By combining the results of laboratory model tests with relevant flow rules, the failure mode of shallow unsymmetrical loading tunnels and the corresponding velocity field were established. According to the principle ...By combining the results of laboratory model tests with relevant flow rules, the failure mode of shallow unsymmetrical loading tunnels and the corresponding velocity field were established. According to the principle of virtual power, the upper bound solution for surrounding rock pressure of shallow unsymmetrical loading tunnel was derived and verified by an example. The results indicate that the calculated results of the derived upper bound method for surrounding rock pressure of shallow unsymmetrical loading tunnels are relatively close to those of the existing "code method" and test results, which means that the proposed method is feasible. The current code method underestimates the unsymmetrical loading feature of surrounding rock pressure of shallow unsymmetrical loading tunnels, so it is unsafe; when the burial depth is less or greater than two times of the tunnel span and the unsymmetrical loading angle is less than 45°, the upper bound method or the average value of the results calculated by the upper bound method and code method respectively, is comparatively reasonable. When the burial depth is greater than two times of the tunnel span and the unsymmetrical loading angle is greater than 45°, the code method is more suitable.展开更多
According to the interaction of three shallow tunnels with large section, the analytical solution to rock pressure has been derived and discussed. The load model is given when the bilateral tunnels are excavated. Acco...According to the interaction of three shallow tunnels with large section, the analytical solution to rock pressure has been derived and discussed. The load model is given when the bilateral tunnels are excavated. According to the model, the stresses of three tunnels and single tunnel are calculated and compared to analyze the distribution characteristics, where the stresses are influenced by controlling factors of clear distance, covering depth and inclination angle of ground surface. The results show that, in general, the bias distribution is more serious. Therefore, it is significant to settle down the load model of three shallow tunnels so as to determine the measure of reinforcement and design the structure of support. The model and results can be used as a theoretical basis in designation and further research of the three shallow tunnels.展开更多
In order to study the unsymmetrical load effect in geological bedding strata for the Muzhailing tunnel on the Lanzhou-Chongqing passenger dedicated line in China, we investigated the deformation, mechanical response a...In order to study the unsymmetrical load effect in geological bedding strata for the Muzhailing tunnel on the Lanzhou-Chongqing passenger dedicated line in China, we investigated the deformation, mechanical response and pressure of the surrounding rock and the mechanical characteristics of bolts of the tunnel. The results suggest that open zones appear at arch and invert where joints open up, when layered stratum is horizontal, or when the dip angle of in- clined bedding is small. Open zones occur perpendicular to a joint. The failure mode is bending disjunction at the arch tain shear displacement, and lead to obvious geological bedding unsymmetrical load. The failure mode is shear damage. For the joint dip angle in the range of 75-90°, the failure mode is flexural crushing at the wall and vertical shear rup- ture above the arch. The restraining effect of two sides weakens for vertical dip. On the whole, shear failure instabilitytrend would occur and the tunnel collapses evenly. When the angle between the bolt and structure plane is greater than 23°, bolts can enhance the shearing stiffness of joint plane. Unfortunately, in the general purpose graph of tunnel for 250 km/h of passenger dedicated lines, the bolts have equal length and spacing. The rationale behind this is worthy offurther study. For inclined bedding, the surrounding rock pressure at the left wall is more than that at the right wall. In addition, lining is likely to be damaged at left shoulder and side wall. With the dip angle increasing, the unsymmetrical load gradually achieves symmetry. Asymmetry design for support is recommended to reduce the unsymmetrical load on lining disturbed by excavation.展开更多
基金Project(2014M560652)supported by China Postdoctoral Science FoundationProjects(2011CB013802,2013CB036004)supported by the National Basic Research Program of China
文摘By combining the results of laboratory model tests with relevant flow rules, the failure mode of shallow unsymmetrical loading tunnels and the corresponding velocity field were established. According to the principle of virtual power, the upper bound solution for surrounding rock pressure of shallow unsymmetrical loading tunnel was derived and verified by an example. The results indicate that the calculated results of the derived upper bound method for surrounding rock pressure of shallow unsymmetrical loading tunnels are relatively close to those of the existing "code method" and test results, which means that the proposed method is feasible. The current code method underestimates the unsymmetrical loading feature of surrounding rock pressure of shallow unsymmetrical loading tunnels, so it is unsafe; when the burial depth is less or greater than two times of the tunnel span and the unsymmetrical loading angle is less than 45°, the upper bound method or the average value of the results calculated by the upper bound method and code method respectively, is comparatively reasonable. When the burial depth is greater than two times of the tunnel span and the unsymmetrical loading angle is greater than 45°, the code method is more suitable.
基金Projects(2013CB036004, 2011CB013800) supported by the National Basic Research Program of ChinaProject(51178468, 50908234) supported by the National Natural Science Foundation of ChinaProject(2011G103-B) supported by the Science and Technology Development of Railway in China
文摘According to the interaction of three shallow tunnels with large section, the analytical solution to rock pressure has been derived and discussed. The load model is given when the bilateral tunnels are excavated. According to the model, the stresses of three tunnels and single tunnel are calculated and compared to analyze the distribution characteristics, where the stresses are influenced by controlling factors of clear distance, covering depth and inclination angle of ground surface. The results show that, in general, the bias distribution is more serious. Therefore, it is significant to settle down the load model of three shallow tunnels so as to determine the measure of reinforcement and design the structure of support. The model and results can be used as a theoretical basis in designation and further research of the three shallow tunnels.
基金supported by the National Natural Science Foundation of China (No. 51078318)
文摘In order to study the unsymmetrical load effect in geological bedding strata for the Muzhailing tunnel on the Lanzhou-Chongqing passenger dedicated line in China, we investigated the deformation, mechanical response and pressure of the surrounding rock and the mechanical characteristics of bolts of the tunnel. The results suggest that open zones appear at arch and invert where joints open up, when layered stratum is horizontal, or when the dip angle of in- clined bedding is small. Open zones occur perpendicular to a joint. The failure mode is bending disjunction at the arch tain shear displacement, and lead to obvious geological bedding unsymmetrical load. The failure mode is shear damage. For the joint dip angle in the range of 75-90°, the failure mode is flexural crushing at the wall and vertical shear rup- ture above the arch. The restraining effect of two sides weakens for vertical dip. On the whole, shear failure instabilitytrend would occur and the tunnel collapses evenly. When the angle between the bolt and structure plane is greater than 23°, bolts can enhance the shearing stiffness of joint plane. Unfortunately, in the general purpose graph of tunnel for 250 km/h of passenger dedicated lines, the bolts have equal length and spacing. The rationale behind this is worthy offurther study. For inclined bedding, the surrounding rock pressure at the left wall is more than that at the right wall. In addition, lining is likely to be damaged at left shoulder and side wall. With the dip angle increasing, the unsymmetrical load gradually achieves symmetry. Asymmetry design for support is recommended to reduce the unsymmetrical load on lining disturbed by excavation.