A combined method of wave superposition and finite element is proposed to solve the radiation noise of targets in shallow sea.Taking the sound propagation of spherical sound source in shallow sea as an example,the rad...A combined method of wave superposition and finite element is proposed to solve the radiation noise of targets in shallow sea.Taking the sound propagation of spherical sound source in shallow sea as an example,the radiation sound field of the spherical sound source is equivalent to the linear superposition of the radiation sound field of several internal point sound sources,and then the radiated noise induced by spherical sound source can be predicted quickly.The accuracy and efficiency of the method are verified by comparing with the numerical results of finite element method,and the rapid prediction of underwater radiated noise of cylindrical shell is carried out based on the method.The results show that compared with the finite element method,the relative error of the calculation results under different simulation conditions does not exceed 0.1%,and the calculation time is about 1/10 of the finite element method,so this method can be used to solve the radiated noise of shallow underwater targets.展开更多
Oil spills continue to generate various issues and concerns regarding their effect and behavior in the marine environment,owing to the related potential for detrimental environmental,economic and social implications.I...Oil spills continue to generate various issues and concerns regarding their effect and behavior in the marine environment,owing to the related potential for detrimental environmental,economic and social implications.It is essential to have a solid understanding of the ways in which oil interacts with the water and the coastal ecosystems that are located nearby.This study proposes a simplified model for predicting the plume-like transport behavior of heavy Bunker C fuel oil discharging downward from an acutely-angled broken pipeline located on the water surface.The results show that the spill overall profile is articulated in three major flow areas.The first,is the source field,i.e.,a region near the origin of the initial jet,followed by the intermediate or transport field,namely,the region where the jet oil flow transitions into an underwater oil plume flow and starts to move horizontally,and finally,the far-field,where the oil re-surface and spreads onto the shore at a significant distance from the spill site.The behavior of the oil in the intermediate field is investigated using a simplified injection-type oil spill model capable of mimicking the undersea trapping and lateral migration of an oil plume originating from a negatively buoyant jet spill.A rectangular domain with proper boundary conditions is used to implement the model.The Projection approach is used to discretize a modified version of the Navier-Stokes equations in two dimensions.A benchmark fluid flow issue is used to verify the model and the results indicate a reasonable relationship between specific gravity and depth as well as agreement with the aerial data and a vertical temperature profile plot.展开更多
An integrated method that implements multivariate statistical analysis and ML methods to evaluate groundwater quality of the shallow aquifers of the Djerid and Kebili district,Southern Tunisia,was adopted.An evaluatio...An integrated method that implements multivariate statistical analysis and ML methods to evaluate groundwater quality of the shallow aquifers of the Djerid and Kebili district,Southern Tunisia,was adopted.An evaluation of their suitability for irrigation and/or drinking purposes is necessary.A comprehensive hydrochemical assessment of 52 samples with entropy weighted water quality index(EWQI)was also proposed.Eleven water parameters were calculated to ascertain the potential use of those resources in irrigation and drinking.Multivariate analysis showed two main components with Dim1(variance=62.3%)and Dim.2(variance=22%),due to the bicarbonate,dissolution,and evaporation and the intrusion of drainage water.The evaluation of water quality has been carried out using EWQI model.The calculated EWQI for the Djerid and Kebili waters(i.e.,52 samples)varied between 7.5 and 152.62,indicating a range of 145.12.A mean of 79.12 was lower than the median(88.47).From the calculation of EWQI,only 14 samples are not suitable for irrigation because of their poor to extremely poor quality(26.92%).The bivariate plot showed high correlation for EWQI~TH(r=0.93),EWQI~SAR(r=0.87),indicating that water quality depended on those parameters.Diff erent ML algorithms were successfully applied for the water quality classifi cation.Our results indicated high prediction accuracy(SVM>LDA>ANN>kNN)and perfect classifi cation for kNN,LDA and Naive Bayes.For the purposes of developing the prediction models,the dataset was divided into two groups:training(80%)and testing(20%).To evaluate the models’performance,RMSE,MSE,MAE and R^(2) metrics were used.kNN(R^(2)=0.9359,MAE=6.49,MSE=79.00)and LDA(accuracy=97.56%;kappa=96.21%)achieved high accuracy.Moreover,linear regression indicated high correlation for both training(R^(2)=0.9727)and testing data(0.9890).This well confi rmed the validity of LDA algorithm in predicting water quality.Cross validation showed a high accuracy(92.31%),high sensitivity(89.47%)and high specifi city(95%).These fi ndings are fundamentally important for an integrated water resource management in a larger context of sustainable development of the Kebili district.展开更多
The solution of the Riemann Problem (RP) for the one-dimensional (1D) non-linear Shallow Water Equations (SWEs) is known to produce four potential wave patterns for the scenario where the water depth is always positiv...The solution of the Riemann Problem (RP) for the one-dimensional (1D) non-linear Shallow Water Equations (SWEs) is known to produce four potential wave patterns for the scenario where the water depth is always positive. In this paper, we choose four test problems with exact solutions for the 1D SWEs. Each test problem is a RP with one of the four possible wave patterns as its solution. These problems are numerically solved using schemes from the family of Weighted Essentially Non-Oscillatory (WENO) methods. For comparison purposes, we also include results obtained from the Random Choice Method (RCM). This study has three main objectives. Firstly, we outline the procedures for the implementation of the methods employed in this paper. Secondly, we assess the performance of the schemes in conjunction with a second-order Total Variation Diminishing (TVD) flux on a variety of RPs for the 1D SWEs (for both short- and long-time simulations). Thirdly, we investigate if a single method yields optimal outcomes for all test problems. Optimal outcomes refer to numerical solutions devoid of spurious oscillations, exhibiting high resolution of discontinuities, and attaining high-order accuracy in the smooth parts of the solution.展开更多
In this paper,we develop an entropy-conservative discontinuous Galerkin(DG)method for the shallow water(SW)equation with random inputs.One of the most popular methods for uncertainty quantifcation is the generalized P...In this paper,we develop an entropy-conservative discontinuous Galerkin(DG)method for the shallow water(SW)equation with random inputs.One of the most popular methods for uncertainty quantifcation is the generalized Polynomial Chaos(gPC)approach which we consider in the following manuscript.We apply the stochastic Galerkin(SG)method to the stochastic SW equations.Using the SG approach in the stochastic hyperbolic SW system yields a purely deterministic system that is not necessarily hyperbolic anymore.The lack of the hyperbolicity leads to ill-posedness and stability issues in numerical simulations.By transforming the system using Roe variables,the hyperbolicity can be ensured and an entropy-entropy fux pair is known from a recent investigation by Gerster and Herty(Commun.Comput.Phys.27(3):639–671,2020).We use this pair and determine a corresponding entropy fux potential.Then,we construct entropy conservative numerical twopoint fuxes for this augmented system.By applying these new numerical fuxes in a nodal DG spectral element method(DGSEM)with fux diferencing ansatz,we obtain a provable entropy conservative(dissipative)scheme.In numerical experiments,we validate our theoretical fndings.展开更多
This paper pnesents a third gneration shallow Whter disode spedtal wave nbotal medeIYE-WAM based on the spedtal action balance equation. The mode accounts for all edevan effectsof currents on waves, incuding tmpotally...This paper pnesents a third gneration shallow Whter disode spedtal wave nbotal medeIYE-WAM based on the spedtal action balance equation. The mode accounts for all edevan effectsof currents on waves, incuding tmpotally and spatialy varying depth and current inded refraction,sttalning and fequency shift and also explidtly takeS into aanunt all source terms, speclally adePth-limited breaking dheipation. In addition, an energy forcing scheme is propond and applied to themode’s open boundaries to areUn for the propagution of sedIs into the study spstem The upwinddiffeIenng scheme and a standard hybrid diffdrencing scheme for the propagaion terrn and a simpleEuler method for the source teme are employed.展开更多
Liquid sloshing is a common phenomenon in the liquid tanks transportation. Liquid waves lead to fluctuating forces on the tank wall. Uncontrolled fluctuations lead to large forces and momentums. Baffles can control th...Liquid sloshing is a common phenomenon in the liquid tanks transportation. Liquid waves lead to fluctuating forces on the tank wall. Uncontrolled fluctuations lead to large forces and momentums. Baffles can control these fluctuations. A numerical method, which has been widely used to model this phenomenon, is Smoothed Particle Hydrodynamics(SPH). The Lagrangian nature of this method makes it suitable for simulating free surface flows. In the present study, an accurate Incompressible Smoothed Particle Hydrodynamics(ISPH) method is developed and improved using the kernel gradient correction tensors, particle shifting algorithms, k–ε turbulence model, and free surface particle detectors. Comparisons with the experimental data approve the ability of the present algorithm for simulating shallow water sloshing. The main aim of this study is to investigate the effects of the vertical baffle on the damping of liquid sloshing. Results show that baffles number has a major role in sloshing fluctuation damping.展开更多
Underwater acoustic applications depend critically on the prediction of sound propagation, which can be significantly affected by a rough surface, especially in shallow water. This paper aims to investigate how random...Underwater acoustic applications depend critically on the prediction of sound propagation, which can be significantly affected by a rough surface, especially in shallow water. This paper aims to investigate how randomly fluctuating surface influences transmission loss(TL) in shallow water. The one-dimension wind-wave spectrum, Monterey–Miami parabolic equation(MMPE) model, Monte Carlo method, and parallel computing technology are combined to investigate the effects of different sea states on sound propagation. It is shown that TL distribution properties are related to the wind speed,frequency, range, and sound speed profile. In a homogenous waveguide, with wind speed increasing, the TLs are greater and more dispersive. For a negative thermocline waveguide, when the source is above the thermocline and the receiver is below that, the effects of the rough surface are the same and more significant. When the source and receiver are both below the thermocline, the TL distributions are nearly the same for different wind speeds. The mechanism of the different TL distribution properties in the thermocline environment is explained by using ray theory. In conclusion, the statistical characteristics of TL are affected by the relative roughness of the surface, the interaction strength of the sound field with the surface, and the changes of propagating angle due to refraction.展开更多
A systematic analysis of southwestern Ordos Basin's sedimentary characteristics,internal architectural element association styles and depositional model was illustrated through core statistics,well logging data an...A systematic analysis of southwestern Ordos Basin's sedimentary characteristics,internal architectural element association styles and depositional model was illustrated through core statistics,well logging data and outcrop observations in Chang 8 oil-bearing group.This analysis indicates that shallow water delta sediments dominated by a fluvial system is the primary sedimentary system of the Chang 8 oil-bearing group of the Yanchang Formation in southwestern Ordos Basin.Four microfacies with fine grain sizes are identified: distributary channels,sheet sandstone,mouth bar and interdistributary fines.According to the sandbody's spatial distribution and internal architecture,two types of sandbody architectural element associations are identified: amalgamated distributary channels and thin-layer lobate sandstone.In this sedimentary system,net-like distributary channels at the delta with a narrow ribbon shape compose the skeleton of the sandbody that extends further into the delta front and shades into contiguous lobate distribution sheet sandstone in the distal delta front.The mouth bar is largely absent in this system.By analyzing the palaeogeomorphology,the palaeostructure background,sedimentary characteristics,sedimentary facies types and spatial distribution of sedimentary facies during the Chang 8 period,a distinctive depositional model of the Chang 8 shallow water fluvial-dominated delta was established,which primarily consists of straight multi-phase amalgamated distributary channels in the delta plain,net-like distributary channels frequently diverting and converging in the proximal delta front,sheet sandstones with dispersing contiguous lobate shapes in the distal delta front,and prodelta or shallow lake mudstones.展开更多
Much attention should be paid to a large FPSO moored permanently in an oil field with water depth of only about 20 m, since shallow water effects on the hydrodynamics may bring about collision and damage. A 160kDWT FP...Much attention should be paid to a large FPSO moored permanently in an oil field with water depth of only about 20 m, since shallow water effects on the hydrodynamics may bring about collision and damage. A 160kDWT FPSO with a permanent soft yoke mooring system is investigated with various shallow water depths and focuses are the low frequency surge motion and mooring load. Computation for the FPSO system is made based on linear 3-D potential fluid theory and time-domain numerical simulation method. Corresponding model test is carried out in the ocean engineering basin of Shanghai Jiao Tong University. It is shown that, in the surge natural period, low frequency surge motion and mooring force increase remarkably with the decrease of water depth. Especially, the smaller the ratio of water depth and draught is, the quicker the increase is. The shallow water effects should be taken into account carefully for determining the design load of a single point mooring system.展开更多
To reveal the geochemical characters of water coproduced with coalbed gas and shallow groundwater,water samples were collected from 12 wells of coalbed methane and 7 wells of shallow groundwater.The pH,CODMn,fCO2,tota...To reveal the geochemical characters of water coproduced with coalbed gas and shallow groundwater,water samples were collected from 12 wells of coalbed methane and 7 wells of shallow groundwater.The pH,CODMn,fCO2,total dissolved solids (TDS),total hardness,and concentrations of metasilicic acid,sodium and kalium,calcium ion,magnesium ion,ammonium iron,bicarbonate ion,carbonate,chloride,sulfate ion,nitrate ion,fluoride,lithium,zinc,nickel,manganese,iron,boron,barium,etc.of the samples were measured.Research results showed the following:(1) Concentrations of TDS,chloride,fluoride,sodium and kalium,ammonium,iron,and barium in the water coproduced with coalbed gas exceeded the national standards of China; however,physical,chemical,and biological properties of shallow groundwater could meet the national standard.(2) The water produced from coalbed contained mainly Na-Cl·HCO3,with average TDS of 4588.5 ppm,whereas shallow groundwater contained a mixture of chemicals including Na.Mg.Ca-HCO3·SO4 and Na.Mg-HCO3·SO4,with average TDS of 663.8 ppm.(3) In general,it was observed that bicarbonate and sodium accumulated in a reducing environment and deeper system,while depletion of hydrogen ions and dissolution of sulfate,calcium,and magnesium occurred in a redox environment and shallow system.(4) Sodium and kalium,ammonium,chloride,and bicarbonate ions were the main ions found in the study area.展开更多
The history of forecasting wind waves by wave energy conservation equation Is briefly described. Several currently used wave numerical models for shallow water based on different wave theories are discussed. Wave ener...The history of forecasting wind waves by wave energy conservation equation Is briefly described. Several currently used wave numerical models for shallow water based on different wave theories are discussed. Wave energy conservation models for the simulation of shallow water waves are introduced, with emphasis placed on the SWAN model, which takes use of the most advanced wave research achievements and has been applied to several theoretical and field conditions. The characteristics and applicability of the model, the finite difference numerical scheme of the action balance equation and its source terms computing methods are described in detail. The model has been verified with the propagation refraction numerical experiments for waves propagating in following and opposing currents; finally, the model is applied to the Haian Gulf area to simulate the wave height and wave period field there, and the results are compared with observed data.展开更多
Vertical errors often present in multibeam swath bathymetric data. They are mainly sourced by sound refraction, internal wave disturbance, imperfect tide correction, transducer mounting, long period heave, static draf...Vertical errors often present in multibeam swath bathymetric data. They are mainly sourced by sound refraction, internal wave disturbance, imperfect tide correction, transducer mounting, long period heave, static draft change, dynamic squat and dynamic motion residuals, etc. Although they can be partly removed or reduced by specific algorithms, the synthesized depth biases are unavoidable and sometimes have an important influence on high precise utilization of the final bathymetric data. In order to. confidently identify the decimeter-level changes in seabed morphology by MBES, we must remove or weaken depth biases and improve the precision of multibeam bathymetry further. The fixed-interval profiles that are perpendicular to the vessel track are generated to adjust depth biases between swaths. We present a kind of postprocessing method to minimize the depth biases by the histogram of cumulative depth biases. The datum line in each profile can be obtained by the maximum value of histogram. The corrections of depth biases can be calculated according to the datum line. And then the quality of final bathymetry can be improved by the corrections. The method is verified by a field test.展开更多
In this study, porosity was introduced into two-dimensional shallow water equations to reflect the effects of obstructions, leading to the modification of the expressions for the flux and source terms. An extra porosi...In this study, porosity was introduced into two-dimensional shallow water equations to reflect the effects of obstructions, leading to the modification of the expressions for the flux and source terms. An extra porosity source term appears in the momentum equation. The numerical model of the shallow water equations with porosity is presented with the finite volume method on unstructured grids and the modified Roe-type approximate Riemann solver. The source terms of the bed slope and porosity are both decomposed in the characteristic direction so that the numerical scheme can exactly satisfy the conservative property. The present model was tested with a dam break with discontinuous porosity and a flash flood in the Toce River Valley. The results show that the model can simulate the influence of obstructions, and the numerical scheme can maintain the flux balance at the interface with high efficiency and resolution.展开更多
Explicit finite difference code was used to calculate the stability factors of shallow tunnels without internal support in limit state. The proposed method was formulated within the nonassociative plasticity. For the ...Explicit finite difference code was used to calculate the stability factors of shallow tunnels without internal support in limit state. The proposed method was formulated within the nonassociative plasticity. For the shallow tunnels in soft clay, without considering the influences of pore water pressure and dilatancy, numerical results were compared with the previously published solutions. From the comparisons, it is found that the present solutions agree well with the previous solutions. The accuracy of the strength reduction technique was demonstrated through the comparisons. The influence of the pore water pressure was discussed. For the shallow tunnels in dilatant cohesive-frictional soils, the dilatant analysis was carried out.展开更多
The hybrid finite analytic(HFA) method is a kind of numerical scheme in rectangular element. In order to simulate the shallow circulation in irregular bathymetry by HFA scheme, the model in sigma coordinate system was...The hybrid finite analytic(HFA) method is a kind of numerical scheme in rectangular element. In order to simulate the shallow circulation in irregular bathymetry by HFA scheme, the model in sigma coordinate system was obtained. The model has been tested against three cases: 1) Wind induced circulation; 2) Density driven circulation and 3) Seiche oscillation. The results obtained in the present study compare well with those obtained from the corresponding analytical solutions under idealized for the above three cases. The hybrid finite analytic method and the circulation model in sigma coordinate system can be used calculate the flow and water quality in estuaries and coastal waters.展开更多
To study the compaction law and overpressure evolution in deepwater shallow sediments, a large-strain compaction model that considers material nonlinearity and moving boundary is formulated. The model considers the de...To study the compaction law and overpressure evolution in deepwater shallow sediments, a large-strain compaction model that considers material nonlinearity and moving boundary is formulated. The model considers the dependence of permeability and material properties on void ratio. The modified Cam-Clay model is selected as the constitutive relations of the sediments, and the deactivation/reactivation method is used to capture the moving top surface during the deposition process. A one-dimensional model is used to study the compaction law of the shallow sediments. Results show that the settlement of the shallow sediments is large under their own weight during compaction. The void ratio decreases strictly with burial depth and decreases more quickly near the seafloor than in the deeper layers. The generation of abnormal pressure in the shallow flow sands is closely related to the compaction law of shallow sediments. The two main factors that affect the generation of overpressure in the sands are deposition rate and permeability of overlying clay sediments. Overpressure increases with an increase in deposition rate and a decrease in the permeability of the overlying clay sediment. Moreover, an upper limit for the overpressure exists. A two-dimensional model is used to study the differential compaction of the shallow sediments. The pore pressure will still increase due to the inflow of the pore fluid from the neighboring clay sediment even though the deposition process is interrupted.展开更多
In this study, we applied a two-phase flow model to simulate water and sand blowout processes when penetrating shallow water flow(SWF) formations during deepwater drilling. We define ‘sand' as a pseudo-component ...In this study, we applied a two-phase flow model to simulate water and sand blowout processes when penetrating shallow water flow(SWF) formations during deepwater drilling. We define ‘sand' as a pseudo-component with high density and viscosity, which can begin to flow with water when a critical pressure difference is attained. We calculated the water and sand blowout rates and analyzed the influencing factors from them, including overpressure of the SWF formation, as well as its zone size, porosity and permeability, and drilling speed(penetration rate). The obtained data can be used for the quantitative assessment of the potential severity of SWF hazards. The results indicate that overpressure of the SWF formation and its zone size have significant effects on SWF blowout. A 10% increase in the SWF formation overpressure can result in a more than 90% increase in the cumulative water blowout and a 150% increase in the sand blowout when a typical SWF sediment is drilled. Along with the conventional methods of well flow and pressure control, chemical plugging, and the application of multi-layer casing, water and sand blowouts can be effectively reduced by increasing the penetration rate. As such, increasing the penetration rate can be a useful measure for controlling SWF hazards during deepwater drilling.展开更多
In this paper, a nonlinear model is presented to describe wave transformation in shallow water with the zero- vorticity equation of wave- number vector and energy conservation equation. The nonlinear effect due to an ...In this paper, a nonlinear model is presented to describe wave transformation in shallow water with the zero- vorticity equation of wave- number vector and energy conservation equation. The nonlinear effect due to an empirical dispersion relation (by Hedges) is compared with that of Dalrymple's dispersion relation. The model is tested against the laboratory measurements for the case of a submerged elliptical shoal on a slope beach, where both refraction and diffraction are significant. The computation results, compared with those obtained through linear dispersion relation, show that the nonlinear effect of wave transformation in shallow water is important. And the empirical dispersion relation is suitable for researching the nonlinearity of wave in shallow water.展开更多
The habitat suitability index(HSI) model was used to identify potential sites for sustainable restoration of ark shell, Scapharca subcrenata(Lischke), in the shallow water of Xiaoheishan Island, using a geographic inf...The habitat suitability index(HSI) model was used to identify potential sites for sustainable restoration of ark shell, Scapharca subcrenata(Lischke), in the shallow water of Xiaoheishan Island, using a geographic information system framework. The seven input variables of the HSI model were sediment composition, water temperature, salinity, dissolved oxygen, water depth, p H, and ammonia. A non-linear suitability function for each variable factor was used to transform the value into a normalized quality index ranging from 0(nonsuitability) to 1(best suitability). In present study, the analysis of habitat suitability was conducted for four seasons respectively. The majority of the study area has a high HSI value(>0.6) year round, which implies a strong suitability for restoration, with the optimal habitat located on the eastern side of the island.Correspondence analysis indicated that water temperature was the main factor causing seasonal variation,while sediment composition and water depth were the two major reasons for the differences in sites. The results of this work could provide support for restoration decision making through identification of potential sites for sustainable establishment of S. subcrenata.展开更多
基金Foundation item:This study was financially supported by the National Natural Science Foundation of China(Grant No.52101351)。
文摘A combined method of wave superposition and finite element is proposed to solve the radiation noise of targets in shallow sea.Taking the sound propagation of spherical sound source in shallow sea as an example,the radiation sound field of the spherical sound source is equivalent to the linear superposition of the radiation sound field of several internal point sound sources,and then the radiated noise induced by spherical sound source can be predicted quickly.The accuracy and efficiency of the method are verified by comparing with the numerical results of finite element method,and the rapid prediction of underwater radiated noise of cylindrical shell is carried out based on the method.The results show that compared with the finite element method,the relative error of the calculation results under different simulation conditions does not exceed 0.1%,and the calculation time is about 1/10 of the finite element method,so this method can be used to solve the radiated noise of shallow underwater targets.
文摘Oil spills continue to generate various issues and concerns regarding their effect and behavior in the marine environment,owing to the related potential for detrimental environmental,economic and social implications.It is essential to have a solid understanding of the ways in which oil interacts with the water and the coastal ecosystems that are located nearby.This study proposes a simplified model for predicting the plume-like transport behavior of heavy Bunker C fuel oil discharging downward from an acutely-angled broken pipeline located on the water surface.The results show that the spill overall profile is articulated in three major flow areas.The first,is the source field,i.e.,a region near the origin of the initial jet,followed by the intermediate or transport field,namely,the region where the jet oil flow transitions into an underwater oil plume flow and starts to move horizontally,and finally,the far-field,where the oil re-surface and spreads onto the shore at a significant distance from the spill site.The behavior of the oil in the intermediate field is investigated using a simplified injection-type oil spill model capable of mimicking the undersea trapping and lateral migration of an oil plume originating from a negatively buoyant jet spill.A rectangular domain with proper boundary conditions is used to implement the model.The Projection approach is used to discretize a modified version of the Navier-Stokes equations in two dimensions.A benchmark fluid flow issue is used to verify the model and the results indicate a reasonable relationship between specific gravity and depth as well as agreement with the aerial data and a vertical temperature profile plot.
文摘An integrated method that implements multivariate statistical analysis and ML methods to evaluate groundwater quality of the shallow aquifers of the Djerid and Kebili district,Southern Tunisia,was adopted.An evaluation of their suitability for irrigation and/or drinking purposes is necessary.A comprehensive hydrochemical assessment of 52 samples with entropy weighted water quality index(EWQI)was also proposed.Eleven water parameters were calculated to ascertain the potential use of those resources in irrigation and drinking.Multivariate analysis showed two main components with Dim1(variance=62.3%)and Dim.2(variance=22%),due to the bicarbonate,dissolution,and evaporation and the intrusion of drainage water.The evaluation of water quality has been carried out using EWQI model.The calculated EWQI for the Djerid and Kebili waters(i.e.,52 samples)varied between 7.5 and 152.62,indicating a range of 145.12.A mean of 79.12 was lower than the median(88.47).From the calculation of EWQI,only 14 samples are not suitable for irrigation because of their poor to extremely poor quality(26.92%).The bivariate plot showed high correlation for EWQI~TH(r=0.93),EWQI~SAR(r=0.87),indicating that water quality depended on those parameters.Diff erent ML algorithms were successfully applied for the water quality classifi cation.Our results indicated high prediction accuracy(SVM>LDA>ANN>kNN)and perfect classifi cation for kNN,LDA and Naive Bayes.For the purposes of developing the prediction models,the dataset was divided into two groups:training(80%)and testing(20%).To evaluate the models’performance,RMSE,MSE,MAE and R^(2) metrics were used.kNN(R^(2)=0.9359,MAE=6.49,MSE=79.00)and LDA(accuracy=97.56%;kappa=96.21%)achieved high accuracy.Moreover,linear regression indicated high correlation for both training(R^(2)=0.9727)and testing data(0.9890).This well confi rmed the validity of LDA algorithm in predicting water quality.Cross validation showed a high accuracy(92.31%),high sensitivity(89.47%)and high specifi city(95%).These fi ndings are fundamentally important for an integrated water resource management in a larger context of sustainable development of the Kebili district.
文摘The solution of the Riemann Problem (RP) for the one-dimensional (1D) non-linear Shallow Water Equations (SWEs) is known to produce four potential wave patterns for the scenario where the water depth is always positive. In this paper, we choose four test problems with exact solutions for the 1D SWEs. Each test problem is a RP with one of the four possible wave patterns as its solution. These problems are numerically solved using schemes from the family of Weighted Essentially Non-Oscillatory (WENO) methods. For comparison purposes, we also include results obtained from the Random Choice Method (RCM). This study has three main objectives. Firstly, we outline the procedures for the implementation of the methods employed in this paper. Secondly, we assess the performance of the schemes in conjunction with a second-order Total Variation Diminishing (TVD) flux on a variety of RPs for the 1D SWEs (for both short- and long-time simulations). Thirdly, we investigate if a single method yields optimal outcomes for all test problems. Optimal outcomes refer to numerical solutions devoid of spurious oscillations, exhibiting high resolution of discontinuities, and attaining high-order accuracy in the smooth parts of the solution.
文摘In this paper,we develop an entropy-conservative discontinuous Galerkin(DG)method for the shallow water(SW)equation with random inputs.One of the most popular methods for uncertainty quantifcation is the generalized Polynomial Chaos(gPC)approach which we consider in the following manuscript.We apply the stochastic Galerkin(SG)method to the stochastic SW equations.Using the SG approach in the stochastic hyperbolic SW system yields a purely deterministic system that is not necessarily hyperbolic anymore.The lack of the hyperbolicity leads to ill-posedness and stability issues in numerical simulations.By transforming the system using Roe variables,the hyperbolicity can be ensured and an entropy-entropy fux pair is known from a recent investigation by Gerster and Herty(Commun.Comput.Phys.27(3):639–671,2020).We use this pair and determine a corresponding entropy fux potential.Then,we construct entropy conservative numerical twopoint fuxes for this augmented system.By applying these new numerical fuxes in a nodal DG spectral element method(DGSEM)with fux diferencing ansatz,we obtain a provable entropy conservative(dissipative)scheme.In numerical experiments,we validate our theoretical fndings.
基金Supported by the National Eighty-Five-Year Project D09920109 and Chinese Academy of Sciences and State Education Commission
文摘This paper pnesents a third gneration shallow Whter disode spedtal wave nbotal medeIYE-WAM based on the spedtal action balance equation. The mode accounts for all edevan effectsof currents on waves, incuding tmpotally and spatialy varying depth and current inded refraction,sttalning and fequency shift and also explidtly takeS into aanunt all source terms, speclally adePth-limited breaking dheipation. In addition, an energy forcing scheme is propond and applied to themode’s open boundaries to areUn for the propagution of sedIs into the study spstem The upwinddiffeIenng scheme and a standard hybrid diffdrencing scheme for the propagaion terrn and a simpleEuler method for the source teme are employed.
文摘Liquid sloshing is a common phenomenon in the liquid tanks transportation. Liquid waves lead to fluctuating forces on the tank wall. Uncontrolled fluctuations lead to large forces and momentums. Baffles can control these fluctuations. A numerical method, which has been widely used to model this phenomenon, is Smoothed Particle Hydrodynamics(SPH). The Lagrangian nature of this method makes it suitable for simulating free surface flows. In the present study, an accurate Incompressible Smoothed Particle Hydrodynamics(ISPH) method is developed and improved using the kernel gradient correction tensors, particle shifting algorithms, k–ε turbulence model, and free surface particle detectors. Comparisons with the experimental data approve the ability of the present algorithm for simulating shallow water sloshing. The main aim of this study is to investigate the effects of the vertical baffle on the damping of liquid sloshing. Results show that baffles number has a major role in sloshing fluctuation damping.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11434012,11874061,and 41561144006)
文摘Underwater acoustic applications depend critically on the prediction of sound propagation, which can be significantly affected by a rough surface, especially in shallow water. This paper aims to investigate how randomly fluctuating surface influences transmission loss(TL) in shallow water. The one-dimension wind-wave spectrum, Monterey–Miami parabolic equation(MMPE) model, Monte Carlo method, and parallel computing technology are combined to investigate the effects of different sea states on sound propagation. It is shown that TL distribution properties are related to the wind speed,frequency, range, and sound speed profile. In a homogenous waveguide, with wind speed increasing, the TLs are greater and more dispersive. For a negative thermocline waveguide, when the source is above the thermocline and the receiver is below that, the effects of the rough surface are the same and more significant. When the source and receiver are both below the thermocline, the TL distributions are nearly the same for different wind speeds. The mechanism of the different TL distribution properties in the thermocline environment is explained by using ray theory. In conclusion, the statistical characteristics of TL are affected by the relative roughness of the surface, the interaction strength of the sound field with the surface, and the changes of propagating angle due to refraction.
基金Project(SQ2013CB021013)supported by the National Key Basic Research Program of ChinaProject(41002045)supported by the National Natural Science Foundation of China
文摘A systematic analysis of southwestern Ordos Basin's sedimentary characteristics,internal architectural element association styles and depositional model was illustrated through core statistics,well logging data and outcrop observations in Chang 8 oil-bearing group.This analysis indicates that shallow water delta sediments dominated by a fluvial system is the primary sedimentary system of the Chang 8 oil-bearing group of the Yanchang Formation in southwestern Ordos Basin.Four microfacies with fine grain sizes are identified: distributary channels,sheet sandstone,mouth bar and interdistributary fines.According to the sandbody's spatial distribution and internal architecture,two types of sandbody architectural element associations are identified: amalgamated distributary channels and thin-layer lobate sandstone.In this sedimentary system,net-like distributary channels at the delta with a narrow ribbon shape compose the skeleton of the sandbody that extends further into the delta front and shades into contiguous lobate distribution sheet sandstone in the distal delta front.The mouth bar is largely absent in this system.By analyzing the palaeogeomorphology,the palaeostructure background,sedimentary characteristics,sedimentary facies types and spatial distribution of sedimentary facies during the Chang 8 period,a distinctive depositional model of the Chang 8 shallow water fluvial-dominated delta was established,which primarily consists of straight multi-phase amalgamated distributary channels in the delta plain,net-like distributary channels frequently diverting and converging in the proximal delta front,sheet sandstones with dispersing contiguous lobate shapes in the distal delta front,and prodelta or shallow lake mudstones.
基金This work was financially supported bythe National High Technology and Development Programof China (Grant No.2004AA616180)
文摘Much attention should be paid to a large FPSO moored permanently in an oil field with water depth of only about 20 m, since shallow water effects on the hydrodynamics may bring about collision and damage. A 160kDWT FPSO with a permanent soft yoke mooring system is investigated with various shallow water depths and focuses are the low frequency surge motion and mooring load. Computation for the FPSO system is made based on linear 3-D potential fluid theory and time-domain numerical simulation method. Corresponding model test is carried out in the ocean engineering basin of Shanghai Jiao Tong University. It is shown that, in the surge natural period, low frequency surge motion and mooring force increase remarkably with the decrease of water depth. Especially, the smaller the ratio of water depth and draught is, the quicker the increase is. The shallow water effects should be taken into account carefully for determining the design load of a single point mooring system.
基金funded by the National Science and Technology Major Project (2011ZX05060-005 2009ZX05039-003)
文摘To reveal the geochemical characters of water coproduced with coalbed gas and shallow groundwater,water samples were collected from 12 wells of coalbed methane and 7 wells of shallow groundwater.The pH,CODMn,fCO2,total dissolved solids (TDS),total hardness,and concentrations of metasilicic acid,sodium and kalium,calcium ion,magnesium ion,ammonium iron,bicarbonate ion,carbonate,chloride,sulfate ion,nitrate ion,fluoride,lithium,zinc,nickel,manganese,iron,boron,barium,etc.of the samples were measured.Research results showed the following:(1) Concentrations of TDS,chloride,fluoride,sodium and kalium,ammonium,iron,and barium in the water coproduced with coalbed gas exceeded the national standards of China; however,physical,chemical,and biological properties of shallow groundwater could meet the national standard.(2) The water produced from coalbed contained mainly Na-Cl·HCO3,with average TDS of 4588.5 ppm,whereas shallow groundwater contained a mixture of chemicals including Na.Mg.Ca-HCO3·SO4 and Na.Mg-HCO3·SO4,with average TDS of 663.8 ppm.(3) In general,it was observed that bicarbonate and sodium accumulated in a reducing environment and deeper system,while depletion of hydrogen ions and dissolution of sulfate,calcium,and magnesium occurred in a redox environment and shallow system.(4) Sodium and kalium,ammonium,chloride,and bicarbonate ions were the main ions found in the study area.
基金"333"Project Scientific Research Foundation of Jiangsu ProvinceScience Fundation of Hohai University(3853)
文摘The history of forecasting wind waves by wave energy conservation equation Is briefly described. Several currently used wave numerical models for shallow water based on different wave theories are discussed. Wave energy conservation models for the simulation of shallow water waves are introduced, with emphasis placed on the SWAN model, which takes use of the most advanced wave research achievements and has been applied to several theoretical and field conditions. The characteristics and applicability of the model, the finite difference numerical scheme of the action balance equation and its source terms computing methods are described in detail. The model has been verified with the propagation refraction numerical experiments for waves propagating in following and opposing currents; finally, the model is applied to the Haian Gulf area to simulate the wave height and wave period field there, and the results are compared with observed data.
基金supported by the project of Shandong Provincial National Science Foundation for Distinguished Young Scholars(Grant No.JQ201113)SDUST's National Science Foundation for Distinguished Young Scholars(Grant No.2010KYJQ102)
文摘Vertical errors often present in multibeam swath bathymetric data. They are mainly sourced by sound refraction, internal wave disturbance, imperfect tide correction, transducer mounting, long period heave, static draft change, dynamic squat and dynamic motion residuals, etc. Although they can be partly removed or reduced by specific algorithms, the synthesized depth biases are unavoidable and sometimes have an important influence on high precise utilization of the final bathymetric data. In order to. confidently identify the decimeter-level changes in seabed morphology by MBES, we must remove or weaken depth biases and improve the precision of multibeam bathymetry further. The fixed-interval profiles that are perpendicular to the vessel track are generated to adjust depth biases between swaths. We present a kind of postprocessing method to minimize the depth biases by the histogram of cumulative depth biases. The datum line in each profile can be obtained by the maximum value of histogram. The corrections of depth biases can be calculated according to the datum line. And then the quality of final bathymetry can be improved by the corrections. The method is verified by a field test.
基金supported by the National Natural Science Foundation of China (Grants No. 50909065 and 51109039)the National Basic Research Program of China (973 Program, Grant No. 2012CB417002)
文摘In this study, porosity was introduced into two-dimensional shallow water equations to reflect the effects of obstructions, leading to the modification of the expressions for the flux and source terms. An extra porosity source term appears in the momentum equation. The numerical model of the shallow water equations with porosity is presented with the finite volume method on unstructured grids and the modified Roe-type approximate Riemann solver. The source terms of the bed slope and porosity are both decomposed in the characteristic direction so that the numerical scheme can exactly satisfy the conservative property. The present model was tested with a dam break with discontinuous porosity and a flash flood in the Toce River Valley. The results show that the model can simulate the influence of obstructions, and the numerical scheme can maintain the flux balance at the interface with high efficiency and resolution.
基金Project(200550) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of ChinaProject (09JJ1008) supported by the Natural Science Foundation of Hunan Province, China
文摘Explicit finite difference code was used to calculate the stability factors of shallow tunnels without internal support in limit state. The proposed method was formulated within the nonassociative plasticity. For the shallow tunnels in soft clay, without considering the influences of pore water pressure and dilatancy, numerical results were compared with the previously published solutions. From the comparisons, it is found that the present solutions agree well with the previous solutions. The accuracy of the strength reduction technique was demonstrated through the comparisons. The influence of the pore water pressure was discussed. For the shallow tunnels in dilatant cohesive-frictional soils, the dilatant analysis was carried out.
文摘The hybrid finite analytic(HFA) method is a kind of numerical scheme in rectangular element. In order to simulate the shallow circulation in irregular bathymetry by HFA scheme, the model in sigma coordinate system was obtained. The model has been tested against three cases: 1) Wind induced circulation; 2) Density driven circulation and 3) Seiche oscillation. The results obtained in the present study compare well with those obtained from the corresponding analytical solutions under idealized for the above three cases. The hybrid finite analytic method and the circulation model in sigma coordinate system can be used calculate the flow and water quality in estuaries and coastal waters.
基金funded by the National Key Basic Research Program of China (973 Program) (No. 2015 CB25 1201)NSFC-Shandong Joint Fund for Marine Science Research Centers (No. U1606401)Key Science & Technology Foundation of Sanya (Nos. 2017PT13 and 2017PT14)
文摘To study the compaction law and overpressure evolution in deepwater shallow sediments, a large-strain compaction model that considers material nonlinearity and moving boundary is formulated. The model considers the dependence of permeability and material properties on void ratio. The modified Cam-Clay model is selected as the constitutive relations of the sediments, and the deactivation/reactivation method is used to capture the moving top surface during the deposition process. A one-dimensional model is used to study the compaction law of the shallow sediments. Results show that the settlement of the shallow sediments is large under their own weight during compaction. The void ratio decreases strictly with burial depth and decreases more quickly near the seafloor than in the deeper layers. The generation of abnormal pressure in the shallow flow sands is closely related to the compaction law of shallow sediments. The two main factors that affect the generation of overpressure in the sands are deposition rate and permeability of overlying clay sediments. Overpressure increases with an increase in deposition rate and a decrease in the permeability of the overlying clay sediment. Moreover, an upper limit for the overpressure exists. A two-dimensional model is used to study the differential compaction of the shallow sediments. The pore pressure will still increase due to the inflow of the pore fluid from the neighboring clay sediment even though the deposition process is interrupted.
基金Financial supports by the 973 National Research Project of China (No. 2015CB251201)the program for Changjiang Scholars and Innovative Research Team in University (‘PCSIRT’) (IRT_14R58)the Fundamental Research Funds for the Central Universities (No. 15CX0 5036A)
文摘In this study, we applied a two-phase flow model to simulate water and sand blowout processes when penetrating shallow water flow(SWF) formations during deepwater drilling. We define ‘sand' as a pseudo-component with high density and viscosity, which can begin to flow with water when a critical pressure difference is attained. We calculated the water and sand blowout rates and analyzed the influencing factors from them, including overpressure of the SWF formation, as well as its zone size, porosity and permeability, and drilling speed(penetration rate). The obtained data can be used for the quantitative assessment of the potential severity of SWF hazards. The results indicate that overpressure of the SWF formation and its zone size have significant effects on SWF blowout. A 10% increase in the SWF formation overpressure can result in a more than 90% increase in the cumulative water blowout and a 150% increase in the sand blowout when a typical SWF sediment is drilled. Along with the conventional methods of well flow and pressure control, chemical plugging, and the application of multi-layer casing, water and sand blowouts can be effectively reduced by increasing the penetration rate. As such, increasing the penetration rate can be a useful measure for controlling SWF hazards during deepwater drilling.
文摘In this paper, a nonlinear model is presented to describe wave transformation in shallow water with the zero- vorticity equation of wave- number vector and energy conservation equation. The nonlinear effect due to an empirical dispersion relation (by Hedges) is compared with that of Dalrymple's dispersion relation. The model is tested against the laboratory measurements for the case of a submerged elliptical shoal on a slope beach, where both refraction and diffraction are significant. The computation results, compared with those obtained through linear dispersion relation, show that the nonlinear effect of wave transformation in shallow water is important. And the empirical dispersion relation is suitable for researching the nonlinearity of wave in shallow water.
基金The National Natural Science Foundation of China under contract No.41206102the Program of the Key Laboratory of Marine Ecology and Environmental Science and Engineering,State Oceanic Administration under contract No.MESE-2013-01
文摘The habitat suitability index(HSI) model was used to identify potential sites for sustainable restoration of ark shell, Scapharca subcrenata(Lischke), in the shallow water of Xiaoheishan Island, using a geographic information system framework. The seven input variables of the HSI model were sediment composition, water temperature, salinity, dissolved oxygen, water depth, p H, and ammonia. A non-linear suitability function for each variable factor was used to transform the value into a normalized quality index ranging from 0(nonsuitability) to 1(best suitability). In present study, the analysis of habitat suitability was conducted for four seasons respectively. The majority of the study area has a high HSI value(>0.6) year round, which implies a strong suitability for restoration, with the optimal habitat located on the eastern side of the island.Correspondence analysis indicated that water temperature was the main factor causing seasonal variation,while sediment composition and water depth were the two major reasons for the differences in sites. The results of this work could provide support for restoration decision making through identification of potential sites for sustainable establishment of S. subcrenata.