The safety of risers in hang-off states is a vital challenge in offshore oil and gas engineering.A new hang-off system installed on top of risers is proposed for improving the security of risers.This approach leads to...The safety of risers in hang-off states is a vital challenge in offshore oil and gas engineering.A new hang-off system installed on top of risers is proposed for improving the security of risers.This approach leads to a challenging problem:coupling the dynamics of risers with a new hang-off system combined with multiple structures and complex constraints.To accurately analyze the dynamic responses of the coupled system,a coupled dynamic model is established based on the Euler-Bernoulli beam-column theory and penalty function method.A comprehensive analysis method is proposed for coupled dynamic analysis by combining the finite element method and the Newmarkβmethod.An analysis program is also developed in MATLAB for dynamic simulation.The simulation results show that the dynamic performances of the risers at the top part are significantly improved by the new hang-off system,especially the novel design,which includes the centralizer and articulation joint.The bending moment and lateral deformation of the risers at the top part decrease,while the hang-off joint experiences a great bending moment at the bottom of the lateral restraint area which requires particular attention in design and application.The platform navigation speed range under the safety limits of risers expands with the new hang-off system in use.展开更多
In order to present the microstructures of dynamic recrystallization(DRX) in different deformation zones of hot extruded NiTi shape memory alloy(SMA) pipe coupling,a simulation approach combining finite element method...In order to present the microstructures of dynamic recrystallization(DRX) in different deformation zones of hot extruded NiTi shape memory alloy(SMA) pipe coupling,a simulation approach combining finite element method(FEM) with cellular automaton(CA) was developed and the relationship between the macroscopic field variables and the microscopic internal variables was established.The results show that there exists a great distinction among the microstructures in different zones of pipe coupling because deformation histories of these regions are diverse.Large plastic deformation may result in fine recrystallized grains,whereas the recrystallized grains may grow very substantially if there is a rigid translation during the deformation,even if the final plastic strain is very large.As a consequence,the deformation history has a significant influence on the evolution path of the DRX as well as the final microstructures of the DRX,including the morphology,the mean grain size and the recrystallization fraction.展开更多
Advancements in manufacturing technology,including the rapid development of additive manufacturing(AM),allow the fabrication of complex functionally graded material(FGM)sectioned beams.Portions of these beams may be m...Advancements in manufacturing technology,including the rapid development of additive manufacturing(AM),allow the fabrication of complex functionally graded material(FGM)sectioned beams.Portions of these beams may be made from different materials with possibly different gradients of material properties.The present work proposes models to investigate the free vibration of FGM sectioned beams based on onedimensional(1D)finite element analysis.For this purpose,a sample beam is divided into discrete elements,and the total energy stored in each element during vibration is computed by considering either the Timoshenko or Euler-Bernoulli beam theory.Then,Hamilton’s principle is used to derive the equations of motion for the beam.The effects of material properties and dimensions of FGM sections on the beam’s natural frequencies and their corresponding mode shapes are then investigated based on a dynamic Timoshenko model(TM).The presented model is validated by comparison with three-dimensional(3D)finite element simulations of the first three mode shapes of the beam.展开更多
Based on the newly-developed element energy projection (EEP) method with optimal super-convergence order for computation of super-convergent results, an improved self-adaptive strategy for one-dimensional finite ele...Based on the newly-developed element energy projection (EEP) method with optimal super-convergence order for computation of super-convergent results, an improved self-adaptive strategy for one-dimensional finite element method (FEM) is proposed. In the strategy, a posteriori errors are estimated by comparing FEM solutions to EEP super-convergent solutions with optimal order of super-convergence, meshes are refined by using the error-averaging method. Quasi-FEM solutions are used to replace the true FEM solutions in the adaptive process. This strategy has been found to be simple, clear, efficient and reliable. For most problems, only one adaptive step is needed to produce the required FEM solutions which pointwise satisfy the user specified error tolerances in the max-norm. Taking the elliptical ordinary differential equation of the second order as the model problem, this paper describes the fundamental idea, implementation strategy and computational algorithm and representative numerical examples are given to show the effectiveness and reliability of the proposed approach.展开更多
Using the method of undetermined coefficients, we construct a set of shape function spaces of nine-node triangular plate elements converging for any meshes, which generalize Spect's element and Veubeke's element.
The finite segment modelling for the flexible beam-formed structural elements is presented, in which the discretization views of the finite segment method and the difference from the finite element method are introduc...The finite segment modelling for the flexible beam-formed structural elements is presented, in which the discretization views of the finite segment method and the difference from the finite element method are introduced. In terms of the nodal model, the joint properties are described easily by the model of the finite segment method, and according to the element properties, the assumption of the small strain is only met in the finite segment method, i. e., the geometric nonlinear deformation of the flexible bodies is allowable. Consequently,the finite segment method is very suited to the flexible multibody structure. The finite segment model is used and the are differentiation is adopted for the differential beam segments. The stiffness equation is derived by the use of the principle of virtual work. The new modelling method shows its normalization, clear physical and geometric meanings and simple computational process.展开更多
In order to provide reliable data for the dynamic design or modification of a tool machine,the dynamic character- istics of the headstock,which is the main component to bear moment,must be obtained precisely.In the pa...In order to provide reliable data for the dynamic design or modification of a tool machine,the dynamic character- istics of the headstock,which is the main component to bear moment,must be obtained precisely.In the paper,the method based on the combination of calculation mode and experiment mode is proposed to analyze the dynamic characteristics of the headstock.The modal parameters and the mode shapes are calculated by ANSYS7.1 software.According to the FEM calculating results,the ex- periment parameters can be selected correctly.The modal parameters of the headstock have to be calculated and identified precisely. On the basis of these modal parameters,the faults of the headstock are shown and its weak points of design are illustrated.A con- clusion is drawn that some reasonable reinforce positions could greatly improve the dynamic characteristics of the system and this ap- proach is proved to be precise and reliable.展开更多
1 This paper considers Lagrangian finite elements for structural dynamics constructed with cubic displacement shape functions.The method of templates is used to investigate the construction of accurate mass-stiffness ...1 This paper considers Lagrangian finite elements for structural dynamics constructed with cubic displacement shape functions.The method of templates is used to investigate the construction of accurate mass-stiffness pairs.This method introduces free parameters that can be adjusted to customize elements according to accuracy and rank-sufficiency criteria.One-and two-dimensional Lagrangian cubic elements with only translational degrees of freedom(DOF)carry two additional nodes on each side,herein called side nodes or SN.Although usually placed at the third-points,the SN location may be adjusted within geometric limits.The adjustment effect is studied in detail using symbolic computations for a bar element.The best SN location is taken to be that producing accurate approximation to the lowest natural frequencies of the continuum model.Optimality is investigated through Fourier analysis of the propagation of plane waves over a regular infinite lattice of bar elements.Focus is placed on the acoustic branch of the frequency-vs.-wavenumber dispersion diagram.It is found that dispersion results using the fully integrated consistent mass matrix(CMM)are independent of the SN location whereas its lowfrequency accuracy order is O(κ8),whereκis the dimensionless wave number.For the diagonally lumped mass matrix(DLMM)constructed through the HRZ scheme,two optimal SN locations are identified,both away from third-points and of accuracy order O(κ8).That with the smallest error coefficient corresponds to the Lobatto 4-point integration rule.A special linear combination of CMM and DLMM with nodes at the Lobatto points yields an accuracy of O(κ10)without any increase in the computational effort over CMM.The effect of reduced integration(RI)on both mass and stiffness matrices is also studied.It is shown that singular mass matrices can be constructed with 2-and 3-point RI rules that display the same optimal accuracy of the exactly integrated case,at the cost of introducing spurious modes.The optimal SN location in two-dimensional,bicubic,isoparametric plane stress quadrilateral elements is briefly investigated by numerical experiments.The frequency accuracy of flexural modes is found to be fairly insensitive to that position,whereas for bar-like modes it agrees with the one-dimensional results.展开更多
A numerical method is proposed to approach the Approximate Inertial Man-ifolds(AIMs)in unsteady incompressible Navier-Stokes equations,using multilevel fi-nite element method with hierarchical basis functions.Followin...A numerical method is proposed to approach the Approximate Inertial Man-ifolds(AIMs)in unsteady incompressible Navier-Stokes equations,using multilevel fi-nite element method with hierarchical basis functions.Following AIMS,the unknown variables,velocity and pressure in the governing equations,are divided into two com-ponents,namely low modes and high modes.Then,the couplings between low modes and high modes,which are not accounted by standard Galerkin method,are consid-ered by AIMs,to improve the accuracy of the numerical results.Further,the multilevel finite element method with hierarchical basis functions is introduced to approach low modes and high modes in an efficient way.As an example,the flow around airfoil NACA0012 at different angles of attack has been simulated by the method presented,and the comparisons show that there is a good agreement between the present method and experimental results.In particular,the proposed method takes less computing time than the traditional method.As a conclusion,the present method is efficient in numer-ical analysis of fluid dynamics,especially in computing time.展开更多
扩展有限元(extended finite element method,XFEM)是近年来发展起来的、在常规有限元框架内求解不连续问题的有效数值计算方法,其基于单位分解的思想,在常规有限元位移模式中加入能够反映裂纹面不连续性的跳跃函数及裂尖渐进位移场函数...扩展有限元(extended finite element method,XFEM)是近年来发展起来的、在常规有限元框架内求解不连续问题的有效数值计算方法,其基于单位分解的思想,在常规有限元位移模式中加入能够反映裂纹面不连续性的跳跃函数及裂尖渐进位移场函数,避免了采用常规有限元计算断裂问题时需要对裂纹尖端重新加密网格造成的不便。在推导扩展有限元算法的基础上,分析了应力强度因子的J积分计算方法及积分区域的选取。采用XFEM对I型裂纹进行了计算,有限元网格独立于裂纹面,无需在裂纹尖端加密网格;分析了积分区域、网格密度对应力强度因子计算精度的影响,指出了计算应力强度因子的合适参数,验证了此方法的可靠性和准确性。展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52271300,52071337,and 51809279)the National Key Research and Development Program of China(Grant No.2022YFC2806501)the High-tech Ship Research Projects Sponsored by MIIT(Grant No.CBG2N21-4-2-5).
文摘The safety of risers in hang-off states is a vital challenge in offshore oil and gas engineering.A new hang-off system installed on top of risers is proposed for improving the security of risers.This approach leads to a challenging problem:coupling the dynamics of risers with a new hang-off system combined with multiple structures and complex constraints.To accurately analyze the dynamic responses of the coupled system,a coupled dynamic model is established based on the Euler-Bernoulli beam-column theory and penalty function method.A comprehensive analysis method is proposed for coupled dynamic analysis by combining the finite element method and the Newmarkβmethod.An analysis program is also developed in MATLAB for dynamic simulation.The simulation results show that the dynamic performances of the risers at the top part are significantly improved by the new hang-off system,especially the novel design,which includes the centralizer and articulation joint.The bending moment and lateral deformation of the risers at the top part decrease,while the hang-off joint experiences a great bending moment at the bottom of the lateral restraint area which requires particular attention in design and application.The platform navigation speed range under the safety limits of risers expands with the new hang-off system in use.
基金Projects(51305091,51475101)supported by the National Natural Science Foundation of ChinaProject(20132304120025)supported by Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘In order to present the microstructures of dynamic recrystallization(DRX) in different deformation zones of hot extruded NiTi shape memory alloy(SMA) pipe coupling,a simulation approach combining finite element method(FEM) with cellular automaton(CA) was developed and the relationship between the macroscopic field variables and the microscopic internal variables was established.The results show that there exists a great distinction among the microstructures in different zones of pipe coupling because deformation histories of these regions are diverse.Large plastic deformation may result in fine recrystallized grains,whereas the recrystallized grains may grow very substantially if there is a rigid translation during the deformation,even if the final plastic strain is very large.As a consequence,the deformation history has a significant influence on the evolution path of the DRX as well as the final microstructures of the DRX,including the morphology,the mean grain size and the recrystallization fraction.
基金Project supported by Khalifa University of Science and Technology(No.CIRA 2019-024)。
文摘Advancements in manufacturing technology,including the rapid development of additive manufacturing(AM),allow the fabrication of complex functionally graded material(FGM)sectioned beams.Portions of these beams may be made from different materials with possibly different gradients of material properties.The present work proposes models to investigate the free vibration of FGM sectioned beams based on onedimensional(1D)finite element analysis.For this purpose,a sample beam is divided into discrete elements,and the total energy stored in each element during vibration is computed by considering either the Timoshenko or Euler-Bernoulli beam theory.Then,Hamilton’s principle is used to derive the equations of motion for the beam.The effects of material properties and dimensions of FGM sections on the beam’s natural frequencies and their corresponding mode shapes are then investigated based on a dynamic Timoshenko model(TM).The presented model is validated by comparison with three-dimensional(3D)finite element simulations of the first three mode shapes of the beam.
基金the National Natural Science Foundation of China(No.50678093)Program for Changjiang Scholars and Innovative Research Team in University(No.IRT00736)
文摘Based on the newly-developed element energy projection (EEP) method with optimal super-convergence order for computation of super-convergent results, an improved self-adaptive strategy for one-dimensional finite element method (FEM) is proposed. In the strategy, a posteriori errors are estimated by comparing FEM solutions to EEP super-convergent solutions with optimal order of super-convergence, meshes are refined by using the error-averaging method. Quasi-FEM solutions are used to replace the true FEM solutions in the adaptive process. This strategy has been found to be simple, clear, efficient and reliable. For most problems, only one adaptive step is needed to produce the required FEM solutions which pointwise satisfy the user specified error tolerances in the max-norm. Taking the elliptical ordinary differential equation of the second order as the model problem, this paper describes the fundamental idea, implementation strategy and computational algorithm and representative numerical examples are given to show the effectiveness and reliability of the proposed approach.
文摘Using the method of undetermined coefficients, we construct a set of shape function spaces of nine-node triangular plate elements converging for any meshes, which generalize Spect's element and Veubeke's element.
基金National Natural Science Foundation of China!59575026
文摘The finite segment modelling for the flexible beam-formed structural elements is presented, in which the discretization views of the finite segment method and the difference from the finite element method are introduced. In terms of the nodal model, the joint properties are described easily by the model of the finite segment method, and according to the element properties, the assumption of the small strain is only met in the finite segment method, i. e., the geometric nonlinear deformation of the flexible bodies is allowable. Consequently,the finite segment method is very suited to the flexible multibody structure. The finite segment model is used and the are differentiation is adopted for the differential beam segments. The stiffness equation is derived by the use of the principle of virtual work. The new modelling method shows its normalization, clear physical and geometric meanings and simple computational process.
基金The financial support for this research is provided by the Natural Science foundation of China(No.50475117)Youth Natural Science Fund of Shanxi(No.20011021)
文摘In order to provide reliable data for the dynamic design or modification of a tool machine,the dynamic character- istics of the headstock,which is the main component to bear moment,must be obtained precisely.In the paper,the method based on the combination of calculation mode and experiment mode is proposed to analyze the dynamic characteristics of the headstock.The modal parameters and the mode shapes are calculated by ANSYS7.1 software.According to the FEM calculating results,the ex- periment parameters can be selected correctly.The modal parameters of the headstock have to be calculated and identified precisely. On the basis of these modal parameters,the faults of the headstock are shown and its weak points of design are illustrated.A con- clusion is drawn that some reasonable reinforce positions could greatly improve the dynamic characteristics of the system and this ap- proach is proved to be precise and reliable.
基金This paper expands on work conducted during the 2005-2006 summer aca-demic recesses while the author was a visitor at CIMNE(Centro Internacional de Métodos Numéricos en Ingenieria)at Barcelona,SpainThe visits were partly supported by fellowships awarded by the Spanish Ministerio de Educación y Cultura during May-June of those years,and partly by the National Science Foundation under grant High-Fidelity Simulations for Heteroge-neous Civil and Mechanical Systems,CMS-0219422。
文摘1 This paper considers Lagrangian finite elements for structural dynamics constructed with cubic displacement shape functions.The method of templates is used to investigate the construction of accurate mass-stiffness pairs.This method introduces free parameters that can be adjusted to customize elements according to accuracy and rank-sufficiency criteria.One-and two-dimensional Lagrangian cubic elements with only translational degrees of freedom(DOF)carry two additional nodes on each side,herein called side nodes or SN.Although usually placed at the third-points,the SN location may be adjusted within geometric limits.The adjustment effect is studied in detail using symbolic computations for a bar element.The best SN location is taken to be that producing accurate approximation to the lowest natural frequencies of the continuum model.Optimality is investigated through Fourier analysis of the propagation of plane waves over a regular infinite lattice of bar elements.Focus is placed on the acoustic branch of the frequency-vs.-wavenumber dispersion diagram.It is found that dispersion results using the fully integrated consistent mass matrix(CMM)are independent of the SN location whereas its lowfrequency accuracy order is O(κ8),whereκis the dimensionless wave number.For the diagonally lumped mass matrix(DLMM)constructed through the HRZ scheme,two optimal SN locations are identified,both away from third-points and of accuracy order O(κ8).That with the smallest error coefficient corresponds to the Lobatto 4-point integration rule.A special linear combination of CMM and DLMM with nodes at the Lobatto points yields an accuracy of O(κ10)without any increase in the computational effort over CMM.The effect of reduced integration(RI)on both mass and stiffness matrices is also studied.It is shown that singular mass matrices can be constructed with 2-and 3-point RI rules that display the same optimal accuracy of the exactly integrated case,at the cost of introducing spurious modes.The optimal SN location in two-dimensional,bicubic,isoparametric plane stress quadrilateral elements is briefly investigated by numerical experiments.The frequency accuracy of flexural modes is found to be fairly insensitive to that position,whereas for bar-like modes it agrees with the one-dimensional results.
基金The research is supported by the National Basic Research Program of China(973 Program,Grant No.2012CB026002)the National Natural Science Foun-dation of China(Grant No.51305355).
文摘A numerical method is proposed to approach the Approximate Inertial Man-ifolds(AIMs)in unsteady incompressible Navier-Stokes equations,using multilevel fi-nite element method with hierarchical basis functions.Following AIMS,the unknown variables,velocity and pressure in the governing equations,are divided into two com-ponents,namely low modes and high modes.Then,the couplings between low modes and high modes,which are not accounted by standard Galerkin method,are consid-ered by AIMs,to improve the accuracy of the numerical results.Further,the multilevel finite element method with hierarchical basis functions is introduced to approach low modes and high modes in an efficient way.As an example,the flow around airfoil NACA0012 at different angles of attack has been simulated by the method presented,and the comparisons show that there is a good agreement between the present method and experimental results.In particular,the proposed method takes less computing time than the traditional method.As a conclusion,the present method is efficient in numer-ical analysis of fluid dynamics,especially in computing time.
文摘扩展有限元(extended finite element method,XFEM)是近年来发展起来的、在常规有限元框架内求解不连续问题的有效数值计算方法,其基于单位分解的思想,在常规有限元位移模式中加入能够反映裂纹面不连续性的跳跃函数及裂尖渐进位移场函数,避免了采用常规有限元计算断裂问题时需要对裂纹尖端重新加密网格造成的不便。在推导扩展有限元算法的基础上,分析了应力强度因子的J积分计算方法及积分区域的选取。采用XFEM对I型裂纹进行了计算,有限元网格独立于裂纹面,无需在裂纹尖端加密网格;分析了积分区域、网格密度对应力强度因子计算精度的影响,指出了计算应力强度因子的合适参数,验证了此方法的可靠性和准确性。