The laser scanning and CCD image-transmitting measurement method and principle on acquiring 3-D curved surface shape data are discussed. Computer processing technique of 3-D curved surface shape(be called“ 3 - D surf...The laser scanning and CCD image-transmitting measurement method and principle on acquiring 3-D curved surface shape data are discussed. Computer processing technique of 3-D curved surface shape(be called“ 3 - D surface shape”for short) data is analysed. This technique in- cludes these concrete methods and principles such as data smoothing, fitting, reconstructing ,elimi- nating and so on. The example and result about computer processing of 3- D surface shape data are given .展开更多
We develop a data driven method(probability model) to construct a composite shape descriptor by combining a pair of scale-based shape descriptors. The selection of a pair of scale-based shape descriptors is modeled as...We develop a data driven method(probability model) to construct a composite shape descriptor by combining a pair of scale-based shape descriptors. The selection of a pair of scale-based shape descriptors is modeled as the computation of the union of two events, i.e.,retrieving similar shapes by using a single scale-based shape descriptor. The pair of scale-based shape descriptors with the highest probability forms the composite shape descriptor. Given a shape database, the composite shape descriptors for the shapes constitute a planar point set.A VoR-Tree of the planar point set is then used as an indexing structure for efficient query operation. Experiments and comparisons show the effectiveness and efficiency of the proposed composite shape descriptor.展开更多
Based on the definition of MQ-B-Splines,this article constructs five types of univariate quasi-interpolants to non-uniformly distributed data. The error estimates and the shape-preserving properties are shown in detai...Based on the definition of MQ-B-Splines,this article constructs five types of univariate quasi-interpolants to non-uniformly distributed data. The error estimates and the shape-preserving properties are shown in details.And examples are shown to demonstrate the capacity of the quasi-interpolants for curve representation.展开更多
针对传统人体部位体型分类方法费时费力、成本较高的问题,设计一种融合注意力机制的体型分类网络(Attention Body Classification Net,A_BCN)。该网络由弱监督的注意力学习和数据增强两个模块组成,其中:弱监督的注意力学习模块通过注意...针对传统人体部位体型分类方法费时费力、成本较高的问题,设计一种融合注意力机制的体型分类网络(Attention Body Classification Net,A_BCN)。该网络由弱监督的注意力学习和数据增强两个模块组成,其中:弱监督的注意力学习模块通过注意力机制获得注意力图;数据增强模块通过注意力图指导图像的数据增强,包括注意力裁剪、注意力丢弃和注意力平均。将增强后的图像重新输入到网络中得到特征图,将得到的特征图和注意力图融合进行分类。在后续自制的人体图像数据集中,该算法准确率为90.52%,提高了分类准确率并节省了成本。展开更多
在汽车气动外形优化设计中,往往需要大量的高精度CFD数据作为支撑。然而,高精度CFD数据获取难度大、成本高。为了缓解汽车气动优化设计中气动特性评估精度和效率之间的矛盾,根据迁移学习与数据融合的思想,提出了一种基于多精度深度神经...在汽车气动外形优化设计中,往往需要大量的高精度CFD数据作为支撑。然而,高精度CFD数据获取难度大、成本高。为了缓解汽车气动优化设计中气动特性评估精度和效率之间的矛盾,根据迁移学习与数据融合的思想,提出了一种基于多精度深度神经网络(multi-fidelity deep neural network, MFDNN)的汽车外形优化设计方法,以减少优化设计中所需的高精度数据个数,从而有效提升优化速度、降低优化成本。将所发展的优化方法应用于快背式MIRA标准模型减阻优化设计中,优化结果表明,该方法能够充分融合不同精度数据所蕴含的知识,加速气动外形优化进程,提升优化效率。以收敛用时作为评价指标,在取得相近或更优优化结果的前提下,基于多精度神经网络的优化框架的收敛速度是基于单精度神经网络的离线优化框架的5.85倍,是基于单精度神经网络的在线优化框架的2.81倍。展开更多
文摘The laser scanning and CCD image-transmitting measurement method and principle on acquiring 3-D curved surface shape data are discussed. Computer processing technique of 3-D curved surface shape(be called“ 3 - D surface shape”for short) data is analysed. This technique in- cludes these concrete methods and principles such as data smoothing, fitting, reconstructing ,elimi- nating and so on. The example and result about computer processing of 3- D surface shape data are given .
基金supported by the National Key R&D Plan of China(2016YFB1001501)
文摘We develop a data driven method(probability model) to construct a composite shape descriptor by combining a pair of scale-based shape descriptors. The selection of a pair of scale-based shape descriptors is modeled as the computation of the union of two events, i.e.,retrieving similar shapes by using a single scale-based shape descriptor. The pair of scale-based shape descriptors with the highest probability forms the composite shape descriptor. Given a shape database, the composite shape descriptors for the shapes constitute a planar point set.A VoR-Tree of the planar point set is then used as an indexing structure for efficient query operation. Experiments and comparisons show the effectiveness and efficiency of the proposed composite shape descriptor.
基金Supported by the National Natural Science Foundation of China( 1 9971 0 1 7,1 0 1 2 5 1 0 2 )
文摘Based on the definition of MQ-B-Splines,this article constructs five types of univariate quasi-interpolants to non-uniformly distributed data. The error estimates and the shape-preserving properties are shown in details.And examples are shown to demonstrate the capacity of the quasi-interpolants for curve representation.
文摘针对传统人体部位体型分类方法费时费力、成本较高的问题,设计一种融合注意力机制的体型分类网络(Attention Body Classification Net,A_BCN)。该网络由弱监督的注意力学习和数据增强两个模块组成,其中:弱监督的注意力学习模块通过注意力机制获得注意力图;数据增强模块通过注意力图指导图像的数据增强,包括注意力裁剪、注意力丢弃和注意力平均。将增强后的图像重新输入到网络中得到特征图,将得到的特征图和注意力图融合进行分类。在后续自制的人体图像数据集中,该算法准确率为90.52%,提高了分类准确率并节省了成本。
文摘在汽车气动外形优化设计中,往往需要大量的高精度CFD数据作为支撑。然而,高精度CFD数据获取难度大、成本高。为了缓解汽车气动优化设计中气动特性评估精度和效率之间的矛盾,根据迁移学习与数据融合的思想,提出了一种基于多精度深度神经网络(multi-fidelity deep neural network, MFDNN)的汽车外形优化设计方法,以减少优化设计中所需的高精度数据个数,从而有效提升优化速度、降低优化成本。将所发展的优化方法应用于快背式MIRA标准模型减阻优化设计中,优化结果表明,该方法能够充分融合不同精度数据所蕴含的知识,加速气动外形优化进程,提升优化效率。以收敛用时作为评价指标,在取得相近或更优优化结果的前提下,基于多精度神经网络的优化框架的收敛速度是基于单精度神经网络的离线优化框架的5.85倍,是基于单精度神经网络的在线优化框架的2.81倍。