We report a linear-scaling random Green's function(rGF) method for large-scale electronic structure calculation. In this method, the rGF is defined on a set of random states and is efficiently calculated by projec...We report a linear-scaling random Green's function(rGF) method for large-scale electronic structure calculation. In this method, the rGF is defined on a set of random states and is efficiently calculated by projecting onto Krylov subspace. With the rGF method, the Fermi–Dirac operator can be obtained directly, avoiding the polynomial expansion to Fermi–Dirac function. To demonstrate the applicability, we implement the rGF method with the density-functional tight-binding method. It is shown that the Krylov subspace can maintain at small size for materials with different gaps at zero temperature, including H_(2)O and Si clusters. We find with a simple deflation technique that the rGF self-consistent calculation of H_(2)O clusters at T = 0 K can reach an error of~ 1 me V per H_(2)O molecule in total energy, compared to deterministic calculations. The rGF method provides an effective stochastic method for large-scale electronic structure simulation.展开更多
A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization...A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization problems.To improve the fitting ability of the neural network,we use the idea of pre-training to determine the structure of the neural network and combine different optimizers for training.The isogeometric analysis-finite element method(IGA-FEM)is used to discretize the flexural theoretical formulas and obtain samples,which helps ANN to build a proxy model from the model shape to the target value.The effectiveness of the proposed method is verified through two numerical examples of parameter optimization and one numerical example of shape optimization.展开更多
This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node...This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node distribution.Firstly,based on the first-order shear deformation theory,the governing equation of free vibration of a functionally graded beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam axial displacement,transverse displacement,and cross-sectional rotation angle by considering the effects of shear deformation and rotational inertia of the beam cross-section.Then,ignoring the shear deformation of the beam section and only considering the effect of the rotational inertia of the section,the governing equation of the beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam transverse displacement.Based on the differential quadrature method theory,the eigenvalue problem of ordinary differential equations is transformed into the eigenvalue problem of standard generalized algebraic equations.Finally,the first several natural frequencies of the beam can be calculated.The feasibility and accuracy of the improved DQM are verified using the finite element method(FEM)and combined with the results of relevant literature.展开更多
With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying micr...With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying microstructures has grown significantly.However,a critical challenge is encountered in the design of these structures–the absence of robust interface connections between adjacent microstructures,potentially resulting in diminished efficiency or macroscopic failure.A Hybrid Level Set Method(HLSM)is proposed,specifically designed to enhance connectivity among non-uniform microstructures,contributing to the design of functionally graded cellular structures.The HLSM introduces a pioneering algorithm for effectively blending heterogeneous microstructure interfaces.Initially,an interpolation algorithm is presented to construct transition microstructures seamlessly connected on both sides.Subsequently,the algorithm enables the morphing of non-uniform unit cells to seamlessly adapt to interconnected adjacent microstructures.The method,seamlessly integrated into a multi-scale topology optimization framework using the level set method,exhibits its efficacy through numerical examples,showcasing its prowess in optimizing 2D and 3D functionally graded materials(FGM)and multi-scale topology optimization.In essence,the pressing issue of interface connections in complex structure design is not only addressed but also a robust methodology is introduced,substantiated by numerical evidence,advancing optimization capabilities in the realm of functionally graded materials and cellular structures.展开更多
Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore th...Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore the dynamic behaviors of an FGM stepped beam with different boundary conditions based on an efficient solving method.Under the assumptions of the Euler-Bernoulli beam theory,the governing differential equations of an individual FGM beam are derived with Hamilton’s principle and decoupled via the separation-of-variable approach.Then,the free and forced vibrations of the FGM stepped beam are solved with the transfer matrix method(TMM).Two models,i.e.,a three-level FGM stepped beam and a five-level FGM stepped beam,are considered,and their natural frequencies and mode shapes are presented.To demonstrate the validity of the method in this paper,the simulation results by ABAQUS are also given.On this basis,the detailed parametric analyses on the frequencies and dynamic responses of the three-level FGM stepped beam are carried out.The results show the accuracy and efficiency of the TMM.展开更多
Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with...Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.展开更多
The possible exotic nuclear properties in the neutron-rich Ca,Ni,Zr,and Sn isotopes are examined with the continuum Skyrme Hartree-Fock-Bogoliubov theory in the framework of the Green’s function method.The pairing co...The possible exotic nuclear properties in the neutron-rich Ca,Ni,Zr,and Sn isotopes are examined with the continuum Skyrme Hartree-Fock-Bogoliubov theory in the framework of the Green’s function method.The pairing correlation,the couplings with the continuum,and the blocking effects for the unpaired nucleon in odd-A nuclei are properly treated.The Skyrme interaction SLy4 is adopted for the ph channel and the density-dependentinteraction is adopted for the pp chan-nel,which well reproduce the experimental two-neutron separation energies S_(2n)and one-neutron separation energies Sn.It is found that the criterion S_(n)>0 predicts a neutron drip line with neutron numbers much smaller than those for S_(2n)>0.Owing to the unpaired odd neutron,the neutron pairing energies−E_(pair)in odd-A nuclei are much lower than those in the neighbor-ing even-even nuclei.By investigating the single-particle structures,the possible halo structures in the neutron-rich Ca,Ni,and Sn isotopes are predicted,where sharp increases in the root-mean-square(rms)radii with significant deviations from the traditional rA^(1∕3)rule and diffuse spatial density distributions are observed.Analyzing the contributions of various partial waves to the total neutron densityρlj(r)∕ρ(r)reveals that the orbitals located around the Fermi surface-particularly those with small angular momenta-significantly affect the extended nuclear density and large rms radii.The number of neutrons Nλ(N_(0))occupying above the Fermi surfacen(continuum threshold)is discussed,whose evolution as a function of the mass number A in each isotope is consistent with that of the pairing energy,supporting the key role of the pairing correlation in halo phenomena.展开更多
In the optimal control problem of nonlinear dynamical system,the Hamiltonian formulation is useful and powerful to solve an optimal control force.However,the resulting Euler-Lagrange equations are not easy to solve,wh...In the optimal control problem of nonlinear dynamical system,the Hamiltonian formulation is useful and powerful to solve an optimal control force.However,the resulting Euler-Lagrange equations are not easy to solve,when the performance index is complicated,because one may encounter a two-point boundary value problem of nonlinear differential algebraic equations.To be a numerical method,it is hard to exactly preserve all the specified conditions,which might deteriorate the accuracy of numerical solution.With this in mind,we develop a novel algorithm to find the solution of the optimal control problem of nonlinear Duffing oscillator,which can exactly satisfy all the required conditions for the minimality of the performance index.A new idea of shape functions method(SFM)is introduced,from which we can transform the optimal control problems to the initial value problems for the new variables,whose initial values are given arbitrarily,and meanwhile the terminal values are determined iteratively.Numerical examples confirm the high-performance of the iterative algorithms based on the SFM,which are convergence fast,and also provide very accurate solutions.The new algorithm is robust,even large noise is imposed on the input data.展开更多
Built on the integral formulas in Part I,numerical methods are developed for computing velocity potential and streamfunction in a limited domain.When there is no inner boundary(around a data hole) inside the domain,...Built on the integral formulas in Part I,numerical methods are developed for computing velocity potential and streamfunction in a limited domain.When there is no inner boundary(around a data hole) inside the domain,the total solution is the sum of the internally and externally induced parts.For the internally induced part,three numerical schemes(grid-staggering,local-nesting and piecewise continuous integration) are designed to deal with the singularity of the Green's function encountered in numerical calculations.For the externally induced part,by setting the velocity potential(or streamfunction) component to zero,the other component of the solution can be computed in two ways:(1) Solve for the density function from its boundary integral equation and then construct the solution from the boundary integral of the density function.(2) Use the Cauchy integral to construct the solution directly.The boundary integral can be discretized on a uniform grid along the boundary.By using local-nesting(or piecewise continuous integration),the scheme is refined to enhance the discretization accuracy of the boundary integral around each corner point(or along the entire boundary).When the domain is not free of data holes,the total solution contains a data-hole-induced part,and the Cauchy integral method is extended to construct the externally induced solution with irregular external and internal boundaries.An automated algorithm is designed to facilitate the integrations along the irregular external and internal boundaries.Numerical experiments are performed to evaluate the accuracy and efficiency of each scheme relative to others.展开更多
The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on th...The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on the real shape of coarse particles.First,an improved Viola-Jones algorithm is employed to establish a digitalized 2D particle database for coarse particle shape evaluation and discrete modeling purposes of subgrade filler.Shape indexes of 2D subgrade filler are then computed and statistically analyzed.Finally,numerical simulations are performed to quantitatively investigate the effects of the aspect ratio(AR)and interparticle friction coefficient(μ)on the macro-and micro-mechanical compaction characteristics of subgrade filler based on the discrete element method(DEM).The results show that with the increasing AR,the coarse particles are narrower,leading to the increasing movement of fine particles during compaction,which indicates that it is difficult for slender coarse particles to inhibit the migration of fine particles.Moreover,the average displacement of particles is strongly influenced by the AR,indicating that their occlusion under power relies on particle shapes.The dis-placement and velocity of fine particles are much greater than those of the coarse particles,which shows that compaction is primarily a migration of fine particles.Under the cyclic load,the interparticle friction coefficientμhas little effect on the internal structure of the sample;under the quasi-static loads,however,the increase inμwill lead to a significant increase in the porosity of the sample.This study could not only provide a novel approach to investigate the compaction mechanism but also establish a new theoretical basis for the evaluation of intelligent subgrade compaction.展开更多
A high-accuracy multiresolution method is proposed to solve mechanics problems subject to complex shapes or irregular domains.To realize this method,we design a new wavelet basis function,by which we construct a fifth...A high-accuracy multiresolution method is proposed to solve mechanics problems subject to complex shapes or irregular domains.To realize this method,we design a new wavelet basis function,by which we construct a fifth-order numerical scheme for the approximation of multi-dimensional functions and their multiple integrals defined in complex domains.In the solution of differential equations,various derivatives of the unknown function are denoted as new functions.Then,the integral relations between these functions are applied in terms of wavelet approximation of multiple integrals.Therefore,the original equation with derivatives of various orders can be converted to a system of algebraic equations with discrete nodal values of the highest-order derivative.During the application of the proposed method,boundary conditions can be automatically included in the integration operations,and relevant matrices can be assured to exhibit perfect sparse patterns.As examples,we consider several second-order mathematics problems defined on regular and irregular domains and the fourth-order bending problems of plates with various shapes.By comparing the solutions obtained by the proposed method with the exact solutions,the new multiresolution method is found to have a convergence rate of fifth order.The solution accuracy of this method with only a few hundreds of nodes can be much higher than that of the finite element method(FEM)with tens of thousands of elements.In addition,because the accuracy order for direct approximation of a function using the proposed basis function is also fifth order,we may conclude that the accuracy of the proposed method is almost independent of the equation order and domain complexity.展开更多
This paper presents an identification method of the scalar Preisach model to consider the effect of reversible magnetization in the process of distribution function identification.By reconsidering the identification p...This paper presents an identification method of the scalar Preisach model to consider the effect of reversible magnetization in the process of distribution function identification.By reconsidering the identification process by stripping the influence of reversible components from the measurement data,the Preisach distribution function is identified by the pure irreversible components.In this way,the simulation accuracy of both limiting hysteresis loops and the inner internal symmetrical small hysteresis loop is ensured.Furthermore,through a discrete Preisach plane with a hybrid discretization method,the irreversible magnetic flux density components are computed more efficiently through the improved Preisach model.Finally,the proposed method results are compared with the traditional method and the traditional method considering reversible magnetization and validated by the laboratory test for the B30P105 electrical steel by Epstein frame.展开更多
In this study,application of the spectral representation method for generation of endurance time excitation functions is introduced.Using this method,the intensifying acceleration time series is generated so that its ...In this study,application of the spectral representation method for generation of endurance time excitation functions is introduced.Using this method,the intensifying acceleration time series is generated so that its acceleration response spectrum in any desired time duration is compatible with a time-scaled predefined acceleration response spectrum.For this purpose,simulated stationary acceleration time series is multiplied by the time dependent linear modulation function,then using a simple iterative scheme,it is forced to match a target acceleration response spectrum.It is shown that the generated samples have excellent conformity in low frequency,which is useful for nonlinear endurance time analysis.In the second part of this study,it is shown that this procedure can be extended to generate a set of spatially correlated endurance time excitation functions.This makes it possible to assess the performance of long structures under multi-support seismic excitation using endurance time analysis.展开更多
To screen new maize(Zea mays L.)varieties suitable for food and fodder dual-purpose in Du'an Yao Autonomous County of Guangxi,the agronomic characters,yield and quality indexes of 12 new maize varieties were measu...To screen new maize(Zea mays L.)varieties suitable for food and fodder dual-purpose in Du'an Yao Autonomous County of Guangxi,the agronomic characters,yield and quality indexes of 12 new maize varieties were measured,and the correlation between various indexes were analyzed,and the comprehensive performance of tested varieties was evaluated by membership function method.The results showed that Guidan 671 had the highest grain yield and whole-plant biomass at 10908 and 49965 kg/hm^(2),respectively,and the second was Zhaoyu 215 with a grain yield and whole-plant biomass of 10086 and 47175 kg/hm^(2),respectively.Grain yield was highly significantly positively correlated with ear diameter and 100-grain weight(P<0.01),and significantly correlated with whole-plant biomass,starch content,ear length and grain number per row(P<0.05);and the whole-plant biomass was highly significantly correlated with the number of grains per row(P<0.01),and significantly correlated with starch content,panicle length,plant height and panicle height(P<0.05).The comprehensive performance scores of the tested varieties from high to low were Guidan 671,Zhaoyu 215,Guidan 669,Guidan 6208,Guidan 666,Guidan 6205,Guidan 660,Guidan 6203,Guidan 6206,Guidan 162,Guidan 668 and Guidan 673.According to the values of membership function and combined with various indexes,Guidan 671 and Zhaoyu 215 had good comprehensive performance,and could be used as the first choice for food and fodder dual-purpose maize varieties in Du'an Yao Autonomous County.展开更多
Radial Basis Function methods for scattered data interpolation and for the numerical solution of PDEs were originally implemented in a global manner. Subsequently, it was realized that the methods could be implemented...Radial Basis Function methods for scattered data interpolation and for the numerical solution of PDEs were originally implemented in a global manner. Subsequently, it was realized that the methods could be implemented more efficiently in a local manner and that the local approaches could match or even surpass the accuracy of the global implementations. In this work, three localization approaches are compared: a local RBF method, a partition of unity method, and a recently introduced modified partition of unity method. A simple shape parameter selection method is introduced and the application of artificial viscosity to stabilize each of the local methods when approximating time-dependent PDEs is reviewed. Additionally, a new type of quasi-random center is introduced which may be better choices than other quasi-random points that are commonly used with RBF methods. All the results within the manuscript are reproducible as they are included as examples in the freely available Python Radial Basis Function Toolbox.展开更多
This paper concerns the implementation of the orthogonal polynomials using the Galerkin method for solving Volterra integro-differential and Fredholm integro-differential equations. The constructed orthogonal polynomi...This paper concerns the implementation of the orthogonal polynomials using the Galerkin method for solving Volterra integro-differential and Fredholm integro-differential equations. The constructed orthogonal polynomials are used as basis functions in the assumed solution employed. Numerical examples for some selected problems are provided and the results obtained show that the Galerkin method with orthogonal polynomials as basis functions performed creditably well in terms of absolute errors obtained.展开更多
The collocation method is a widely used numerical method for science and engineering problems governed by partial differential equations.This paper provides a comprehensive review of collocation methods and their appl...The collocation method is a widely used numerical method for science and engineering problems governed by partial differential equations.This paper provides a comprehensive review of collocation methods and their applications,focused on elasticity,heat conduction,electromagnetic field analysis,and fluid dynamics.The merits of the collocation method can be attributed to the need for element mesh,simple implementation,high computational efficiency,and ease in handling irregular domain problems since the collocation method is a type of node-based numerical method.Beginning with the fundamental principles of the collocation method,the discretization process in the continuous domain is elucidated,and how the collocation method approximation solutions for solving differential equations are explained.Delving into the historical development of the collocation methods,their earliest applications and key milestones are traced,thereby demonstrating their evolution within the realm of numerical computation.The mathematical foundations of collocation methods,encompassing the selection of interpolation functions,definition of weighting functions,and derivation of integration rules,are examined in detail,emphasizing their significance in comprehending the method’s effectiveness and stability.At last,the practical application of the collocation methods in engineering contexts is emphasized,including heat conduction simulations,electromagnetic coupled field analysis,and fluid dynamics simulations.These specific case studies can underscore collocation method’s broad applicability and effectiveness in addressing complex engineering challenges.In conclusion,this paper puts forward the future development trend of the collocation method through rigorous analysis and discussion,thereby facilitating further advancements in research and practical applications within these fields.展开更多
We propose a combined shape and topology optimization approach in this research for 3D acoustics by using the isogeometric boundary element method with subdivision surfaces.The existing structural optimization methods...We propose a combined shape and topology optimization approach in this research for 3D acoustics by using the isogeometric boundary element method with subdivision surfaces.The existing structural optimization methods mainly contain shape and topology schemes,with the former changing the surface geometric profile of the structure and the latter changing thematerial distribution topology or hole topology of the structure.In the present acoustic performance optimization,the coordinates of the control points in the subdivision surfaces fine mesh are selected as the shape design parameters of the structure,the artificial density of the sound absorbing material covered on the structure surface is set as the topology design parameter,and the combined topology and shape optimization approach is established through the sound field analysis of the subdivision surfaces boundary element method as a bridge.The topology and shape sensitivities of the approach are calculated using the adjoint variable method,which ensures the efficiency of the optimization.The geometric jaggedness and material distribution discontinuities that appear in the optimization process are overcome to a certain degree by the multiresolution method and solid isotropic material with penalization.Numerical examples are given to validate the effectiveness of the presented optimization approach.展开更多
The aim of this study is to evaluate the uncertainty of 2πα and 2πβ surface emission rates using the windowless multiwire proportional counter method.This study used the Monte Carlo method (MCM) to validate the co...The aim of this study is to evaluate the uncertainty of 2πα and 2πβ surface emission rates using the windowless multiwire proportional counter method.This study used the Monte Carlo method (MCM) to validate the conventional Guide to the Expression of Uncertainty in Measurement (GUM) method.A dead time measurement model for the two-source method was established based on the characteristics of a single-channel measurement system,and the voltage threshold correction factor measurement function was indirectly obtained by fitting the threshold correction curve.The uncertainty in the surface emission rate was calculated using the GUM method and the law of propagation of uncertainty.The MCM provided clear definitions for each input quantity and its uncertainty distribution,and the simulation training was realized with a complete and complex mathematical model.The results of the surface emission rate uncertainty evaluation for four radioactive plane sources using both methods showed the uncertainty’s consistency E_(n)<0.070 for the comparison of each source,and the uncertainty results of the GUM were all lower than those of the MCM.However,the MCM has a more objective evaluation process and can serve as a validation tool for GUM results.展开更多
For an arbitrary solution to the Volterra lattice hierarchy,the logarithmic derivatives of the tau-function of the solution can be computed by the matrix-resolvent method.In this paper,we define a pair of wave functio...For an arbitrary solution to the Volterra lattice hierarchy,the logarithmic derivatives of the tau-function of the solution can be computed by the matrix-resolvent method.In this paper,we define a pair of wave functions of the solution and use them to give an expression of the matrix resolvent;based on this we obtain a new formula for the k-point functions for the Volterra lattice hierarchy in terms of wave functions.As an application,we give an explicit formula of k-point functions for the even GUE(Gaussian Unitary Ensemble)correlators.展开更多
基金financial support from the National Natural Science Foundation of China (Grant No. 12227901)the financial support from the National Natural Science Foundation of China (Grant Nos. 11974263 and 12174291)。
文摘We report a linear-scaling random Green's function(rGF) method for large-scale electronic structure calculation. In this method, the rGF is defined on a set of random states and is efficiently calculated by projecting onto Krylov subspace. With the rGF method, the Fermi–Dirac operator can be obtained directly, avoiding the polynomial expansion to Fermi–Dirac function. To demonstrate the applicability, we implement the rGF method with the density-functional tight-binding method. It is shown that the Krylov subspace can maintain at small size for materials with different gaps at zero temperature, including H_(2)O and Si clusters. We find with a simple deflation technique that the rGF self-consistent calculation of H_(2)O clusters at T = 0 K can reach an error of~ 1 me V per H_(2)O molecule in total energy, compared to deterministic calculations. The rGF method provides an effective stochastic method for large-scale electronic structure simulation.
基金supported by a Major Research Project in Higher Education Institutions in Henan Province,with Project Number 23A560015.
文摘A new approach for flexoelectricmaterial shape optimization is proposed in this study.In this work,a proxymodel based on artificial neural network(ANN)is used to solve the parameter optimization and shape optimization problems.To improve the fitting ability of the neural network,we use the idea of pre-training to determine the structure of the neural network and combine different optimizers for training.The isogeometric analysis-finite element method(IGA-FEM)is used to discretize the flexural theoretical formulas and obtain samples,which helps ANN to build a proxy model from the model shape to the target value.The effectiveness of the proposed method is verified through two numerical examples of parameter optimization and one numerical example of shape optimization.
基金Anhui Provincial Natural Science Foundation(2308085QD124)Anhui Province University Natural Science Research Project(GrantNo.2023AH050918)The University Outstanding Youth Talent Support Program of Anhui Province.
文摘This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node distribution.Firstly,based on the first-order shear deformation theory,the governing equation of free vibration of a functionally graded beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam axial displacement,transverse displacement,and cross-sectional rotation angle by considering the effects of shear deformation and rotational inertia of the beam cross-section.Then,ignoring the shear deformation of the beam section and only considering the effect of the rotational inertia of the section,the governing equation of the beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam transverse displacement.Based on the differential quadrature method theory,the eigenvalue problem of ordinary differential equations is transformed into the eigenvalue problem of standard generalized algebraic equations.Finally,the first several natural frequencies of the beam can be calculated.The feasibility and accuracy of the improved DQM are verified using the finite element method(FEM)and combined with the results of relevant literature.
基金the National Key Research and Development Program of China(Grant Number 2021YFB1714600)the National Natural Science Foundation of China(Grant Number 52075195)the Fundamental Research Funds for the Central Universities,China through Program No.2172019kfyXJJS078.
文摘With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying microstructures has grown significantly.However,a critical challenge is encountered in the design of these structures–the absence of robust interface connections between adjacent microstructures,potentially resulting in diminished efficiency or macroscopic failure.A Hybrid Level Set Method(HLSM)is proposed,specifically designed to enhance connectivity among non-uniform microstructures,contributing to the design of functionally graded cellular structures.The HLSM introduces a pioneering algorithm for effectively blending heterogeneous microstructure interfaces.Initially,an interpolation algorithm is presented to construct transition microstructures seamlessly connected on both sides.Subsequently,the algorithm enables the morphing of non-uniform unit cells to seamlessly adapt to interconnected adjacent microstructures.The method,seamlessly integrated into a multi-scale topology optimization framework using the level set method,exhibits its efficacy through numerical examples,showcasing its prowess in optimizing 2D and 3D functionally graded materials(FGM)and multi-scale topology optimization.In essence,the pressing issue of interface connections in complex structure design is not only addressed but also a robust methodology is introduced,substantiated by numerical evidence,advancing optimization capabilities in the realm of functionally graded materials and cellular structures.
基金the National Natural Science Foundation of China(Nos.12302007,12372006,and 12202109)the Specific Research Project of Guangxi for Research Bases and Talents(No.AD23026051)。
文摘Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore the dynamic behaviors of an FGM stepped beam with different boundary conditions based on an efficient solving method.Under the assumptions of the Euler-Bernoulli beam theory,the governing differential equations of an individual FGM beam are derived with Hamilton’s principle and decoupled via the separation-of-variable approach.Then,the free and forced vibrations of the FGM stepped beam are solved with the transfer matrix method(TMM).Two models,i.e.,a three-level FGM stepped beam and a five-level FGM stepped beam,are considered,and their natural frequencies and mode shapes are presented.To demonstrate the validity of the method in this paper,the simulation results by ABAQUS are also given.On this basis,the detailed parametric analyses on the frequencies and dynamic responses of the three-level FGM stepped beam are carried out.The results show the accuracy and efficiency of the TMM.
文摘Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.
基金the National Natural Science Foundation of China(No.U2032141)the Open Project of Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology(No.NLK2022-02)+4 种基金the Central Government Guidance Funds for Local Scientific and Technological Development,China(Guike ZY22096024)the Natural Science Foundation of Henan Province(No.202300410479)the Guizhou Provincial Science and Technology Projects(No.ZK[2022]203)the Foundation of Fundamental Research for Young Teachers of Zhengzhou University(No.JC202041041)the Physics Research and Development Program of Zhengzhou University(No.32410217).
文摘The possible exotic nuclear properties in the neutron-rich Ca,Ni,Zr,and Sn isotopes are examined with the continuum Skyrme Hartree-Fock-Bogoliubov theory in the framework of the Green’s function method.The pairing correlation,the couplings with the continuum,and the blocking effects for the unpaired nucleon in odd-A nuclei are properly treated.The Skyrme interaction SLy4 is adopted for the ph channel and the density-dependentinteraction is adopted for the pp chan-nel,which well reproduce the experimental two-neutron separation energies S_(2n)and one-neutron separation energies Sn.It is found that the criterion S_(n)>0 predicts a neutron drip line with neutron numbers much smaller than those for S_(2n)>0.Owing to the unpaired odd neutron,the neutron pairing energies−E_(pair)in odd-A nuclei are much lower than those in the neighbor-ing even-even nuclei.By investigating the single-particle structures,the possible halo structures in the neutron-rich Ca,Ni,and Sn isotopes are predicted,where sharp increases in the root-mean-square(rms)radii with significant deviations from the traditional rA^(1∕3)rule and diffuse spatial density distributions are observed.Analyzing the contributions of various partial waves to the total neutron densityρlj(r)∕ρ(r)reveals that the orbitals located around the Fermi surface-particularly those with small angular momenta-significantly affect the extended nuclear density and large rms radii.The number of neutrons Nλ(N_(0))occupying above the Fermi surfacen(continuum threshold)is discussed,whose evolution as a function of the mass number A in each isotope is consistent with that of the pairing energy,supporting the key role of the pairing correlation in halo phenomena.
文摘In the optimal control problem of nonlinear dynamical system,the Hamiltonian formulation is useful and powerful to solve an optimal control force.However,the resulting Euler-Lagrange equations are not easy to solve,when the performance index is complicated,because one may encounter a two-point boundary value problem of nonlinear differential algebraic equations.To be a numerical method,it is hard to exactly preserve all the specified conditions,which might deteriorate the accuracy of numerical solution.With this in mind,we develop a novel algorithm to find the solution of the optimal control problem of nonlinear Duffing oscillator,which can exactly satisfy all the required conditions for the minimality of the performance index.A new idea of shape functions method(SFM)is introduced,from which we can transform the optimal control problems to the initial value problems for the new variables,whose initial values are given arbitrarily,and meanwhile the terminal values are determined iteratively.Numerical examples confirm the high-performance of the iterative algorithms based on the SFM,which are convergence fast,and also provide very accurate solutions.The new algorithm is robust,even large noise is imposed on the input data.
基金supported by the Office of Naval Research (Grant No.N000141010778) to the University of Oklahomathe National Natural Sciences Foundation of China (Grant Nos. 40930950,41075043,and 4092116037) to the Institute of Atmospheric Physicsprovided by NOAA/Office of Oceanic and Atmospheric Research under NOAA-University of Oklahoma Cooperative Agreement No. (NA17RJ1227),U.S. Department of Commerce
文摘Built on the integral formulas in Part I,numerical methods are developed for computing velocity potential and streamfunction in a limited domain.When there is no inner boundary(around a data hole) inside the domain,the total solution is the sum of the internally and externally induced parts.For the internally induced part,three numerical schemes(grid-staggering,local-nesting and piecewise continuous integration) are designed to deal with the singularity of the Green's function encountered in numerical calculations.For the externally induced part,by setting the velocity potential(or streamfunction) component to zero,the other component of the solution can be computed in two ways:(1) Solve for the density function from its boundary integral equation and then construct the solution from the boundary integral of the density function.(2) Use the Cauchy integral to construct the solution directly.The boundary integral can be discretized on a uniform grid along the boundary.By using local-nesting(or piecewise continuous integration),the scheme is refined to enhance the discretization accuracy of the boundary integral around each corner point(or along the entire boundary).When the domain is not free of data holes,the total solution contains a data-hole-induced part,and the Cauchy integral method is extended to construct the externally induced solution with irregular external and internal boundaries.An automated algorithm is designed to facilitate the integrations along the irregular external and internal boundaries.Numerical experiments are performed to evaluate the accuracy and efficiency of each scheme relative to others.
基金This work was supported by the National Key R&D Program‘Transportation Infrastructure’project(No.2022YFB2603400).
文摘The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on the real shape of coarse particles.First,an improved Viola-Jones algorithm is employed to establish a digitalized 2D particle database for coarse particle shape evaluation and discrete modeling purposes of subgrade filler.Shape indexes of 2D subgrade filler are then computed and statistically analyzed.Finally,numerical simulations are performed to quantitatively investigate the effects of the aspect ratio(AR)and interparticle friction coefficient(μ)on the macro-and micro-mechanical compaction characteristics of subgrade filler based on the discrete element method(DEM).The results show that with the increasing AR,the coarse particles are narrower,leading to the increasing movement of fine particles during compaction,which indicates that it is difficult for slender coarse particles to inhibit the migration of fine particles.Moreover,the average displacement of particles is strongly influenced by the AR,indicating that their occlusion under power relies on particle shapes.The dis-placement and velocity of fine particles are much greater than those of the coarse particles,which shows that compaction is primarily a migration of fine particles.Under the cyclic load,the interparticle friction coefficientμhas little effect on the internal structure of the sample;under the quasi-static loads,however,the increase inμwill lead to a significant increase in the porosity of the sample.This study could not only provide a novel approach to investigate the compaction mechanism but also establish a new theoretical basis for the evaluation of intelligent subgrade compaction.
基金Project supported by the National Natural Science Foundation of China(No.11925204)the 111 Project(No.B14044)。
文摘A high-accuracy multiresolution method is proposed to solve mechanics problems subject to complex shapes or irregular domains.To realize this method,we design a new wavelet basis function,by which we construct a fifth-order numerical scheme for the approximation of multi-dimensional functions and their multiple integrals defined in complex domains.In the solution of differential equations,various derivatives of the unknown function are denoted as new functions.Then,the integral relations between these functions are applied in terms of wavelet approximation of multiple integrals.Therefore,the original equation with derivatives of various orders can be converted to a system of algebraic equations with discrete nodal values of the highest-order derivative.During the application of the proposed method,boundary conditions can be automatically included in the integration operations,and relevant matrices can be assured to exhibit perfect sparse patterns.As examples,we consider several second-order mathematics problems defined on regular and irregular domains and the fourth-order bending problems of plates with various shapes.By comparing the solutions obtained by the proposed method with the exact solutions,the new multiresolution method is found to have a convergence rate of fifth order.The solution accuracy of this method with only a few hundreds of nodes can be much higher than that of the finite element method(FEM)with tens of thousands of elements.In addition,because the accuracy order for direct approximation of a function using the proposed basis function is also fifth order,we may conclude that the accuracy of the proposed method is almost independent of the equation order and domain complexity.
基金supported by the National Natural Science Foundation of China under Grant 52007102,52207012by the State Key Laboratory of Reliability and Intelligence of Electrical Equipment under Grant EERIKF2021015。
文摘This paper presents an identification method of the scalar Preisach model to consider the effect of reversible magnetization in the process of distribution function identification.By reconsidering the identification process by stripping the influence of reversible components from the measurement data,the Preisach distribution function is identified by the pure irreversible components.In this way,the simulation accuracy of both limiting hysteresis loops and the inner internal symmetrical small hysteresis loop is ensured.Furthermore,through a discrete Preisach plane with a hybrid discretization method,the irreversible magnetic flux density components are computed more efficiently through the improved Preisach model.Finally,the proposed method results are compared with the traditional method and the traditional method considering reversible magnetization and validated by the laboratory test for the B30P105 electrical steel by Epstein frame.
文摘In this study,application of the spectral representation method for generation of endurance time excitation functions is introduced.Using this method,the intensifying acceleration time series is generated so that its acceleration response spectrum in any desired time duration is compatible with a time-scaled predefined acceleration response spectrum.For this purpose,simulated stationary acceleration time series is multiplied by the time dependent linear modulation function,then using a simple iterative scheme,it is forced to match a target acceleration response spectrum.It is shown that the generated samples have excellent conformity in low frequency,which is useful for nonlinear endurance time analysis.In the second part of this study,it is shown that this procedure can be extended to generate a set of spatially correlated endurance time excitation functions.This makes it possible to assess the performance of long structures under multi-support seismic excitation using endurance time analysis.
基金Supported by Guangxi Key Research and Development Plan(GK AB21196052)Guangxi Science and Technology Planning Project(GK AD20297117)+2 种基金Guangxi Science and Technology Major Project(GK AA17204064-4)Special Project of Basic Scientific Research Business of Guangxi Academy of Agricultural Sciences(GNK 2021YT015GNK 2020YM90)。
文摘To screen new maize(Zea mays L.)varieties suitable for food and fodder dual-purpose in Du'an Yao Autonomous County of Guangxi,the agronomic characters,yield and quality indexes of 12 new maize varieties were measured,and the correlation between various indexes were analyzed,and the comprehensive performance of tested varieties was evaluated by membership function method.The results showed that Guidan 671 had the highest grain yield and whole-plant biomass at 10908 and 49965 kg/hm^(2),respectively,and the second was Zhaoyu 215 with a grain yield and whole-plant biomass of 10086 and 47175 kg/hm^(2),respectively.Grain yield was highly significantly positively correlated with ear diameter and 100-grain weight(P<0.01),and significantly correlated with whole-plant biomass,starch content,ear length and grain number per row(P<0.05);and the whole-plant biomass was highly significantly correlated with the number of grains per row(P<0.01),and significantly correlated with starch content,panicle length,plant height and panicle height(P<0.05).The comprehensive performance scores of the tested varieties from high to low were Guidan 671,Zhaoyu 215,Guidan 669,Guidan 6208,Guidan 666,Guidan 6205,Guidan 660,Guidan 6203,Guidan 6206,Guidan 162,Guidan 668 and Guidan 673.According to the values of membership function and combined with various indexes,Guidan 671 and Zhaoyu 215 had good comprehensive performance,and could be used as the first choice for food and fodder dual-purpose maize varieties in Du'an Yao Autonomous County.
文摘Radial Basis Function methods for scattered data interpolation and for the numerical solution of PDEs were originally implemented in a global manner. Subsequently, it was realized that the methods could be implemented more efficiently in a local manner and that the local approaches could match or even surpass the accuracy of the global implementations. In this work, three localization approaches are compared: a local RBF method, a partition of unity method, and a recently introduced modified partition of unity method. A simple shape parameter selection method is introduced and the application of artificial viscosity to stabilize each of the local methods when approximating time-dependent PDEs is reviewed. Additionally, a new type of quasi-random center is introduced which may be better choices than other quasi-random points that are commonly used with RBF methods. All the results within the manuscript are reproducible as they are included as examples in the freely available Python Radial Basis Function Toolbox.
文摘This paper concerns the implementation of the orthogonal polynomials using the Galerkin method for solving Volterra integro-differential and Fredholm integro-differential equations. The constructed orthogonal polynomials are used as basis functions in the assumed solution employed. Numerical examples for some selected problems are provided and the results obtained show that the Galerkin method with orthogonal polynomials as basis functions performed creditably well in terms of absolute errors obtained.
基金the National Natural Science Foundation of China for financial support to this work under Grant NSFC No.12072064.
文摘The collocation method is a widely used numerical method for science and engineering problems governed by partial differential equations.This paper provides a comprehensive review of collocation methods and their applications,focused on elasticity,heat conduction,electromagnetic field analysis,and fluid dynamics.The merits of the collocation method can be attributed to the need for element mesh,simple implementation,high computational efficiency,and ease in handling irregular domain problems since the collocation method is a type of node-based numerical method.Beginning with the fundamental principles of the collocation method,the discretization process in the continuous domain is elucidated,and how the collocation method approximation solutions for solving differential equations are explained.Delving into the historical development of the collocation methods,their earliest applications and key milestones are traced,thereby demonstrating their evolution within the realm of numerical computation.The mathematical foundations of collocation methods,encompassing the selection of interpolation functions,definition of weighting functions,and derivation of integration rules,are examined in detail,emphasizing their significance in comprehending the method’s effectiveness and stability.At last,the practical application of the collocation methods in engineering contexts is emphasized,including heat conduction simulations,electromagnetic coupled field analysis,and fluid dynamics simulations.These specific case studies can underscore collocation method’s broad applicability and effectiveness in addressing complex engineering challenges.In conclusion,this paper puts forward the future development trend of the collocation method through rigorous analysis and discussion,thereby facilitating further advancements in research and practical applications within these fields.
基金supported by the National Natural Science Foundation of China (NSFC)under Grant Nos.12172350,11772322 and 11702238。
文摘We propose a combined shape and topology optimization approach in this research for 3D acoustics by using the isogeometric boundary element method with subdivision surfaces.The existing structural optimization methods mainly contain shape and topology schemes,with the former changing the surface geometric profile of the structure and the latter changing thematerial distribution topology or hole topology of the structure.In the present acoustic performance optimization,the coordinates of the control points in the subdivision surfaces fine mesh are selected as the shape design parameters of the structure,the artificial density of the sound absorbing material covered on the structure surface is set as the topology design parameter,and the combined topology and shape optimization approach is established through the sound field analysis of the subdivision surfaces boundary element method as a bridge.The topology and shape sensitivities of the approach are calculated using the adjoint variable method,which ensures the efficiency of the optimization.The geometric jaggedness and material distribution discontinuities that appear in the optimization process are overcome to a certain degree by the multiresolution method and solid isotropic material with penalization.Numerical examples are given to validate the effectiveness of the presented optimization approach.
文摘The aim of this study is to evaluate the uncertainty of 2πα and 2πβ surface emission rates using the windowless multiwire proportional counter method.This study used the Monte Carlo method (MCM) to validate the conventional Guide to the Expression of Uncertainty in Measurement (GUM) method.A dead time measurement model for the two-source method was established based on the characteristics of a single-channel measurement system,and the voltage threshold correction factor measurement function was indirectly obtained by fitting the threshold correction curve.The uncertainty in the surface emission rate was calculated using the GUM method and the law of propagation of uncertainty.The MCM provided clear definitions for each input quantity and its uncertainty distribution,and the simulation training was realized with a complete and complex mathematical model.The results of the surface emission rate uncertainty evaluation for four radioactive plane sources using both methods showed the uncertainty’s consistency E_(n)<0.070 for the comparison of each source,and the uncertainty results of the GUM were all lower than those of the MCM.However,the MCM has a more objective evaluation process and can serve as a validation tool for GUM results.
基金supported by the National Key R and D Program of China(2020YFA0713100).
文摘For an arbitrary solution to the Volterra lattice hierarchy,the logarithmic derivatives of the tau-function of the solution can be computed by the matrix-resolvent method.In this paper,we define a pair of wave functions of the solution and use them to give an expression of the matrix resolvent;based on this we obtain a new formula for the k-point functions for the Volterra lattice hierarchy in terms of wave functions.As an application,we give an explicit formula of k-point functions for the even GUE(Gaussian Unitary Ensemble)correlators.