Shape memory alloy (SMA) materials possess completely superelasticity or pseudoelasticity above the austenite finish temperature and many unique mechanical, thermal, thermal-mechanical and electrical properties comp...Shape memory alloy (SMA) materials possess completely superelasticity or pseudoelasticity above the austenite finish temperature and many unique mechanical, thermal, thermal-mechanical and electrical properties compared with other conventional materials. Many studies have reported that the superelastic and hysteresis properties of the SMA materials can absorb energies coming from external excitations or sudden impacts. In addition, due to the special electrical properties of NiTi superelastic wires, they can also be used as strain-sensing element to monitor structural health conditions. Composite laminated specimens embedded with SMA wire sensors are fabricated and detailed testing system is designed such as multi-parameters measuring for impact and weak signal processing for SMA sensor. Low velocity impact test shows that SMA wire sensors embedded in fiber-reinforced plastic (FRP) laminate can be well used to monitor impact responses, such as the location of impact damage, impact degree, and strain distribution. Experimental results and theoretical predictions reveal almost the same. Comparing with other method, a simple, economic and reliable technique method monitoring important engineering structures on line is provided.展开更多
Ti Ni shape memory alloys(SMAs) have been normally used as the competent elements in large part of the industries due to outstanding properties, such as super elasticity and shape memory effects. However, traditiona...Ti Ni shape memory alloys(SMAs) have been normally used as the competent elements in large part of the industries due to outstanding properties, such as super elasticity and shape memory effects. However, traditional machining of SMAs is quite complex due to these properties. Hence, the wire electric discharge machining(WEDM) characteristics of Ti Ni SMA was studied. The experiments were planned as per L27 orthogonal array to minimize the experiments, each experiment was performed under different conditions of pulse duration, pulse off time, servo voltage, flushing pressure and wire speed. A multi-response optimization method using Taguchi design with utility concept has been proposed for simultaneous optimization. The analysis of means(ANOM) and analysis of variance(ANOVA) on signal to noise(S/N) ratio were performed for determining the optimal parameter levels. Taguchi analysis reveals that a combination of 1 μs pulse duration, 3.8 μs pulse off time, 40 V servo voltage, 1.8×105 Pa flushing pressure and 8 m/min wire speed is beneficial for simultaneously maximizing the material removal rate(MRR) and minimizing the surface roughness. The optimization results of WEDM of Ti Ni SMA also indicate that pulse duration significantly affects the material removal rate and surface roughness. The discharged craters, micro cracks and recast layer were observed on the machined surface at large pulse duration.展开更多
Based on the Brinson constitutive model of SMA, a piecewise linear model for the hysteresis loop of pseudo-elasticity is proposed and applied in the analysis of responses of an SMA-spring-mass system under initial vel...Based on the Brinson constitutive model of SMA, a piecewise linear model for the hysteresis loop of pseudo-elasticity is proposed and applied in the analysis of responses of an SMA-spring-mass system under initial velocity activation. The histories of displacement and velocity of the mass, and the response of stress of SMA are calculated with Brinson’s model and the piecewise linear model. The difference of results of the two models is not significant. The calculation with piecewise-linear model needs no iteration and is highly efficient.展开更多
Many fishes use undulatory fin to propel themselves in the underwater environment. These locomotor mechanisms have a popular interest to many researchers. In the present study, we perform a three-dimensional unsteady ...Many fishes use undulatory fin to propel themselves in the underwater environment. These locomotor mechanisms have a popular interest to many researchers. In the present study, we perform a three-dimensional unsteady computation of an undulatory mechanical fin that is driven by Shape Memory Alloy (SMA). The objective of the computation is to investigate the fluid dynamics of force production associated with the undulatory mechanical fin. An unstructured, grid-based, unsteady Navier-Stokes solver with automatic adaptive remeshing is used to compute the unsteady flow around the fin through five complete cycles. The pressure distribution on fin surface is computed and integrated to provide fin forces which are decomposed into lift and thrust. The velocity field is also computed throughout the swimming cycle. Finally, a comparison is conducted to reveal the dynamics of force generation according to the kinematic parameters of the undulatory fin (amplitude, frequency and wavelength).展开更多
Shape memory alloys (SMAs) are the developing advanced materials due to their versatile specific properties such as pseudoelasticity, shape memory effect (SME), biocompatibility, high specific strength, high corro...Shape memory alloys (SMAs) are the developing advanced materials due to their versatile specific properties such as pseudoelasticity, shape memory effect (SME), biocompatibility, high specific strength, high corrosion resistance, high wear resistance and high anti-fatigue property. Therefore, the SMAs are used in many applications such as aerospace, medical and automobile. However, the conventional machining of SMAs causes serious tool wear, time consuming and less dimensional deformity due to severe strain hardening and pseudoelasticity. These materials can be machined using non-conventional methods such as laser machining, water jet machining (WJM) and electrochemical machining (ECM), but these processes are limited to complexity and mechanical properties of the component. Electrical discharge machining (EDM) and wire EDM (WEDM) show high capability to machine SMAs of complex shapes with precise dimensions. The aim of this work is to present the consolidated references on the machining of SMAs using EDM and WEDM and subsequently identify the research gaps. In support to these research gaps, this work has also evolved the future research directions.展开更多
In the present study,the thermal,mechanical,and biological properties of xAg/Ti-30Ta(x=0,0.41,0.82 and 2.48 at%)shape memory alloys(SMAs)were investigated.The study was conducted using optical and scanning electron mi...In the present study,the thermal,mechanical,and biological properties of xAg/Ti-30Ta(x=0,0.41,0.82 and 2.48 at%)shape memory alloys(SMAs)were investigated.The study was conducted using optical and scanning electron microscopy(SEM),X-ray diffractometry(XRD),compression test,and shape memory testing.The xAg/Ti-Ta was made using a powder metallurgy technique and microwave-sintering process.The results revealed that the addition of Ag has a significant effect on the pore size and shape,whereas the smallest pore size of 11μm was found with the addition of 0.41 at%along with a relative density of 72%.The fracture stress and strain increased with the addition of Ag,reaching the minimum values around 0.41 at%Ag.Therefore,this composition showed the maximum stress and strain at fracture region.Moreover,0.82 Ag/Ti-Ta shows more excellent corrosion resistance and biocompatibility than other percentages,obtaining almost the same behaviour of the pure Ti and Ti-6Al-4V alloys,which can be recommended for their promising and potential response for biomaterial applications.展开更多
Losses of the alloying elements during vacuum induction melting of the binary NiTi alloys were evaluated by visual observation and chemical analysis of the NiTi melted specimens and the scalp formed on the internal su...Losses of the alloying elements during vacuum induction melting of the binary NiTi alloys were evaluated by visual observation and chemical analysis of the NiTi melted specimens and the scalp formed on the internal surface of the crucible. The results indicated that the major sources of the losses were (a) evaporation of the metals, (b) formation of the NiTi scalp and (c) the sprinkling drops splashed out of the melt due to the exothermic reactions occurring between Ni and Ti to form the NiTi parent phase. Quantitative evaluations were made for the metallic losses by holding the molten alloy for 0.5, 3, 5, 10 and 15 min at around 100℃ above the melting point inside the crucible.Chemical analysis showed that there existed an optimum holding time of 3 min during which the alloying elements were only dropped to a predictable limit. Microstructure, chemical composition, shape memory and mechanical properties of the cast metal ingots were determined to indicate the appropriate achievements with the specified 3 min optimum holding time.展开更多
This paper reviews recent developments in nonlinear control technologies for shape memory alloy (SMA) actuators in robotics and their related applications. SMA possesses large hysteresis, low bandwidth, slow response,...This paper reviews recent developments in nonlinear control technologies for shape memory alloy (SMA) actuators in robotics and their related applications. SMA possesses large hysteresis, low bandwidth, slow response, and non-linear behavior, which make them difficult to control. The fast response of the SMA actuator mostly depends upon, (1) type of controller, (2) rate of addition and removal of heat, and (3) shape or form of the actuator. Though linear controllers are more desirable than nonlinear ones, the review of literature shows that the results obtained using nonlinear controllers were far better than the former one. Therefore, more emphasis is made on the nonlinear control technologies taking into account the intelligent controllers. Various forms of SMA actuator along with different heating and cooling methods are presented in this review, followed by the nonlinear control methods and the control problems encountered by the researchers.展开更多
Metallurgical and mechanical properties along with shape memory and corrosion behavior of Cu-11.8% AI-3.7% Ni-1 %Mn and Cu-11% A1 5.6% Mn shape memory alloys (SMAs) were comparatively studied. The influence of grain...Metallurgical and mechanical properties along with shape memory and corrosion behavior of Cu-11.8% AI-3.7% Ni-1 %Mn and Cu-11% A1 5.6% Mn shape memory alloys (SMAs) were comparatively studied. The influence of grain refinement on the properties was studied by optical microscopy (OM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), potentiodynamic polarizations and bend and tensile tests. Static recrystallization and kinetic grain growth show a rapid recrystallization in the first 15 s of annealing at 800℃ followed by grain growths. The minimum grain sizes obtained after 15 s are 90 and 260 μm for Cu-A1-Ni-Mn and Cu-A1-Mn, respectively. Tensile tests show typical three-stage curves for both alloys, and it is seen that alloys exhibit high fracture stress and strain after grain refinement. Microstructural observations show zig-zag morphology of β 1martensite in the Cu-A1-Ni-Mn and coexistence of β1 and y1 in the Cu-A1-Mn, which were confirmed by differential scanning calorimetry results. The shape memory ratios (17) of the alloys before thermomechanieal treatment, and after thermomechanical annealing at 800 ℃ for different time up to 15 min followed by water quenching, were evaluated. In addition, corrosion behavior of alloys after grain refinement was analyzed by means of potentiodynamic polarization measurements. The results showed that the anodic reactions were dominated by dissolution of copper, and Cu-AI-Ni-Mn alloy exhibits a better corrosion resistance than Cu-A1-Mn alloy.展开更多
Fenton’s oxidation method was successfully used to synthesize an ideal titania film in situ on NiTi shape memory alloy(SMA) for medical applications. Characterized with scanning electron microscopy, X-ray photoelectr...Fenton’s oxidation method was successfully used to synthesize an ideal titania film in situ on NiTi shape memory alloy(SMA) for medical applications. Characterized with scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffractometry, inductively coupled plasma mass spectrometry and electrochemical tests, it is found that the titania film produced by Fenton’s oxidation method on NiTi SMA is nanostructured and has a Ni-free zone near its top surface, which results in a notable improvement in corrosion resistance and a remarkable decrease in leaching of harmful Ni ions from NiTi SMA in simulated body fluids. The improvement of effectiveness to corrosion resistance and the reduction in Ni release of NiTi SMA by Fenton’s oxidation method are comparable to those by oxygen plasma immersion ion implantation reported earlier.展开更多
A new finite strain elatoplastic J2-flow model with coupling effects of both isotropic and anisotropic hardening is proposed with the co-rotational logarithmic rate.In terms of certain single-variable shape functions ...A new finite strain elatoplastic J2-flow model with coupling effects of both isotropic and anisotropic hardening is proposed with the co-rotational logarithmic rate.In terms of certain single-variable shape functions representing uniaxial loading and unloading curves,explicit multi-axial expressions for the three hardening quantities incorporated in the new model proposed are derived in unified forms for the purpose of automatically and accurately simulating complex pseudoelastic-to-plastic transition effects of shape memory alloys(SMAs)under multiple loading-unloading cycles.Numerical examples show that with only a single parameter of direct physical meaning for each cycle,accurate and explicit simulations may be achieved for extensive data from multiple cycle tests.展开更多
This paper focuses on the thermo-mechanical behaviors of functionally graded(FG)shape memory alloy(SMA)composite beams based on Timoshenko beam theory.The volume fraction of SMA fiber is graded in the thickness of bea...This paper focuses on the thermo-mechanical behaviors of functionally graded(FG)shape memory alloy(SMA)composite beams based on Timoshenko beam theory.The volume fraction of SMA fiber is graded in the thickness of beam according to a power-law function and the equivalent parameters are formulated.The governing differential equations,which can be solved by direct integration,are established by employing the composite laminated plate theory.The influences of FG parameter,ambient temperature and SMA fiber laying angle on the thermo-mechanical behaviors are numerically simulated and discussed under different boundary conditions.Results indicate that the neutral plane does not coincide with the middle plane of the composite beam and the distribution of martensite is asymmetric along the thickness.Both the increments of the functionally graded parameter and ambient temperature make the composite beam become stiffer.However,the influence of the SMA fiber laying angle can be negligent.This work can provide the theoretical basis for the design and application of FG SMA structures.展开更多
This paper analyzes the characteristics of utilizing shape memory e?ect (SME) of shape memory alloy (SMA) in improving the low velocity impact resistance performance of com- posite plate by using ?nite element...This paper analyzes the characteristics of utilizing shape memory e?ect (SME) of shape memory alloy (SMA) in improving the low velocity impact resistance performance of com- posite plate by using ?nite element method. The constitutive relation for SMA hybrid composite plates is presented. The analytic model of ?nite element for SMA composite plate subjected to low velocity impact is established. The modi?ed Hertz’s contact law is used to determine the impact contact force. The computing procedures for solving the ?nite element equation using Newmark direct integration method are given. The numerical modelling results show that the SMA can e?ectively improve the low velocity impact resistance performance of composite plate.展开更多
The effects of H2O2 pretreatment on the surface characteristics and bioactivity of NaOH-treated NiTi shape memory alloy(SMA)were investigated by scanning electron microscopy,X-ray diffraction,X-ray photoelectron spect...The effects of H2O2 pretreatment on the surface characteristics and bioactivity of NaOH-treated NiTi shape memory alloy(SMA)were investigated by scanning electron microscopy,X-ray diffraction,X-ray photoelectron spectroscopy,Raman spectra,Fourier transform infrared spectroscopy as well as a simulated body fluid(SBF)soaking test.It is found that the H2O2 pretreatment can lead to the direct creation of more Ti—OH groups and the decrease in the amount of Ni2O3,Na2TiO3 and remnant NiTi phases on the surfaces of bioactive NiTi SMA prepared by NaOH treatment.As a result,the induction period of apatite formation is shortened by dispensing with the slow kinetic formation process of Ti—OH groups via an exchange of Na+ ions from Na2TiO3 phase with H3O+ ions in SBF,which indicates that the bioactivity of NaOH-treated NiTi SMA can be further improved by the H2O2 pretreatment.展开更多
A TiNi-alloy is solution-treated in a vacuum furnace of 6.7×10^-3 Pa at 1 223 K for 3.6 ks, and then aged at 773 K for 1.8 ks. The differential scanning calorimetry (DSC) measurements show that after the heat-t...A TiNi-alloy is solution-treated in a vacuum furnace of 6.7×10^-3 Pa at 1 223 K for 3.6 ks, and then aged at 773 K for 1.8 ks. The differential scanning calorimetry (DSC) measurements show that after the heat-treatment, takes place a two-step reverse Martensitic transformation, from which results the two-stage recovery strain in a prestrained Martensitic TiNi-alloy wire during heating. The Vickers microhardness indentation test in cross-sectional areas of the TiNi-alloy wire indicates the compositional heterogeneity between its surface layers and its inside. The fact that the sizes of the indentation in surface layers smaller than those in the inside bears witness to the existence of slightly harder surface layers. It is believed that these phenomena are related to the compositional fluctuation caused by the evaporation and oxidization of Ti-element during the solution-treatment and heterogeneity formed during the subsequent aging treatment.展开更多
The microstructures and interracial characteristics of matrices at the inwalls and the out-walls of the cold-rolled tube with different amounts of deformation were investigated by the scanning electronic microscope (...The microstructures and interracial characteristics of matrices at the inwalls and the out-walls of the cold-rolled tube with different amounts of deformation were investigated by the scanning electronic microscope (SEM), the optical microscope (OM), and the transmission electronic microscope (TEM) techniques. It was observed that as the amount of deformation increases, the flaws nucleate at the out-walls of the cold rolled tube, the stress-induced martensites change from (111 ) type Ⅰ twins to (011) type Ⅱ twins and then to (100) compound twins, nanocrystals and bulk amorphisation happen, the high density dislocation causes stress concentration at the out-walls of the Ti50Ni50 cold-rolled tube, and then precipitates its fracture, and the Ti2Ni particles strengthen the grain boundaries and curb the dislocation movements during plastic deformation. The inhomogeneity level of the grains in the Ti50Ni50 alloy plays an important role on the fracture of the Ti50Ni50 cold rolled tube.展开更多
The phase transformation behavior and micro structure of Nb-Ru alloys have been studied by DSC, X-ray diffraction, optical microscopy, transmission electron microscopy (TEM) and high-resolution electron microscopy (HR...The phase transformation behavior and micro structure of Nb-Ru alloys have been studied by DSC, X-ray diffraction, optical microscopy, transmission electron microscopy (TEM) and high-resolution electron microscopy (HREM). Two-step phase transformation of CsCl (β) →face-centered tetragonal (β)→ monoclinic (β') occurs during cooling from high temperature to room temperature. The lattice parameters of marten-sites of Nb-Ru alloys were found to increase with the increase of Nb content. The martensite variants exhibit triangular self-accommodating morphology, with alternating regular bands inside. The twinning relationship between the sub structural bands was found to be (101) type I mode, and this kind of twinning interface was straight, well-defined and coherent.展开更多
Pneumatic muscle (PM) of flexible actuators used in bionic robot is an active area of recent research. A novel PM with shape memory alloy (SMA) braided sleeve is proposed in this paper, and SMA is used to improve ...Pneumatic muscle (PM) of flexible actuators used in bionic robot is an active area of recent research. A novel PM with shape memory alloy (SMA) braided sleeve is proposed in this paper, and SMA is used to improve PM working characteristics. Based on the principle of virtual work, output force model of PM and relationship with braided wire inner-stress are established, and analysis of PM deformation has shown that braided wire length is the key factor of output force characteristic. Based on the crystal structure transitions, the relationship of temperature with wire shrinkage is derived. Then, the synthetic dynamics of novel PM is established. A physical prototype of PM with SMA braided sleeve is developed, and test platform that is built for the experiment. Experiment and simulation test of static isometric-length, static isobaric-pressure, and dynamic characteristics are done. The experimental results are compared with the simulation of theoretical model. Moreover, based on experiment, model of output force was improved by adding a correction factor to deal with the elastic force of rubber tube. The results analysis demonstrates that the established models are correct, and SMA wires can reinforce PM and make PM working characteristics adjustable. PM proposed in this paper has greater output force and is beneficial to achieve more accurate control that is useful for manipulating fragile things.展开更多
The aim is to propose and design a kind of novel impact absorption devices using constant-force elements made from Ni Ti shape memory alloy( SMA) strips for safety protection.The availability evaluation results indica...The aim is to propose and design a kind of novel impact absorption devices using constant-force elements made from Ni Ti shape memory alloy( SMA) strips for safety protection.The availability evaluation results indicate that the constant-force elements can absorb over one half of the impact energy for its martensite transformation and thus the maximum impact force is reduced by nearly 80%.Compared with the ordinary cylindrical compression spring,the device's maximum impact force is reduced by nearly 50%,otherwise it has a very compact structure and insensitivity to the varying impact,and thus it is especially suitable for narrow space and safety purpose.展开更多
基金This project is supported by Provincial Natural Science Foundation of Jiangsu, China(No.BJ99034)Foundation of Nantong City Science and Technology Leader, China(No.2004033)
文摘Shape memory alloy (SMA) materials possess completely superelasticity or pseudoelasticity above the austenite finish temperature and many unique mechanical, thermal, thermal-mechanical and electrical properties compared with other conventional materials. Many studies have reported that the superelastic and hysteresis properties of the SMA materials can absorb energies coming from external excitations or sudden impacts. In addition, due to the special electrical properties of NiTi superelastic wires, they can also be used as strain-sensing element to monitor structural health conditions. Composite laminated specimens embedded with SMA wire sensors are fabricated and detailed testing system is designed such as multi-parameters measuring for impact and weak signal processing for SMA sensor. Low velocity impact test shows that SMA wire sensors embedded in fiber-reinforced plastic (FRP) laminate can be well used to monitor impact responses, such as the location of impact damage, impact degree, and strain distribution. Experimental results and theoretical predictions reveal almost the same. Comparing with other method, a simple, economic and reliable technique method monitoring important engineering structures on line is provided.
文摘Ti Ni shape memory alloys(SMAs) have been normally used as the competent elements in large part of the industries due to outstanding properties, such as super elasticity and shape memory effects. However, traditional machining of SMAs is quite complex due to these properties. Hence, the wire electric discharge machining(WEDM) characteristics of Ti Ni SMA was studied. The experiments were planned as per L27 orthogonal array to minimize the experiments, each experiment was performed under different conditions of pulse duration, pulse off time, servo voltage, flushing pressure and wire speed. A multi-response optimization method using Taguchi design with utility concept has been proposed for simultaneous optimization. The analysis of means(ANOM) and analysis of variance(ANOVA) on signal to noise(S/N) ratio were performed for determining the optimal parameter levels. Taguchi analysis reveals that a combination of 1 μs pulse duration, 3.8 μs pulse off time, 40 V servo voltage, 1.8×105 Pa flushing pressure and 8 m/min wire speed is beneficial for simultaneously maximizing the material removal rate(MRR) and minimizing the surface roughness. The optimization results of WEDM of Ti Ni SMA also indicate that pulse duration significantly affects the material removal rate and surface roughness. The discharged craters, micro cracks and recast layer were observed on the machined surface at large pulse duration.
基金National Natural Science Foundation ofChina(No.5 973 10 3 0 )
文摘Based on the Brinson constitutive model of SMA, a piecewise linear model for the hysteresis loop of pseudo-elasticity is proposed and applied in the analysis of responses of an SMA-spring-mass system under initial velocity activation. The histories of displacement and velocity of the mass, and the response of stress of SMA are calculated with Brinson’s model and the piecewise linear model. The difference of results of the two models is not significant. The calculation with piecewise-linear model needs no iteration and is highly efficient.
文摘Many fishes use undulatory fin to propel themselves in the underwater environment. These locomotor mechanisms have a popular interest to many researchers. In the present study, we perform a three-dimensional unsteady computation of an undulatory mechanical fin that is driven by Shape Memory Alloy (SMA). The objective of the computation is to investigate the fluid dynamics of force production associated with the undulatory mechanical fin. An unstructured, grid-based, unsteady Navier-Stokes solver with automatic adaptive remeshing is used to compute the unsteady flow around the fin through five complete cycles. The pressure distribution on fin surface is computed and integrated to provide fin forces which are decomposed into lift and thrust. The velocity field is also computed throughout the swimming cycle. Finally, a comparison is conducted to reveal the dynamics of force generation according to the kinematic parameters of the undulatory fin (amplitude, frequency and wavelength).
文摘Shape memory alloys (SMAs) are the developing advanced materials due to their versatile specific properties such as pseudoelasticity, shape memory effect (SME), biocompatibility, high specific strength, high corrosion resistance, high wear resistance and high anti-fatigue property. Therefore, the SMAs are used in many applications such as aerospace, medical and automobile. However, the conventional machining of SMAs causes serious tool wear, time consuming and less dimensional deformity due to severe strain hardening and pseudoelasticity. These materials can be machined using non-conventional methods such as laser machining, water jet machining (WJM) and electrochemical machining (ECM), but these processes are limited to complexity and mechanical properties of the component. Electrical discharge machining (EDM) and wire EDM (WEDM) show high capability to machine SMAs of complex shapes with precise dimensions. The aim of this work is to present the consolidated references on the machining of SMAs using EDM and WEDM and subsequently identify the research gaps. In support to these research gaps, this work has also evolved the future research directions.
基金Project(Q.J130000.2524.12H60)supported by the Ministry of Higher Education of Malaysia and Universiti Teknologi Malaysia。
文摘In the present study,the thermal,mechanical,and biological properties of xAg/Ti-30Ta(x=0,0.41,0.82 and 2.48 at%)shape memory alloys(SMAs)were investigated.The study was conducted using optical and scanning electron microscopy(SEM),X-ray diffractometry(XRD),compression test,and shape memory testing.The xAg/Ti-Ta was made using a powder metallurgy technique and microwave-sintering process.The results revealed that the addition of Ag has a significant effect on the pore size and shape,whereas the smallest pore size of 11μm was found with the addition of 0.41 at%along with a relative density of 72%.The fracture stress and strain increased with the addition of Ag,reaching the minimum values around 0.41 at%Ag.Therefore,this composition showed the maximum stress and strain at fracture region.Moreover,0.82 Ag/Ti-Ta shows more excellent corrosion resistance and biocompatibility than other percentages,obtaining almost the same behaviour of the pure Ti and Ti-6Al-4V alloys,which can be recommended for their promising and potential response for biomaterial applications.
文摘Losses of the alloying elements during vacuum induction melting of the binary NiTi alloys were evaluated by visual observation and chemical analysis of the NiTi melted specimens and the scalp formed on the internal surface of the crucible. The results indicated that the major sources of the losses were (a) evaporation of the metals, (b) formation of the NiTi scalp and (c) the sprinkling drops splashed out of the melt due to the exothermic reactions occurring between Ni and Ti to form the NiTi parent phase. Quantitative evaluations were made for the metallic losses by holding the molten alloy for 0.5, 3, 5, 10 and 15 min at around 100℃ above the melting point inside the crucible.Chemical analysis showed that there existed an optimum holding time of 3 min during which the alloying elements were only dropped to a predictable limit. Microstructure, chemical composition, shape memory and mechanical properties of the cast metal ingots were determined to indicate the appropriate achievements with the specified 3 min optimum holding time.
文摘This paper reviews recent developments in nonlinear control technologies for shape memory alloy (SMA) actuators in robotics and their related applications. SMA possesses large hysteresis, low bandwidth, slow response, and non-linear behavior, which make them difficult to control. The fast response of the SMA actuator mostly depends upon, (1) type of controller, (2) rate of addition and removal of heat, and (3) shape or form of the actuator. Though linear controllers are more desirable than nonlinear ones, the review of literature shows that the results obtained using nonlinear controllers were far better than the former one. Therefore, more emphasis is made on the nonlinear control technologies taking into account the intelligent controllers. Various forms of SMA actuator along with different heating and cooling methods are presented in this review, followed by the nonlinear control methods and the control problems encountered by the researchers.
文摘Metallurgical and mechanical properties along with shape memory and corrosion behavior of Cu-11.8% AI-3.7% Ni-1 %Mn and Cu-11% A1 5.6% Mn shape memory alloys (SMAs) were comparatively studied. The influence of grain refinement on the properties was studied by optical microscopy (OM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), potentiodynamic polarizations and bend and tensile tests. Static recrystallization and kinetic grain growth show a rapid recrystallization in the first 15 s of annealing at 800℃ followed by grain growths. The minimum grain sizes obtained after 15 s are 90 and 260 μm for Cu-A1-Ni-Mn and Cu-A1-Mn, respectively. Tensile tests show typical three-stage curves for both alloys, and it is seen that alloys exhibit high fracture stress and strain after grain refinement. Microstructural observations show zig-zag morphology of β 1martensite in the Cu-A1-Ni-Mn and coexistence of β1 and y1 in the Cu-A1-Mn, which were confirmed by differential scanning calorimetry results. The shape memory ratios (17) of the alloys before thermomechanieal treatment, and after thermomechanical annealing at 800 ℃ for different time up to 15 min followed by water quenching, were evaluated. In addition, corrosion behavior of alloys after grain refinement was analyzed by means of potentiodynamic polarization measurements. The results showed that the anodic reactions were dominated by dissolution of copper, and Cu-AI-Ni-Mn alloy exhibits a better corrosion resistance than Cu-A1-Mn alloy.
基金Project supported by Program for New Century Excellent Talents(NCET) in University of Ministry of Education of ChinaProject(50501007) supported by the National Natural Science Foundation of China+1 种基金Project(BK2007515) supported by the Natural Science Foundation of Jiangsu Province, ChinaProject(7001999) supported by SRG Grant from the Research Committee of the CityU of HK
文摘Fenton’s oxidation method was successfully used to synthesize an ideal titania film in situ on NiTi shape memory alloy(SMA) for medical applications. Characterized with scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffractometry, inductively coupled plasma mass spectrometry and electrochemical tests, it is found that the titania film produced by Fenton’s oxidation method on NiTi SMA is nanostructured and has a Ni-free zone near its top surface, which results in a notable improvement in corrosion resistance and a remarkable decrease in leaching of harmful Ni ions from NiTi SMA in simulated body fluids. The improvement of effectiveness to corrosion resistance and the reduction in Ni release of NiTi SMA by Fenton’s oxidation method are comparable to those by oxygen plasma immersion ion implantation reported earlier.
基金Project supported by the National Natural Science Foundation of China(No.11372172)and the Start-up Fund from Jinan University in Guangzhou of China。
文摘A new finite strain elatoplastic J2-flow model with coupling effects of both isotropic and anisotropic hardening is proposed with the co-rotational logarithmic rate.In terms of certain single-variable shape functions representing uniaxial loading and unloading curves,explicit multi-axial expressions for the three hardening quantities incorporated in the new model proposed are derived in unified forms for the purpose of automatically and accurately simulating complex pseudoelastic-to-plastic transition effects of shape memory alloys(SMAs)under multiple loading-unloading cycles.Numerical examples show that with only a single parameter of direct physical meaning for each cycle,accurate and explicit simulations may be achieved for extensive data from multiple cycle tests.
文摘This paper focuses on the thermo-mechanical behaviors of functionally graded(FG)shape memory alloy(SMA)composite beams based on Timoshenko beam theory.The volume fraction of SMA fiber is graded in the thickness of beam according to a power-law function and the equivalent parameters are formulated.The governing differential equations,which can be solved by direct integration,are established by employing the composite laminated plate theory.The influences of FG parameter,ambient temperature and SMA fiber laying angle on the thermo-mechanical behaviors are numerically simulated and discussed under different boundary conditions.Results indicate that the neutral plane does not coincide with the middle plane of the composite beam and the distribution of martensite is asymmetric along the thickness.Both the increments of the functionally graded parameter and ambient temperature make the composite beam become stiffer.However,the influence of the SMA fiber laying angle can be negligent.This work can provide the theoretical basis for the design and application of FG SMA structures.
基金Project supported by the Key Research Project Fund of the Ministry of Education of China (No.00085).
文摘This paper analyzes the characteristics of utilizing shape memory e?ect (SME) of shape memory alloy (SMA) in improving the low velocity impact resistance performance of com- posite plate by using ?nite element method. The constitutive relation for SMA hybrid composite plates is presented. The analytic model of ?nite element for SMA composite plate subjected to low velocity impact is established. The modi?ed Hertz’s contact law is used to determine the impact contact force. The computing procedures for solving the ?nite element equation using Newmark direct integration method are given. The numerical modelling results show that the SMA can e?ectively improve the low velocity impact resistance performance of composite plate.
基金Project(50501007) supported by the National Natural Science Foundation of ChinaProject(BK2003062) supported by the Natural Science Foundation of Jiangsu Province,China+2 种基金Project(CityU 1/04C) supported by Hong Kong Research Grants Countil(RGC) Central Allocation Group ResearchProject(4012001007) supported by Teaching and Research Award Program for Outstanding Young Teachers of Southeast UniversityProject(9212001352) supported by Pre-research Project for National Natural Science Foundation in Southeast University,China
文摘The effects of H2O2 pretreatment on the surface characteristics and bioactivity of NaOH-treated NiTi shape memory alloy(SMA)were investigated by scanning electron microscopy,X-ray diffraction,X-ray photoelectron spectroscopy,Raman spectra,Fourier transform infrared spectroscopy as well as a simulated body fluid(SBF)soaking test.It is found that the H2O2 pretreatment can lead to the direct creation of more Ti—OH groups and the decrease in the amount of Ni2O3,Na2TiO3 and remnant NiTi phases on the surfaces of bioactive NiTi SMA prepared by NaOH treatment.As a result,the induction period of apatite formation is shortened by dispensing with the slow kinetic formation process of Ti—OH groups via an exchange of Na+ ions from Na2TiO3 phase with H3O+ ions in SBF,which indicates that the bioactivity of NaOH-treated NiTi SMA can be further improved by the H2O2 pretreatment.
基金National Natural Science Foundation of China (50471021)Beijing Municipal Program of Education Committee.
文摘A TiNi-alloy is solution-treated in a vacuum furnace of 6.7×10^-3 Pa at 1 223 K for 3.6 ks, and then aged at 773 K for 1.8 ks. The differential scanning calorimetry (DSC) measurements show that after the heat-treatment, takes place a two-step reverse Martensitic transformation, from which results the two-stage recovery strain in a prestrained Martensitic TiNi-alloy wire during heating. The Vickers microhardness indentation test in cross-sectional areas of the TiNi-alloy wire indicates the compositional heterogeneity between its surface layers and its inside. The fact that the sizes of the indentation in surface layers smaller than those in the inside bears witness to the existence of slightly harder surface layers. It is believed that these phenomena are related to the compositional fluctuation caused by the evaporation and oxidization of Ti-element during the solution-treatment and heterogeneity formed during the subsequent aging treatment.
文摘The microstructures and interracial characteristics of matrices at the inwalls and the out-walls of the cold-rolled tube with different amounts of deformation were investigated by the scanning electronic microscope (SEM), the optical microscope (OM), and the transmission electronic microscope (TEM) techniques. It was observed that as the amount of deformation increases, the flaws nucleate at the out-walls of the cold rolled tube, the stress-induced martensites change from (111 ) type Ⅰ twins to (011) type Ⅱ twins and then to (100) compound twins, nanocrystals and bulk amorphisation happen, the high density dislocation causes stress concentration at the out-walls of the Ti50Ni50 cold-rolled tube, and then precipitates its fracture, and the Ti2Ni particles strengthen the grain boundaries and curb the dislocation movements during plastic deformation. The inhomogeneity level of the grains in the Ti50Ni50 alloy plays an important role on the fracture of the Ti50Ni50 cold rolled tube.
基金The authors would like to thank financial support of National Natural Science Foundation of China(Project No.59901004).
文摘The phase transformation behavior and micro structure of Nb-Ru alloys have been studied by DSC, X-ray diffraction, optical microscopy, transmission electron microscopy (TEM) and high-resolution electron microscopy (HREM). Two-step phase transformation of CsCl (β) →face-centered tetragonal (β)→ monoclinic (β') occurs during cooling from high temperature to room temperature. The lattice parameters of marten-sites of Nb-Ru alloys were found to increase with the increase of Nb content. The martensite variants exhibit triangular self-accommodating morphology, with alternating regular bands inside. The twinning relationship between the sub structural bands was found to be (101) type I mode, and this kind of twinning interface was straight, well-defined and coherent.
基金supported by National Natural Science Foundation of China (No. 50905170)Natural Science Foundation of Zhejiang Province (No. Y1090042)Open Fund of State Key Laboratory of Robotics (No. RL0200918)
文摘Pneumatic muscle (PM) of flexible actuators used in bionic robot is an active area of recent research. A novel PM with shape memory alloy (SMA) braided sleeve is proposed in this paper, and SMA is used to improve PM working characteristics. Based on the principle of virtual work, output force model of PM and relationship with braided wire inner-stress are established, and analysis of PM deformation has shown that braided wire length is the key factor of output force characteristic. Based on the crystal structure transitions, the relationship of temperature with wire shrinkage is derived. Then, the synthetic dynamics of novel PM is established. A physical prototype of PM with SMA braided sleeve is developed, and test platform that is built for the experiment. Experiment and simulation test of static isometric-length, static isobaric-pressure, and dynamic characteristics are done. The experimental results are compared with the simulation of theoretical model. Moreover, based on experiment, model of output force was improved by adding a correction factor to deal with the elastic force of rubber tube. The results analysis demonstrates that the established models are correct, and SMA wires can reinforce PM and make PM working characteristics adjustable. PM proposed in this paper has greater output force and is beneficial to achieve more accurate control that is useful for manipulating fragile things.
文摘The aim is to propose and design a kind of novel impact absorption devices using constant-force elements made from Ni Ti shape memory alloy( SMA) strips for safety protection.The availability evaluation results indicate that the constant-force elements can absorb over one half of the impact energy for its martensite transformation and thus the maximum impact force is reduced by nearly 80%.Compared with the ordinary cylindrical compression spring,the device's maximum impact force is reduced by nearly 50%,otherwise it has a very compact structure and insensitivity to the varying impact,and thus it is especially suitable for narrow space and safety purpose.