbata Muliwavyo +2 位作者 Lumière Musitu Jean-Marie Tshitenge Mbuebue Clément N’Zau Umba-Di-Mbudi 《Journal of Geoscience and Environment Protection》 2023年第9期64-89,共26页
This study focuses on the Kakobola region and its surroundings where cavities discovered in its basement may represent a major risk for the hydroelectric dam erected on the Lufuku River near the Kakobola city and the ... This study focuses on the Kakobola region and its surroundings where cavities discovered in its basement may represent a major risk for the hydroelectric dam erected on the Lufuku River near the Kakobola city and the civil engineering works in the study area. In order to deepen the studies related to this understudied region and provide decision-makers with information that will enable them to make the necessary and appropriate decisions regarding the development of this area, a study based on the analysis of geomagnetic data was carried out using certain methods revealing more shallow than deep structures, and others highlighting the limits of both shallower and deeper structures. Total magnetic anomalies and reduced to equator (RTE) magnetic anomalies were used to map the subsurface of the Kakobola region and its surroundings. In order to detect the edges of magnetized structures, the horizontal gradient magnitude (HGM), the analytic signal (AS), the horizontal gradient of tilt angle (HGTA), the tilt angle (TA), the theta map (TM), the enhanced total horizontal derivative of the tilt angle (ETHDR), the tilt angle of the horizontal gradient (TAHG), and the tilt angle of analytic signal (TAAS) were used. The study area is characterized by two areas of low values of magnetic anomalies and two other sources of high magnetic anomalies located in the bed and the neighborhood of the two major rivers in the region. The shallow sources of magnetic anomalies are lying in the bed and the vicinity of the same rivers in the study area. The magnetic sources in the study area are connected and almost linear. Several magnetic lineaments identified in this region by different methods present several preferential directions, but the most predominant directions are NE-SW, NW-SE, W-E and NE-SW. 展开更多
关键词 Magnetic Anomalies HGM TAHG LINEAMENTS shallow structures
下载PDF
Application of active-source surface waves in urban underground space detection: A case study of Rongcheng County, Hebei, China 被引量:1
11
作者 GuangWen Wang HaiYan Wang +3 位作者 HongQiang Li ZhanWu Lu WenHui Li TaiRan Xu 《Earth and Planetary Physics》 EI CSCD 2022年第4期385-398,共14页
Active-source surface wave exploration is advantageous because it has high imaging accuracy,is not affected by high-speed layers,and has a low cost;thus,it has unique advantages for investigating shallow surface struc... Active-source surface wave exploration is advantageous because it has high imaging accuracy,is not affected by high-speed layers,and has a low cost;thus,it has unique advantages for investigating shallow surface structures.For the development and utilization of urban underground space,two parameters in the shallow surface are important,namely,the shear wave velocity(V_(S))and the predominant period of the site,which determine the elevation and aseismic grade of the building design.The traditional method is mainly to obtain the two above-mentioned parameters through testing and measuring drilling samples.However,this method is extremely expensive and time consuming.Therefore,in this research,we used the multichannel surface wave acquisition method to extract the fundamental dispersion curve of single-shot data by using the phase shift method and obtain the V_(S) characteristics in the uppermost 40 m by inversion.We arrived at the following two conclusions based on the V_(S) profile.First,the study area can be roughly divided into five layers,among which the layers 0−8 m,14−20 m,and 20−30 m are low-velocity layers,corresponding to miscellaneous fill,a water-bearing sand layer,and a sand layer;therefore,the V_(S) is relatively low.In contrast,the layers at 8−14 m and 30−40 m are high-velocity layers that are mainly composed of clay,with a relatively better compactness and relatively high V_(S) values.In addition,a low-speed anomaly appears abruptly in the high-speed area at 20−40 m.This anomaly,when combined with geological data,suggests that it is an ancient river channel.Second,from the V_(S) value,the V_(Se)(equivalent shear wave velocity)was calculated.The construction site soil was categorized as class III,with good conditions for engineering geology.In addition,we calculated the predominant period of the site to be 0.56-0.77 s based on the V_(S).Therefore,in the overall structural design of the foundation engineering,the natural vibration period of the structure should be strictly controlled to avoid the predominant period of the site. 展开更多
关键词 Jizhong depression surface wave exploration shallow structure site category predominant period
下载PDF
High-resolution crustal velocity imaging using ambient noise recordings from a high-density seismic array:An example from the Shangrao section of the Xinjiang basin,China 被引量:9
12
作者 Gaochun Wang Xiaobo Tian +2 位作者 Lianglei Guo Jiayong Yan Qingtian Lyu 《Earthquake Science》 CSCD 2018年第5期242-251,共10页
A profile of shallow crustal velocity structure(1–2 km) may greatly enhance interpretation of the sedimentary environment and shallow tectonic deformation.Recent advances in surface wave tomography, using ambient noi... A profile of shallow crustal velocity structure(1–2 km) may greatly enhance interpretation of the sedimentary environment and shallow tectonic deformation.Recent advances in surface wave tomography, using ambient noise data recorded with high-density seismic arrays, have improved the understanding of regional crustal structure. As the interest in detailed shallow crustal structure imaging has increased, dense seismic array methods have become increasingly efficient. This study used a high-density seismic array deployed in the Xinjiang basin in southeastern China, to record seismic data, which was then processed with the ambient noise tomography method. The high-density seismic array contained 203 short-period seismometers, spaced at short intervals(~ 400 m). The array collected continuous records of ambient noise for 32 days. Data preprocessing,cross correlation calculation, and Rayleigh surface wave phase-velocity dispersion curve extraction, yielded more than 16,000 Rayleigh surface wave phase-velocity dispersion curves, which were then analyzed using the direct-inversion method. Checkerboard tests indicate that the shear wave velocity is recovered in the study area, at depths of 0–1.4 km,with a lateral image resolution of ~ 400 m. Model test results show that the seismic array effectively images a 50 m thick slab at a depth of 0–300 m, a 150 m thick anomalous body at a depth of 300–600 m, and a 400 m thick anomalous body at a depth of 0.6–1.4 km. The shear wave velocity profile reveals features very similar to those detected by a deep seismic reflection profile across the study area. This demonstrates that analysis of shallow crustal velocity structure provides high-resolution imaging of crustal features.Thus, ambient noise tomography with a high-density seismic array may play an important role in imaging shallow crustal structure. 展开更多
关键词 high-density seismic array ambient noise tomography shallow crustal structure HIGH-RESOLUTION
下载PDF
Shear-wave velocity structures of the shallow crust beneath the Ordos and Sichuan Basins from multi-frequency direct P-wave amplitudes in receiver functions 被引量:1
13
作者 Chenxiao TANG Ling CHEN Xu WANG 《Science China Earth Sciences》 SCIE EI CSCD 2022年第5期810-823,共14页
As the two largest cratonic basins in China,the Ordos Basin and the Sichuan Basin are of key importance for understanding the evolutionary history of the Chinese continent.In this study,the shear-wave velocity(V_(S))s... As the two largest cratonic basins in China,the Ordos Basin and the Sichuan Basin are of key importance for understanding the evolutionary history of the Chinese continent.In this study,the shear-wave velocity(V_(S))structures of the shallow crust(depth up to 10 km)beneath the two basins are imaged based on the frequency-dependence of direct P-wave amplitudes in receiver functions.The teleseismic data used in the study came from 160 broadband seismic stations,including permanent and temporary stations.The results show that the V_(S) and the thickness of the sediments in the Ordos Basin and the Sichuan Basin are respectively lower and thicker in the west than in the east.In the Ordos Basin,the shallow crustal V_(S) increases gradually from 2.10 km s^(−1)in the northwest to 2.65 km s^(−1)in the southeast and the thickest sediments are 7–8 km in the northwest and 5 km in the east.In the Sichuan Basin,the shallow crustal V_(S) increases from 2.4 km s^(−1) in the west to 2.7 km s^(−1)in the east and the thickness of the sediments decreases from>7 km in the west to 6 km in the east.The east-west difference of the shallow crustal structures of the two basins may have been controlled by the Cenozoic India-Eurasia collision.The western parts of the basins near the collision have a higher deposition rate,while in the parts inside the basins far from the collision,the V_(S) slowly increases with depth,indicating that these areas have experienced a more uniform deposition process.In addition,both basins are characterized by velocity structures that are higher along the edges and lower inside of the basins.The edges of the basins suffered strong denudation due to the uplifting and deformation influenced by tectonic evolution.The downward gradient of the shear-wave velocity beneath the Ordos Basin is twice that of the Sichuan Basin,which may be caused by the different deposition and denudation rates of the two basins resulting from differences in structural evolution and thermal events.In addition,the northern Ordos Basin exhibits a strong structural horizontal stratification,while the southern part shows obvious lateral variations in the V_(S) structure,both of which may have been affected by the Qilian orogenic event,the collision and assembly of the South China and the North China block,and the lateral extrusion of the Tibetan Plateau. 展开更多
关键词 shallow crustal velocity structures Receiver function Frequency dependence Ordos Basin Sichuan Basin Tectonic evolution
原文传递
Research Progress of Geophysical Exploration in Karatungk Mine in Northern Xinjiang,China
14
作者 DU Peixiao LI Yang +3 位作者 WEI Mengyi HAN Chunming ZHAO Liang WU Jing 《Earthquake Research in China》 CSCD 2020年第3期311-327,共17页
Karatungk Mine in northern Xinjiang,China,which is a large-scale magmatic Cu-Ni sulfide mine in the Central Asian orogenic belt,has a long history of mining.The mine is located at the merging belt between Altay orogen... Karatungk Mine in northern Xinjiang,China,which is a large-scale magmatic Cu-Ni sulfide mine in the Central Asian orogenic belt,has a long history of mining.The mine is located at the merging belt between Altay orogenic belt and Junggar Basin,and has strong tectonic activities.In recent years,mining source detection has become an important target for mineral exploration due to the difficulties in ore body exploitation.In this paper,we systematically summarize the achievements of the geophysical explorations in Karatungk Mine from various aspects,including tectonic backgrounds of the mine,dynamic mechanisms,geophysical characteristics and scientific challenges in the future.Because of the restrictions of observation density and analysis methods,the fine geometrical structure of the mine cannot be completely characterized yet.Therefore,in order to obtain the high-resolution structure and detailed spatial distribution of orebodies,researchers should focus on combining multiple geophysical methods,developing high-resolution imaging methods,and improving petro physical experiments in the future. 展开更多
关键词 XINJIANG Karatungk Mine Geophysical exploration Detailed shallow crustal structure
下载PDF
Evaluation of 3D crustal seismic velocity models in southwest China:Model performance,limitation,and prospects
15
作者 Xin WANG Ling CHEN Qi-Fu CHEN 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第2期604-619,共16页
Southwest China is a tectonically and seismically active region,witnessing strong deformation due to the collision between the Indian and Eurasian plates.Constraining the subsurface velocity structure of this region i... Southwest China is a tectonically and seismically active region,witnessing strong deformation due to the collision between the Indian and Eurasian plates.Constraining the subsurface velocity structure of this region is thus important in understanding the tectonics and geodynamic processes of continental collision and in mitigating seismic hazards.Numerous studies have provided various 3D seismic velocity models in southwest China.However,discrepancies exist among these models,and less effort has been made to quantify the reliability and accuracy of these existing velocity models.In this study,we use regional 3D waveform simulation to evaluate the performance of various regional crustal 3D velocity models in reproducing observed seismograms.We particularly focus on two recent earthquake sequence in the region,the 2021 Yunnan Yangbi MS_(6.4) earthquake sequence and the 2022 Sichuan Luding MS_(6.8) earthquake sequence.The tested 3D velocity models include the Southwest China Community Velocity model V1.0,the Unified Seismic Tomography Models for Continental China Lithosphere V2.0,the adjoint full waveform tomography model of the crustal and upper mantle beneath Eastern Tibetan Plateau,and the shallow seismic structure model beneath continental China.Our results show that the tested 3D velocity models generally capture well long-period(<0.2 Hz)waveforms,indicating that the 3D models adequately resolve overall large-scale subsurface structures.However,the 3D synthetics show discrepancies in higher frequencies(0.05–0.3 Hz)and the performance of the 3D velocity models varies from region to region,suggesting that smaller scale heterogeneities are not well constrained.Including shallow velocity structures(<10 km)can improve the waveform fitting,emphasizing the importance of incorporating shallow structures in waveform modeling.The full-waveform tomography model shows a slighter better performance than the other models,especially for the body-waves,highlighting the advantages of full-waveform method in achieving sub-wavelength resolution despite the usage of very long-period waveforms.In light of these comparison results of model performance,we identify the advantages and limitations of different seismic tomography models and methods,and we propose to incorporate different tomography methods and datasets to better constrain subsurface structures.While our target region in this study is southwest China,the analysis that we have conducted can be applied to other regions of various scales and tectonic settings for quantitative seismic model evaluation. 展开更多
关键词 Southwest China Seismic tomography models shallow structures Waveform simulation Model evaluation
原文传递
Active Source Tomography in Northwestern Xinjiang,China:Implication for Mineral Distribution
16
作者 梅宝 徐义贤 钱辉 《Journal of Earth Science》 SCIE CAS CSCD 2011年第2期214-225,共12页
The main aim of this work is to understand the distribution of minerals by obtaining a shallow velocity structure around the Karatungk(喀拉通克) region.Data were acquired in 2009 by a denser array in deploying a tra... The main aim of this work is to understand the distribution of minerals by obtaining a shallow velocity structure around the Karatungk(喀拉通克) region.Data were acquired in 2009 by a denser array in deploying a transportable seismometer with 4.5 Hz vertical geophone.All the P-wave arrival times are picked automatically with Akaike information criterion,and then checked man-machine interactively by short-receiver geometry.The database for local active-source tomographic in-version involves 4 241 P-wave arrival time readings from 96 shots and three quarry blasts.Checker-board tests aimed at checking the reliability of the obtained velocity models are presented.The result-ing Vp distribution slices show a complicated 3-D structure beneath this area and offer a better under-standing of three well-defined mineral deposits.Near the surface we observe a series of zones with slightly high-velocity which probably reflect potential deposits.Based on features of metallic ores we attempt to delimit their distributions and stretched directions. 展开更多
关键词 active source tomography phase pick shallow velocity structure mineral distribution optimization 3-D iterative inversion.
原文传递
Hydrothermal interactions in energy walls
17
作者 Jacopo Zannin Alessio Ferrari +1 位作者 Maxime Pousse Lyesse Laloui 《Underground Space》 SCIE EI 2021年第2期173-184,共12页
Energy geostructures(EGs)employ heat exchangers embedded in concrete geostructures,such as piles,walls,tunnels,and sewers.In this study,energy walls(EWs)are studied with an emphasis on the following objectives:(1)to u... Energy geostructures(EGs)employ heat exchangers embedded in concrete geostructures,such as piles,walls,tunnels,and sewers.In this study,energy walls(EWs)are studied with an emphasis on the following objectives:(1)to understand the fundamentals of hydrothermal interactions acting in the vicinity of EWs caused by groundwater seepage in saturated soil;(2)to highlight hydraulically induced thermal effects and their consequences on the thermal performance of EWs.Extensive three-dimensional hydrothermal finite element analyses are performed considering two groundwater flow conditions:perpendicular and parallel to the EW.The thermal activation of the geostructure locally modifies the flownet with respect to the non-isothermal case because of the temperature dependency of the water properties.Mutual interactions between seepage directions and thermal activation are analyzed.Remarkable thermal interactions are detected within the heat exchangers.The thermal behavior of EGs is highly affected by an incorrect evaluation of the hydraulically induced thermal effects,which may result in an overestimation of the thermal behavior.Conversely,an efficient thermal design,which considers such interactions,may increase the thermal potential of EGs. 展开更多
关键词 Geothermal energy shallow geothermal structures Energy geostructures Energy infrastructures Hydrothermal modelling Non-isothermal seepage Hydrothermal interactions
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部