Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thi...Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thickness measurement limits its widespread application. This paper proposes a method that utilizes cylindrical shear horizontal(SH) guided waves to estimate pipeline thickness without prior knowledge of shear wave velocity. The inversion formulas are derived from the dispersion of higher-order modes with the high-frequency approximation. The waveform of the example problems is simulated using the real-axis integral method. The data points on the dispersion curves are processed in the frequency domain using the wave-number method. These extracted data are then substituted into the derived formulas. The results verify that employing higher-order SH guided waves for the evaluation of thickness and shear wave velocity yields less than1% error. This method can be applied to both metallic and non-metallic pipelines, thus opening new possibilities for health monitoring of pipeline structures.展开更多
Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe seve...Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe severely affects its pressure-holding capacity,hence the early detection of internal cracks is crucial for effective pipeline maintenance strategies.This study extends the scope of guided wave-based ultrasonic testing to detect the growth of internal cracks in a natural gas distribution PE pipe.Laboratory experiments and a finite element model were planned to study the wave-crack interaction at different stages of axially oriented internal crack growth with a piezoceramic transducer-based setup arranged in a pitch-catch configuration.Mode dispersion analysis supplemented with preliminary experiments was performed to isolate the optimal inspection frequency,leading to the selection of the T(0,1)mode at 50-kHz for the investigation.A transmission index based on the energy of the T(0,1)mode was developed to trace the extent of simulated crack growth.The findings revealed an inverse linear correlation between the transmission index and the crack depth for crack growth beyond 20%crack depth.展开更多
Carbon fiber-reinforced polymer(CFRP)is widely used in aerospace applications.This kind of material may face the threat of high-velocity impact in the process of dedicated service,and the relevant research mainly cons...Carbon fiber-reinforced polymer(CFRP)is widely used in aerospace applications.This kind of material may face the threat of high-velocity impact in the process of dedicated service,and the relevant research mainly considers the impact resistance of the material,and lacks the high-velocity impact damage monitoring research of CFRP.To solve this problem,a real high-velocity impact damage experiment and structural health monitoring(SHM)method of CFRP plate based on piezoelectric guided wave is proposed.The results show that CFRP has obvious perforation damage and fiber breakage when high-velocity impact occurs.It is also proved that guided wave SHM technology can be effectively used in the monitoring of such damage,and the damage can be reflected by quantifying the signal changes and damage index(DI).It provides a reference for further research on guided wave structure monitoring of high/hyper-velocity impact damage of CFRP.展开更多
Based on attenuated total reflection (ATR) and thermo-optic effect, the polymeric thin film planar optical waveguide is used as the temperature sensor, and the factors influencing the sensitivity of the temperature ...Based on attenuated total reflection (ATR) and thermo-optic effect, the polymeric thin film planar optical waveguide is used as the temperature sensor, and the factors influencing the sensitivity of the temperature sensor are comprehensively analyzed. Combined with theoretical analysis and experimental investigation, the sensitivity of the temperature sensor is related to the thicknesses of the upper cladding layer, the waveguide layer, the optical loss of the polymer material and the guided wave modes. The results show that the slope value about reflectivity and temperature, which stands for the sensitivity of the polymer thin film temperature sensor, is associated with the waveguide film thickness and the guided wave modes, and the slope value is the highest in the zero reflectance of a certain transverse electric (TE) mode. To improve the sensitivity of the temperature sensor, the sensor's working incident light exterior angle α should be chosen under a certain TE mode with the reflectivity to be zero. This temperature sensor is characterized by high sensitivity and simple structure and it is easily fabricated.展开更多
Ultrasonic guided wave inspection is an effective non-destructive testing method which can be used for stress level evaluation in steel strands.Unfortunately the propagation velocity of ultrasonic guided waves changes...Ultrasonic guided wave inspection is an effective non-destructive testing method which can be used for stress level evaluation in steel strands.Unfortunately the propagation velocity of ultrasonic guided waves changes due to temperature shift making the prestress measurement of steel strands inaccurate and even sometimes impossible.In the course of solving the problem,this paper reports on quantitative research on the temperature dependence of ultrasonic longitudinal guided wave propagation in long range steel strands.In order to achieve the generation and reception of a chosen longitudinal mode in a steel strand with a helical shaped surface,a new type of magnetostrictive transducer was developed,characterized by a group of thin clips and three identical permanent magnets.Excitation and reception of ultrasonic guided waves in a steel strand were performed experimentally.Experimental results shows that in the temperature range from-4 ℃ to 34 ℃,the propagation velocity of the L(0,1) mode at 160 kHz linearly decreased with increasing temperature and its temperature dependent coefficient was 0.90(m·s-1 ·(℃)-1) which is very close to the theoretical prediction.The effect of dimension deviation between the helical and center wires and the effect of the thermal expansion of the steel strand on ultrasonic longitudinal guided wave propagation were also analyzed.It was found that these effects could be ignored compared with the change in the material mechanical properties of the steel strands due to temperature shift.It was also observed that the longitudinal guided wave mode was somewhat more sensitive to temperature changes compared with conventional ultrasonic waves theoretically.Therefore,it is considered that the temperature effect on ultrasonic longitudinal guided wave propagation in order to improve the accuracy of stress measurement in prestressed steel strands.Quantitative research on the temperature dependence of ultrasonic guided wave propagation in steel strands provides an important basis for the compensation of temperature effects in stress measurement in steel strands by using ultrasonic guided wave inspection.展开更多
The noncollinear interaction of guided optical waves with magnetostatic waves under inclined bias magnetic field is theoretically studied in detail. Similar approach can also be applied to the collinear interaction. C...The noncollinear interaction of guided optical waves with magnetostatic waves under inclined bias magnetic field is theoretically studied in detail. Similar approach can also be applied to the collinear interaction. Calculation results indicate that the diffraction efficiency (DE) in magnitude is equal to the mode-conversion efficiency (MCE) under vertical bias magnetic field, but they differ greatly under inclined bias magnetic field. By comparison to the case of vertical magnetization, the DE or the MCE can be greatly increased under inclined magnetic field. The characteristic of the DE curves obtained is basically in agreement with the experimental result.展开更多
Due to the merits of high inspection speed and long detecting distance, Ultrasonic Guided Wave(UGW) method has been commonly applied to the on-line maintenance of power transmission line. However, the guided wave pr...Due to the merits of high inspection speed and long detecting distance, Ultrasonic Guided Wave(UGW) method has been commonly applied to the on-line maintenance of power transmission line. However, the guided wave propagation in this structure is very complicated, leading to the unfavorable defect localization accuracy. Aiming at this situation, a high precision UGW technique for inspection of local surface defect in power transmission line is proposed. The technique is realized by adopting a novel segmental piezoelectric ring transducer and transducer mounting scheme, combining with the comprehensive characterization of wave propagation and circumferential defect positioning with multiple piezoelectric elements. Firstly, the propagation path of guided waves in the multi-wires of transmission line under the proposed technique condition is investigated experimentally. Next, the wave velocities are calculated by dispersion curves and experiment test respectively, and from comparing of the two results, the guided wave mode propagated in transmission line is confirmed to be F(1,1) mode. Finally, the axial and circumferential positioning of local defective wires in transmission line are both achieved, by using multiple piezoelectric elements to surround the stands and send elastic waves into every single wire. The proposed research can play a role of guiding the development of highly effective UGW method and detecting system for multi-wire transmission line.展开更多
A model of guided circumferential waves propagating in double-walled carbon nanotubes is built by the theory of wave propagation in continuum mechanics, while the van der Waals force between the inner and outer nanotu...A model of guided circumferential waves propagating in double-walled carbon nanotubes is built by the theory of wave propagation in continuum mechanics, while the van der Waals force between the inner and outer nanotube has been taken into account in the model. The dispersion curves of the guided circumferential wave propagation are studied, and some dispersion characteristics are illustrated by comparing with those of single-walled carbon nanotubes. It is found that in double-walled carbon nanotubes, the guided circumferential waves will propagate in more dispersive ways. More interactions between neighboring wave modes may take place. In particular, it has been found that a couple of wave modes may disappear at a certain frequency and that, while a couple of wave modes disappear, another new couple of wave modes are excited at the same wave number.展开更多
The property of acoustic guided waves generated in a fluid-filled borehole surrounded by a non-Newtonian (Maxwell) fluid-saturated porous formation with a permeable wall is investigated. The influence of non-Newtoni...The property of acoustic guided waves generated in a fluid-filled borehole surrounded by a non-Newtonian (Maxwell) fluid-saturated porous formation with a permeable wall is investigated. The influence of non-Newtonian effects on acoustic guided waves such as Stoneley waves, pseudo-Rayleigh waves, flexural waves, and screw waves propagations in a fluid-filled borehole is demonstrated based on the generalized Biot-Tsiklauri model by calculating their velocity dispersion and attenuation coefficients. The corresponding acoustic waveforms illustrate their properties in time domain. The results are also compared with those based on generalized Biot's theory. The results show that the influence of non-Newtonian effect on acoustic guided wave, especially on the attenuation coefficient of guided wave propagation in borehole is noticeable.展开更多
We investigate the interface-guided mode of Lamb waves in a phononic crystal heterostructures plate, which is com- posed of two different semi-infinite phononic crystal (PC) plates. The interface-guided modes of the...We investigate the interface-guided mode of Lamb waves in a phononic crystal heterostructures plate, which is com- posed of two different semi-infinite phononic crystal (PC) plates. The interface-guided modes of the Lamb wave can be obtained by the lateral lattice slipping or by the interface longitudinal gliding. Significantly, it is observed that the condition to generate the interface-guided modes of the Lamb wave is more demanding than that of the studied fluid-fluid system. The interface-guided modes are strongly affected not only by the relative movement of the two semi-infinite PCs but also by the thickness of the PC plate.展开更多
On the basis of second-order perturbation approximate and modal expansion approach,we investigate the enhancement effect of cumulative second-harmonic generation(SHG)of circumferential guided waves(CGWs)in a circular ...On the basis of second-order perturbation approximate and modal expansion approach,we investigate the enhancement effect of cumulative second-harmonic generation(SHG)of circumferential guided waves(CGWs)in a circular tube,which is inherently induced by the closed propagation feature of CGWs.An appropriate mode pair of primary-and double-frequency CGWs satisfying the phase velocity matching and nonzero energy flux is selected to ensure that the second harmonic generated by primary CGW propagation can accumulate along the circumference.Using a coherent superposition of multi-waves,a model of unidirectional CGW propagation is established for analyzing the enhancement effect of cumulative SHG of primary CGW mode selected.The theoretical analyses and numerical simulations performed directly demonstrate that the second harmonic generated does have a cumulative effect along the circumferential direction and the closed propagation feature of CGWs does enhance the magnitude of cumulative second harmonic generated.Potential applications of the enhancement effect of cumulative SHG of CGWs are considered and discussed.The theoretical analysis and numerical simulation perspective presented here yield an insight previously unavailable into the physical mechanism of the enhancement effect of cumulative SHG by closed propagation feature of CGWs in a circular tube.展开更多
The effect of second-harmonic generation (SHG) by primary (fundamental) circumferential guided wave (CGW) propagation is investigated from a numerical standpoint. To enable that the second harmonic of the primar...The effect of second-harmonic generation (SHG) by primary (fundamental) circumferential guided wave (CGW) propagation is investigated from a numerical standpoint. To enable that the second harmonic of the primary CGW mode can accumulate along the circumferential direction, an appropriate mode pair of primary and double frequency CGWs is chosen. Finite element simulations and evaluations of nonlinear CGW propagation are analyzed for the selected CGW mode pair. The numerical simulations performed directly demonstrate that the response of SHG is completely generated by the desired primary CGW mode that satisfies the condition of phase velocity matching at a specific driving frequency, and that the second harmonic of the primary CGW mode does have a cumulative effect with circumferential angles. The numerical perspective obtained yields an insight into the complicated physical process of SHG of primary CGW propagation unavailable previously.展开更多
Ultrasonic guided wave have the multi-modes and dispersive characteristics, and its modes are easy to be converted at boundary or when running into defects in pipes, which makes the discrimination of different guided ...Ultrasonic guided wave have the multi-modes and dispersive characteristics, and its modes are easy to be converted at boundary or when running into defects in pipes, which makes the discrimination of different guided waves modes of the reflection signals in pipes NDT very hard. In this work, firstly, the experiments are carried out to test two kinds of stainless steel pipes by applying guided waves NDT, one is integrated pipe and another is non-integrated pipe with a small hole defect, and the detected guided waves echo signals are respectively obtained. Secondly, the measured signals are processed by matching pursuit method and the Chirplet matching atom parameters are calculated. By calculating the time-frequency distributions spectrum of detected guided waves echo signals, torsional, flexural and longitudinal guided waves modes are identified from the intact pipe, and the two wave-packets with torsional and flexural guided waves modes are also identified from the pipe with hole defect. The results showed that the matching pursuit method has a tremendous advantage to identify different guided waves modes in pipes nondestructive testing.展开更多
Guided wave in plate propagates like shear waves and Lamb waves. Both kinds are very dispersive waves. Generation and analysis of dispersion curves is very important. Those are used to predict and describe the relatio...Guided wave in plate propagates like shear waves and Lamb waves. Both kinds are very dispersive waves. Generation and analysis of dispersion curves is very important. Those are used to predict and describe the relation between frequency, thickness with phase velocity, group velocity and wave mode. For a stainless steel plate with thickness 5.89 mm we built dispersion curves for shear and Lamb waves. A method based on peak frequency shifts of the shear waves along with the thickness was applied. In line with dispersion curves of shear waves phase velocity was seen that mode of waves translate in some points, have experiment performance much better than other points.展开更多
Plasmonic waveguides,as a competitive candidate,have been widely studied in rapid developing photonic integrated circuits(PICs)and optical interconnection fields.However,crosstalk between plasmonic waveguides is a cri...Plasmonic waveguides,as a competitive candidate,have been widely studied in rapid developing photonic integrated circuits(PICs)and optical interconnection fields.However,crosstalk between plasmonic waveguides is a critical issue that has to be considered in practice.Actually,crosstalk dominates the ultimate integration density of the planar photonic circuits.This paper reviews the recent research work on evaluation methods and crosstalk suppression approaches of plasmonic waveguides.Three crosstalk evaluation methods based on comparison of specific parameters of waveguides have been summarized.Furthermore,four specific approaches to reduce crosstalk have been illustrated as two categories according to their impacts on waveguide performances and the whole circuit.One means of crosstalk suppression is changing the placement of waveguides,which could maintain the transmission characteristics of the original waveguide.The other means is inserting medium,which has the advantage of occupying smaller space compared to the first method.Consequently,to suppress crosstalk between plasmonic waveguides,one should choose suitable approach.展开更多
In the industrial fields, many high temperature structures that require a non-destructive inspection exist. However, there are currently few sensors that can carry out non-destructive testing in a high temperature env...In the industrial fields, many high temperature structures that require a non-destructive inspection exist. However, there are currently few sensors that can carry out non-destructive testing in a high temperature environment. In particular, the ultrasonic sensor is normally not used at over 50 degrees Celsius. Also, a special sensor for high temperature is currently available, but there are various constraints;it has not yet reached a level that is useful in industry. Therefore, we have been developing a new sensor system using a long waveguide which can transmit an ultrasonic wave from a long distance. Especially, this study focuses on applying the developed technique to a pipe which is used in a nuclear power plant. Therefore, the best rectangular-shaped waveguide was studied and attempted to be wound around a pipe to be driven by an acoustic source of a guide wave. Finally, the L (0, 2) and T (0, 1)-mode guide waves were successfully detected by optimizing the shape of the opposite edge of the rectangular-shaped waveguide that could detect the reflected signal from an artificial defect machined into a test pipe.展开更多
Guided waves based damage detection methods using base signals offer the advantages of simplicity of signal generation and reception,sensitivity to damage,and large area coverage;however,applications of the technology...Guided waves based damage detection methods using base signals offer the advantages of simplicity of signal generation and reception,sensitivity to damage,and large area coverage;however,applications of the technology are limited by the sensitivity to environmental temperature variations.In this paper,a Spearman Damage Index-based damage diagnosis method for structural health condition monitoring under varying temperatures is presented.First,a PZT sensor-based Guided wave propagation model is proposed and employed to analyze the temperature effect.The result of the analysis shows the wave speed of the Guided wave signal has higher temperature sensitivity than the signal fluctuation features.Then,a Spearman rank correlation coefficient-based damage index is presented to identify damage of the structure under varying temperatures.Finally,a damage detection test on a composite plate is conducted to verify the effectiveness of the Spearman Damage Index-based damage diagnosis method.Experimental results show that the proposed damage diagnosis method is capable of detecting the existence of the damage and identify its location under varying temperatures.展开更多
Using periodic permanent magnet(PPM)electromagnetic acoustic transducers(EMATs),different shear horizontal(SH)guided wave modes can form simultaneously in some situations,which can interfere with the inspection.The ma...Using periodic permanent magnet(PPM)electromagnetic acoustic transducers(EMATs),different shear horizontal(SH)guided wave modes can form simultaneously in some situations,which can interfere with the inspection.The main cause of this phenomenon(typically named multiple modes)is related to the frequency bandwidth of excitation signals and the transducer spatial bandwidth.Simply narrowing the frequency bandwidth cannot effectively limit the number of different SH modes.Previous researches showed that unnecessary SH wave modes can be eliminated by using dual EMATs.However,in practical applications,it is more convenient to change the excitation frequency than to use dual EMATs.In this paper,the stress boundary conditions of the PPM-EMAT are analyzed,the analytical expression of SH guided wave is established,and the magnitude of SH guided wave mode under continuous tone and tone-burst input is obtained.A method to generate a single SH mode by re-selecting an operating point is proposed.Furthermore,the influence of the frequency bandwidth of the tone-burst signal is analyzed.Finally,a single SH mode excitation is achieved with tone-burst input.展开更多
Probability-based diagnostic imaging(PDI)is one of the most well-known damage identification methods using guided waves.It is usually applied to diagnose damage in plates.The previous studies were dependent on the cer...Probability-based diagnostic imaging(PDI)is one of the most well-known damage identification methods using guided waves.It is usually applied to diagnose damage in plates.The previous studies were dependent on the certain damage index(DI)which is always calculated from the guided wave signals.In conventional methods,DI is simply defined by comparing the real-time data with the baseline data as reference.However,the baseline signal is easily affected by varying environmental conditions of structures.In this paper,a reference-free diagnostic imaging method is developed to avoid the influence of environmental factors,such as temperature and load conditions.The DI is defined based on the mode conversion of multi-mode guided waves with realtime signals without baseline signals.To improve the accuracy of diagnosis,two terms are included in the reference-free DI.One is called energy DI,which is defined based on the feature of signal energy.The other is called correlation DI and is defined based on the correlation coefficient.Then the PDI algorithm can be carried out instantaneously according to the reference-free DI.The real-time signals which are used to calculate DI are collected by the piezoelectric lead zirconate titanate(PZT)transducers placed on both sides of a plate.The numerical simulations by the finite element(FE)method on aluminum plates with PZT arrays are performed to validate the effectiveness of the reference-free damage diagnostic imaging.The approach is validated by two different arrays:a circle network and a square network.The results of diagnostic imaging are demonstrated and discussed in this paper.Furthermore,the advantage of reference-free DI is investigated by comparing the accuracy of defined reference-free DI and energy DI.展开更多
The experimental observation of cumulative second-harmonic generation of the primary circumferential guided wave propagation is reported. A pair of wedge transducers is used to generate the primary circumferential gui...The experimental observation of cumulative second-harmonic generation of the primary circumferential guided wave propagation is reported. A pair of wedge transducers is used to generate the primary circumferential guided wave desired and to detect its fundamental-frequency and second-harmonic amplitudes on the outside surface of the circular tube. The amplitudes of the fundamental waves and the second harmonics of the circumferential guided wave propagation are measured for different separations between the two wedge transducers. At the driving frequency where the primary and the double-frequency circumferential guided waves have the same linear phase velocities, the clear second-harmonic signals can be observed. The quantitative relationships between the second-harmonic amplitudes and circumferential angle are analyzed. It is experimentally verified that the second harmonics of primary circumferential guided waves do have a cumulative growth effect with the circumferential angle.展开更多
基金Project supported by the Natural Science Foundation of Jilin Province of China(Grant Nos.20240402081GH and 20220101012JC)the National Natural Science Foundation of China(Grant No.42074139)the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLA202308)。
文摘Thickness measurement plays an important role in the monitoring of pipeline corrosion damage. However, the requirement for prior knowledge of the shear wave velocity in the pipeline material for popular ultrasonic thickness measurement limits its widespread application. This paper proposes a method that utilizes cylindrical shear horizontal(SH) guided waves to estimate pipeline thickness without prior knowledge of shear wave velocity. The inversion formulas are derived from the dispersion of higher-order modes with the high-frequency approximation. The waveform of the example problems is simulated using the real-axis integral method. The data points on the dispersion curves are processed in the frequency domain using the wave-number method. These extracted data are then substituted into the derived formulas. The results verify that employing higher-order SH guided waves for the evaluation of thickness and shear wave velocity yields less than1% error. This method can be applied to both metallic and non-metallic pipelines, thus opening new possibilities for health monitoring of pipeline structures.
基金the financial support provided by USDOT Pipeline and Hazardous Materials Safety Administration (PHMSA)through the Competitive Academic Agreement Program (CAAP)。
文摘Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe severely affects its pressure-holding capacity,hence the early detection of internal cracks is crucial for effective pipeline maintenance strategies.This study extends the scope of guided wave-based ultrasonic testing to detect the growth of internal cracks in a natural gas distribution PE pipe.Laboratory experiments and a finite element model were planned to study the wave-crack interaction at different stages of axially oriented internal crack growth with a piezoceramic transducer-based setup arranged in a pitch-catch configuration.Mode dispersion analysis supplemented with preliminary experiments was performed to isolate the optimal inspection frequency,leading to the selection of the T(0,1)mode at 50-kHz for the investigation.A transmission index based on the energy of the T(0,1)mode was developed to trace the extent of simulated crack growth.The findings revealed an inverse linear correlation between the transmission index and the crack depth for crack growth beyond 20%crack depth.
基金supported by the National Natural Science Foundation of China(Nos.51921003,52275153)the Fundamental Research Funds for the Central Universities(No.NI2023001)+2 种基金the Research Fund of State Key Laboratory of Mechanics and Control for Aero-space Structures(No.MCAS-I-0423G01)the Fund of Pro-spective Layout of Scientific Research for Nanjing University of Aeronautics and Astronauticsthe Priority Academic Program Development of Jiangsu Higher Education Institu-tions of China.
文摘Carbon fiber-reinforced polymer(CFRP)is widely used in aerospace applications.This kind of material may face the threat of high-velocity impact in the process of dedicated service,and the relevant research mainly considers the impact resistance of the material,and lacks the high-velocity impact damage monitoring research of CFRP.To solve this problem,a real high-velocity impact damage experiment and structural health monitoring(SHM)method of CFRP plate based on piezoelectric guided wave is proposed.The results show that CFRP has obvious perforation damage and fiber breakage when high-velocity impact occurs.It is also proved that guided wave SHM technology can be effectively used in the monitoring of such damage,and the damage can be reflected by quantifying the signal changes and damage index(DI).It provides a reference for further research on guided wave structure monitoring of high/hyper-velocity impact damage of CFRP.
基金The National Natural Science Foundation of China(No.60977038)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20110092110016)+1 种基金the National Basic Research Program of China(973Program)(No.2011CB302004)the Foundation of Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology of Ministry of Education of China(No.201204)
文摘Based on attenuated total reflection (ATR) and thermo-optic effect, the polymeric thin film planar optical waveguide is used as the temperature sensor, and the factors influencing the sensitivity of the temperature sensor are comprehensively analyzed. Combined with theoretical analysis and experimental investigation, the sensitivity of the temperature sensor is related to the thicknesses of the upper cladding layer, the waveguide layer, the optical loss of the polymer material and the guided wave modes. The results show that the slope value about reflectivity and temperature, which stands for the sensitivity of the polymer thin film temperature sensor, is associated with the waveguide film thickness and the guided wave modes, and the slope value is the highest in the zero reflectance of a certain transverse electric (TE) mode. To improve the sensitivity of the temperature sensor, the sensor's working incident light exterior angle α should be chosen under a certain TE mode with the reflectivity to be zero. This temperature sensor is characterized by high sensitivity and simple structure and it is easily fabricated.
基金supported by National Natural Science Foundation of China (Grant No. 10602004,Grant No. 50975006)Beijing Municipal Natural Science Foundation of China (Grant No. 2072003)+1 种基金Beijing Municipal Talent Developing Project of China (Grant No.20081B0501500173)Beijing Municipal Nova Program of China(Grant No. 2008A015)
文摘Ultrasonic guided wave inspection is an effective non-destructive testing method which can be used for stress level evaluation in steel strands.Unfortunately the propagation velocity of ultrasonic guided waves changes due to temperature shift making the prestress measurement of steel strands inaccurate and even sometimes impossible.In the course of solving the problem,this paper reports on quantitative research on the temperature dependence of ultrasonic longitudinal guided wave propagation in long range steel strands.In order to achieve the generation and reception of a chosen longitudinal mode in a steel strand with a helical shaped surface,a new type of magnetostrictive transducer was developed,characterized by a group of thin clips and three identical permanent magnets.Excitation and reception of ultrasonic guided waves in a steel strand were performed experimentally.Experimental results shows that in the temperature range from-4 ℃ to 34 ℃,the propagation velocity of the L(0,1) mode at 160 kHz linearly decreased with increasing temperature and its temperature dependent coefficient was 0.90(m·s-1 ·(℃)-1) which is very close to the theoretical prediction.The effect of dimension deviation between the helical and center wires and the effect of the thermal expansion of the steel strand on ultrasonic longitudinal guided wave propagation were also analyzed.It was found that these effects could be ignored compared with the change in the material mechanical properties of the steel strands due to temperature shift.It was also observed that the longitudinal guided wave mode was somewhat more sensitive to temperature changes compared with conventional ultrasonic waves theoretically.Therefore,it is considered that the temperature effect on ultrasonic longitudinal guided wave propagation in order to improve the accuracy of stress measurement in prestressed steel strands.Quantitative research on the temperature dependence of ultrasonic guided wave propagation in steel strands provides an important basis for the compensation of temperature effects in stress measurement in steel strands by using ultrasonic guided wave inspection.
文摘The noncollinear interaction of guided optical waves with magnetostatic waves under inclined bias magnetic field is theoretically studied in detail. Similar approach can also be applied to the collinear interaction. Calculation results indicate that the diffraction efficiency (DE) in magnitude is equal to the mode-conversion efficiency (MCE) under vertical bias magnetic field, but they differ greatly under inclined bias magnetic field. By comparison to the case of vertical magnetization, the DE or the MCE can be greatly increased under inclined magnetic field. The characteristic of the DE curves obtained is basically in agreement with the experimental result.
基金Supported by National Natural Science Foundation of China(Grant No51605229)Natural Science Foundation of Higher Education Institutions of Jiangsu Province,China(Grant No.16KJB460016)+1 种基金the“333”Project of Jiangsu Province,China(Grant No.BRA2015310)China Postdoctora Science Foundation(Grant No.2016M601844)
文摘Due to the merits of high inspection speed and long detecting distance, Ultrasonic Guided Wave(UGW) method has been commonly applied to the on-line maintenance of power transmission line. However, the guided wave propagation in this structure is very complicated, leading to the unfavorable defect localization accuracy. Aiming at this situation, a high precision UGW technique for inspection of local surface defect in power transmission line is proposed. The technique is realized by adopting a novel segmental piezoelectric ring transducer and transducer mounting scheme, combining with the comprehensive characterization of wave propagation and circumferential defect positioning with multiple piezoelectric elements. Firstly, the propagation path of guided waves in the multi-wires of transmission line under the proposed technique condition is investigated experimentally. Next, the wave velocities are calculated by dispersion curves and experiment test respectively, and from comparing of the two results, the guided wave mode propagated in transmission line is confirmed to be F(1,1) mode. Finally, the axial and circumferential positioning of local defective wires in transmission line are both achieved, by using multiple piezoelectric elements to surround the stands and send elastic waves into every single wire. The proposed research can play a role of guiding the development of highly effective UGW method and detecting system for multi-wire transmission line.
文摘A model of guided circumferential waves propagating in double-walled carbon nanotubes is built by the theory of wave propagation in continuum mechanics, while the van der Waals force between the inner and outer nanotube has been taken into account in the model. The dispersion curves of the guided circumferential wave propagation are studied, and some dispersion characteristics are illustrated by comparing with those of single-walled carbon nanotubes. It is found that in double-walled carbon nanotubes, the guided circumferential waves will propagate in more dispersive ways. More interactions between neighboring wave modes may take place. In particular, it has been found that a couple of wave modes may disappear at a certain frequency and that, while a couple of wave modes disappear, another new couple of wave modes are excited at the same wave number.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.40974067,40674059 and 10534040)the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.200807)Scientific Forefront and Interdisciplinary Innovation Project of Jilin University(Grant No.200903319)
文摘The property of acoustic guided waves generated in a fluid-filled borehole surrounded by a non-Newtonian (Maxwell) fluid-saturated porous formation with a permeable wall is investigated. The influence of non-Newtonian effects on acoustic guided waves such as Stoneley waves, pseudo-Rayleigh waves, flexural waves, and screw waves propagations in a fluid-filled borehole is demonstrated based on the generalized Biot-Tsiklauri model by calculating their velocity dispersion and attenuation coefficients. The corresponding acoustic waveforms illustrate their properties in time domain. The results are also compared with those based on generalized Biot's theory. The results show that the influence of non-Newtonian effect on acoustic guided wave, especially on the attenuation coefficient of guided wave propagation in borehole is noticeable.
基金supported by the National Natural Science Foundation of China(Grant Nos.11374068 and 11374066)the Science&Technology Star of Zhujiang Foundation of Guangzhou,China(Grant No.2011J2200013)the Natural Science Foundation of Guangdong,China(Grant No.S2012020010885)
文摘We investigate the interface-guided mode of Lamb waves in a phononic crystal heterostructures plate, which is com- posed of two different semi-infinite phononic crystal (PC) plates. The interface-guided modes of the Lamb wave can be obtained by the lateral lattice slipping or by the interface longitudinal gliding. Significantly, it is observed that the condition to generate the interface-guided modes of the Lamb wave is more demanding than that of the studied fluid-fluid system. The interface-guided modes are strongly affected not only by the relative movement of the two semi-infinite PCs but also by the thickness of the PC plate.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11834008,11704410,11632004,11474361,and U1930202).
文摘On the basis of second-order perturbation approximate and modal expansion approach,we investigate the enhancement effect of cumulative second-harmonic generation(SHG)of circumferential guided waves(CGWs)in a circular tube,which is inherently induced by the closed propagation feature of CGWs.An appropriate mode pair of primary-and double-frequency CGWs satisfying the phase velocity matching and nonzero energy flux is selected to ensure that the second harmonic generated by primary CGW propagation can accumulate along the circumference.Using a coherent superposition of multi-waves,a model of unidirectional CGW propagation is established for analyzing the enhancement effect of cumulative SHG of primary CGW mode selected.The theoretical analyses and numerical simulations performed directly demonstrate that the second harmonic generated does have a cumulative effect along the circumferential direction and the closed propagation feature of CGWs does enhance the magnitude of cumulative second harmonic generated.Potential applications of the enhancement effect of cumulative SHG of CGWs are considered and discussed.The theoretical analysis and numerical simulation perspective presented here yield an insight previously unavailable into the physical mechanism of the enhancement effect of cumulative SHG by closed propagation feature of CGWs in a circular tube.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11474361,11474093 and 11274388
文摘The effect of second-harmonic generation (SHG) by primary (fundamental) circumferential guided wave (CGW) propagation is investigated from a numerical standpoint. To enable that the second harmonic of the primary CGW mode can accumulate along the circumferential direction, an appropriate mode pair of primary and double frequency CGWs is chosen. Finite element simulations and evaluations of nonlinear CGW propagation are analyzed for the selected CGW mode pair. The numerical simulations performed directly demonstrate that the response of SHG is completely generated by the desired primary CGW mode that satisfies the condition of phase velocity matching at a specific driving frequency, and that the second harmonic of the primary CGW mode does have a cumulative effect with circumferential angles. The numerical perspective obtained yields an insight into the complicated physical process of SHG of primary CGW propagation unavailable previously.
文摘Ultrasonic guided wave have the multi-modes and dispersive characteristics, and its modes are easy to be converted at boundary or when running into defects in pipes, which makes the discrimination of different guided waves modes of the reflection signals in pipes NDT very hard. In this work, firstly, the experiments are carried out to test two kinds of stainless steel pipes by applying guided waves NDT, one is integrated pipe and another is non-integrated pipe with a small hole defect, and the detected guided waves echo signals are respectively obtained. Secondly, the measured signals are processed by matching pursuit method and the Chirplet matching atom parameters are calculated. By calculating the time-frequency distributions spectrum of detected guided waves echo signals, torsional, flexural and longitudinal guided waves modes are identified from the intact pipe, and the two wave-packets with torsional and flexural guided waves modes are also identified from the pipe with hole defect. The results showed that the matching pursuit method has a tremendous advantage to identify different guided waves modes in pipes nondestructive testing.
文摘Guided wave in plate propagates like shear waves and Lamb waves. Both kinds are very dispersive waves. Generation and analysis of dispersion curves is very important. Those are used to predict and describe the relation between frequency, thickness with phase velocity, group velocity and wave mode. For a stainless steel plate with thickness 5.89 mm we built dispersion curves for shear and Lamb waves. A method based on peak frequency shifts of the shear waves along with the thickness was applied. In line with dispersion curves of shear waves phase velocity was seen that mode of waves translate in some points, have experiment performance much better than other points.
文摘Plasmonic waveguides,as a competitive candidate,have been widely studied in rapid developing photonic integrated circuits(PICs)and optical interconnection fields.However,crosstalk between plasmonic waveguides is a critical issue that has to be considered in practice.Actually,crosstalk dominates the ultimate integration density of the planar photonic circuits.This paper reviews the recent research work on evaluation methods and crosstalk suppression approaches of plasmonic waveguides.Three crosstalk evaluation methods based on comparison of specific parameters of waveguides have been summarized.Furthermore,four specific approaches to reduce crosstalk have been illustrated as two categories according to their impacts on waveguide performances and the whole circuit.One means of crosstalk suppression is changing the placement of waveguides,which could maintain the transmission characteristics of the original waveguide.The other means is inserting medium,which has the advantage of occupying smaller space compared to the first method.Consequently,to suppress crosstalk between plasmonic waveguides,one should choose suitable approach.
文摘In the industrial fields, many high temperature structures that require a non-destructive inspection exist. However, there are currently few sensors that can carry out non-destructive testing in a high temperature environment. In particular, the ultrasonic sensor is normally not used at over 50 degrees Celsius. Also, a special sensor for high temperature is currently available, but there are various constraints;it has not yet reached a level that is useful in industry. Therefore, we have been developing a new sensor system using a long waveguide which can transmit an ultrasonic wave from a long distance. Especially, this study focuses on applying the developed technique to a pipe which is used in a nuclear power plant. Therefore, the best rectangular-shaped waveguide was studied and attempted to be wound around a pipe to be driven by an acoustic source of a guide wave. Finally, the L (0, 2) and T (0, 1)-mode guide waves were successfully detected by optimizing the shape of the opposite edge of the rectangular-shaped waveguide that could detect the reflected signal from an artificial defect machined into a test pipe.
基金This work was supported by the National Key Research and Development Program of China(2018YFA0702800)the National Natural Science Foundation of China(51805068).
文摘Guided waves based damage detection methods using base signals offer the advantages of simplicity of signal generation and reception,sensitivity to damage,and large area coverage;however,applications of the technology are limited by the sensitivity to environmental temperature variations.In this paper,a Spearman Damage Index-based damage diagnosis method for structural health condition monitoring under varying temperatures is presented.First,a PZT sensor-based Guided wave propagation model is proposed and employed to analyze the temperature effect.The result of the analysis shows the wave speed of the Guided wave signal has higher temperature sensitivity than the signal fluctuation features.Then,a Spearman rank correlation coefficient-based damage index is presented to identify damage of the structure under varying temperatures.Finally,a damage detection test on a composite plate is conducted to verify the effectiveness of the Spearman Damage Index-based damage diagnosis method.Experimental results show that the proposed damage diagnosis method is capable of detecting the existence of the damage and identify its location under varying temperatures.
基金Project supported by the National Natural Science Foundation of China(Grant No.51977044).
文摘Using periodic permanent magnet(PPM)electromagnetic acoustic transducers(EMATs),different shear horizontal(SH)guided wave modes can form simultaneously in some situations,which can interfere with the inspection.The main cause of this phenomenon(typically named multiple modes)is related to the frequency bandwidth of excitation signals and the transducer spatial bandwidth.Simply narrowing the frequency bandwidth cannot effectively limit the number of different SH modes.Previous researches showed that unnecessary SH wave modes can be eliminated by using dual EMATs.However,in practical applications,it is more convenient to change the excitation frequency than to use dual EMATs.In this paper,the stress boundary conditions of the PPM-EMAT are analyzed,the analytical expression of SH guided wave is established,and the magnitude of SH guided wave mode under continuous tone and tone-burst input is obtained.A method to generate a single SH mode by re-selecting an operating point is proposed.Furthermore,the influence of the frequency bandwidth of the tone-burst signal is analyzed.Finally,a single SH mode excitation is achieved with tone-burst input.
基金This work was supported by the National Key Research and Development Program of China(Grant No.2016YFF0203002)the National Natural Science Foundation of China(Grant No.11702051)+1 种基金China Post-doctoral Science Foundation(Grant No.2017M610176)the Fundamental Research Funds for the Central Universities(DUT16ZD214).
文摘Probability-based diagnostic imaging(PDI)is one of the most well-known damage identification methods using guided waves.It is usually applied to diagnose damage in plates.The previous studies were dependent on the certain damage index(DI)which is always calculated from the guided wave signals.In conventional methods,DI is simply defined by comparing the real-time data with the baseline data as reference.However,the baseline signal is easily affected by varying environmental conditions of structures.In this paper,a reference-free diagnostic imaging method is developed to avoid the influence of environmental factors,such as temperature and load conditions.The DI is defined based on the mode conversion of multi-mode guided waves with realtime signals without baseline signals.To improve the accuracy of diagnosis,two terms are included in the reference-free DI.One is called energy DI,which is defined based on the feature of signal energy.The other is called correlation DI and is defined based on the correlation coefficient.Then the PDI algorithm can be carried out instantaneously according to the reference-free DI.The real-time signals which are used to calculate DI are collected by the piezoelectric lead zirconate titanate(PZT)transducers placed on both sides of a plate.The numerical simulations by the finite element(FE)method on aluminum plates with PZT arrays are performed to validate the effectiveness of the reference-free damage diagnostic imaging.The approach is validated by two different arrays:a circle network and a square network.The results of diagnostic imaging are demonstrated and discussed in this paper.Furthermore,the advantage of reference-free DI is investigated by comparing the accuracy of defined reference-free DI and energy DI.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11474361 and 11274388
文摘The experimental observation of cumulative second-harmonic generation of the primary circumferential guided wave propagation is reported. A pair of wedge transducers is used to generate the primary circumferential guided wave desired and to detect its fundamental-frequency and second-harmonic amplitudes on the outside surface of the circular tube. The amplitudes of the fundamental waves and the second harmonics of the circumferential guided wave propagation are measured for different separations between the two wedge transducers. At the driving frequency where the primary and the double-frequency circumferential guided waves have the same linear phase velocities, the clear second-harmonic signals can be observed. The quantitative relationships between the second-harmonic amplitudes and circumferential angle are analyzed. It is experimentally verified that the second harmonics of primary circumferential guided waves do have a cumulative growth effect with the circumferential angle.