The recovery strain, stress and transformation temperature of different pre-strained specimens of Ti44Ni47Nb9 were investigated by tensile test and electrical resistance measurement. The results indicated that pre-str...The recovery strain, stress and transformation temperature of different pre-strained specimens of Ti44Ni47Nb9 were investigated by tensile test and electrical resistance measurement. The results indicated that pre-strain increases the reverse martensitic transformation temperature (A ' (s)) and hysteresis (A(s) - M-s). The recovery strain and stress are higher if the specimens are pre-strained between M-s and A(s) temperature than outside this temperature range. There exists an optimal pre-strain value, about 10%, at which the specimen exhibits maximum recovery strain and stress.展开更多
The effect of pre-strain on phase transformation of TiNi shape memory alloy film was studied by differential scanning calorimeter measurement (DSC). Compared with un-defarmed TiNi film, the reverse transformation of p...The effect of pre-strain on phase transformation of TiNi shape memory alloy film was studied by differential scanning calorimeter measurement (DSC). Compared with un-defarmed TiNi film, the reverse transformation of pre-strained specimens was elevated to a higher temperature on the first heating, but martensite and reverse transformation on subsequent thermal cycles occurred at a lower temperature. The evolution of transformation behavior in pre-strained TiNi film was related to the change of elastic strain energy, irreversible energy and internal stress field.展开更多
The effect of deformation on recovery stress of Ni144.7Ti46.3Nb9 alloy has been studjed using tensile test at various temperatures and TEM observation. It ls shown that the recovery stress increases with jncreasing to...The effect of deformation on recovery stress of Ni144.7Ti46.3Nb9 alloy has been studjed using tensile test at various temperatures and TEM observation. It ls shown that the recovery stress increases with jncreasing total strain ET and reaches a maximum value (max) as ET= 9% but the maximum recov erV strain of the alloy is only about 4.6%. This is different from that of Ti-Ni binary alloy in which is obtained usually at maximum recovery strain and the reason of the difference is dis Cussed. Deformation temperature Td has a little effect on recovery stress when Td is less than Ms However, recovery stress decreases sharply when Td is higher than M, and lowers approximately down to zero near Msσ展开更多
Mechanical behavior of nickel?titanium shape memory alloy(NiTi SMA) under hot deformation was investigated according to the true stress—strain curves of NiTi samples under compression at the strain rates of 0.001-...Mechanical behavior of nickel?titanium shape memory alloy(NiTi SMA) under hot deformation was investigated according to the true stress—strain curves of NiTi samples under compression at the strain rates of 0.001-1 s-1 and at the temperatures of 600?1000℃.Dynamic recovery and dynamic recrystallization of NiTi SMA were systematically investigated by microstructural evolution.The influence of the strain rates,the deformation temperatures and the deformation degree on the dynamic recovery and dynamic recrystallization of NiTi SMA was obtained as well.NiTi SMA was characterized by the combination of dynamic recovery and dynamic recrystallization at 600℃ and 700℃,but the complete dynamic recrystallization occurred at other deformation temperatures.Increasing the deformation temperatures or decreasing the stain rates leads to larger equiaxed grains.The deformation degree has an important influence on the dynamic recrystallization of NiTi SMA.There exists the critical deformation degree during the dynamic recrystallization of NiTi SMA,beyond which the larger deformation degree contributes to obtaining the finer equiaxed grains.展开更多
The mechanical behavior and the effect of pre-strain on recovery behavior of Ti50Ni47Fe3 (at. pct) alloy were investigated systematically by tensile and recovered tests accompanied by electrical resistance measurement...The mechanical behavior and the effect of pre-strain on recovery behavior of Ti50Ni47Fe3 (at. pct) alloy were investigated systematically by tensile and recovered tests accompanied by electrical resistance measurement. Ti50Ni47Fe3 alloy has different deformation behaviors at different temperature ranges, the deformation curves in different temperature range can be classified into four kinds. The start temperature of recovery increases with the increase of pre-strain. There exists an optimal deformation condition, at which the specimen exhibits maximum free recovery strain. With increasing pre-strain the recovery stress increases and reaches the maximum at 8% pre-strain. R-phase to parent transition offered about 0.2% recovery strain. With pre-strain increasing the recovery stress increases and reaches to the maximum at 8% pre-strain. The recovery stress is corresponding with the critical stress of stress-induced martensitic transformation.展开更多
A six-parameter mathematical model was introduced to simulate the stress-strain hysteresis and the sinner hysteresis of polycrystalline shape memory alloys (SMAs). By the comparison with experiments of Cu-Zn-Al SMA, i...A six-parameter mathematical model was introduced to simulate the stress-strain hysteresis and the sinner hysteresis of polycrystalline shape memory alloys (SMAs). By the comparison with experiments of Cu-Zn-Al SMA, it was shown that the model could be used to calculate the stress-strain relations with rather good accuracy. Moreover, it was found that the six parameters introduced in this paper represented the characteristics of the stress-strain hysteresis of polycrystalline SMAs and could be used to characterize the hysteresis quantitatively.展开更多
Measurements of electrical resistivity, X-ray diffraction, and tensile test at room temperature and ?196°C were performed to investigate the effects of Al addition substituting Ni on the phase transformation beh...Measurements of electrical resistivity, X-ray diffraction, and tensile test at room temperature and ?196°C were performed to investigate the effects of Al addition substituting Ni on the phase transformation behaviors, the mechanical properties, and the shape memory effects of Ti50Ni47Fe2Al1 and Ti50Ni46.5Fe2.5Al1 alloys. It is found that 1at% Al addition dramatically decreases the martensitic start transformation temperature and expands the transformation temperature range of R-phase for TiNiFeAl alloys. The results of tensile test indicate that 1at% Al improves the yield strength of Ti50Ni47Fe2Al1 and Ti50Ni46.5Fe2.5Al1 alloys by 40% and 64%, but de- creases the plasticity to 11% and 12% from 26% and 27% respectively. Moreover, excellent shape memory effect of 6.6% and 7.5% were found in Ti50Ni47Fe2Al1 and Ti50Ni46.5Fe2.5Al1 alloys, which results from the stress-induced martensite transformation from the R-phase.展开更多
Effect of carbon, compound RE, quenching temperature, pre-strain and recovery temperature on shape memory effect (SME) of Fe-Mn-Si-Ni-C-RE shape memory alloy was studied by bent measurement, thermal cycle training, SE...Effect of carbon, compound RE, quenching temperature, pre-strain and recovery temperature on shape memory effect (SME) of Fe-Mn-Si-Ni-C-RE shape memory alloy was studied by bent measurement, thermal cycle training, SEM etc. It was shown that the grains of alloys addition with compound RE became finer and SME increased evidently. SME of the alloy was weakening gradually as carbon content increased under small strain (3%). But in the condition of large strain (more than 6%), SME of the alloy whose carbon content range from 0.1% to 0.12% showed small decreasing range, especially of alloy with the addition of compound RE. Results were also indicated that SME was improved by increasing quenching temperature (>1000℃). The amount of thermal induced martensite increased and the relative shape recovery ratio could be increased to more than 40% after 3-4 times thermal training. The relative shape recovery ratio decreased evidently depending on rising of pre-strain. Furthermore, because speed of martensite transition was extremely great under higher tempering temperature (more than 450℃, ε → γ transition completed in 10s meanwhile the relative shape recovery ratio of the alloy increased rapidly.展开更多
The relationship between structure and hysteresis of phase transformation temperature in NiTi shape memory alloy has been investigated by means of TEM observation,positron an- nihilation and electrical resistivity mea...The relationship between structure and hysteresis of phase transformation temperature in NiTi shape memory alloy has been investigated by means of TEM observation,positron an- nihilation and electrical resistivity measurement.The sequence of hysteresis for the alloy aged under different regimes was found to be:plate martensite>R-phase>tie-like martensite. The reversible displaeement of phase boundaries of these transformations is blocked by the co- herent stress field around Ti_(11)Ni_(14)phase particles.A linear relationship between S paramet- er of positron annihilation and maximum values of temperature hysteresis showed that the mismatch dislocation and elastic stress field established by Ti_(11)Ni_(14)phase precipitation are the main factor to determine the temperature hysteresis of phase transformation in NiTi shape memory alloy.展开更多
The deformation behavior of Ti-50.9at%Ni shape memory alloy under axial compression dynamic loads was investigated by an MTS 858Mini Bionix test machine. The alloy were aged at 500℃ for an hour before being machined ...The deformation behavior of Ti-50.9at%Ni shape memory alloy under axial compression dynamic loads was investigated by an MTS 858Mini Bionix test machine. The alloy were aged at 500℃ for an hour before being machined into specimens. The compression experiments were conducted at 20℃ and the variety of dynamic loads were controlled by the strain rate, which was 3mm/min, 15mm/min, 30mm/min and 50mm/min, respectively. The experimental results indicate that in the case of 3mm/min, stress-induced martensitic transformation occurs at about 350MPa when loading and reverse transformation at about 200MPa when unloading, during which the aged Ti-50.9at%Ni alloy shows the recoverable nonlinear pseudoelastic strain of 4.3% with the residual strain of 1.2% reserved. With the strain rate increasing, the area encloses by loading-curve and unloading-curve, i.e stress (strain) hysteresis becomes smaller and smaller and the residual strain also decreases, while critical stress for inducing martensitic transformation rises. At a higher strain rate the alloy exhibits linear-like pseudoelasticity, which is up to 4.5%.展开更多
The microstructures and interracial characteristics of matrices at the inwalls and the out-walls of the cold-rolled tube with different amounts of deformation were investigated by the scanning electronic microscope (...The microstructures and interracial characteristics of matrices at the inwalls and the out-walls of the cold-rolled tube with different amounts of deformation were investigated by the scanning electronic microscope (SEM), the optical microscope (OM), and the transmission electronic microscope (TEM) techniques. It was observed that as the amount of deformation increases, the flaws nucleate at the out-walls of the cold rolled tube, the stress-induced martensites change from (111 ) type Ⅰ twins to (011) type Ⅱ twins and then to (100) compound twins, nanocrystals and bulk amorphisation happen, the high density dislocation causes stress concentration at the out-walls of the Ti50Ni50 cold-rolled tube, and then precipitates its fracture, and the Ti2Ni particles strengthen the grain boundaries and curb the dislocation movements during plastic deformation. The inhomogeneity level of the grains in the Ti50Ni50 alloy plays an important role on the fracture of the Ti50Ni50 cold rolled tube.展开更多
The effect of quenching temperature on the recovery stress of Fe 18Mn 5Si 8Cr 4Ni shape memory alloy has been studied. The results show that both the maximum recovery stress σ h in heating and the recovery stress σ ...The effect of quenching temperature on the recovery stress of Fe 18Mn 5Si 8Cr 4Ni shape memory alloy has been studied. The results show that both the maximum recovery stress σ h in heating and the recovery stress σ c at room temperature after heating increased as increasing quenching temperature increased, both σ h and σ c reached maximum at 650℃, and then decreased rapidly with the further increase in quenching temperature,but the descent degree of σ c was far bigger than that of σ h; When the quenching temperature is higher than 850℃, the further increase in quenching temperature had little effect on them; At random quenching temperature, σ c was far bigger than σ h.展开更多
In the present work,the microstructure features,martensitic transformation,mechanical properties and strain recovery characteristics of Ti-Ta based shape memory alloys were tailored by changing Hf contents.The single...In the present work,the microstructure features,martensitic transformation,mechanical properties and strain recovery characteristics of Ti-Ta based shape memory alloys were tailored by changing Hf contents.The singleα"martensite phase was dominated in Ti-Ta alloy with 2 at.%H f.Upon Hf content exceeded2 at.%,βphase started to appear.Moreover,the amount ofβphase gradually increased with Hf content increasing.The martensitic transformation temperatures continuously decreased with the increased Hf content,which was attributed to the rising of valence electron concentration.Meanwhile,Hf addition improved the thermal cycling stability of Ti-Ta alloys due to the suppression ofωprecipitation.The yield stress of Ti-Ta based alloys firstly decreased and then increased with Hf content increasing.In addition,the completely recoverable strain of 4%can be obtained in Ti-Ta alloy with 6 at.%Hf as a consequence of the higher critical stress for dislocation slip.Besieds,the Ti-Ta based alloy containing 8 at.%Hf had the superior superelasticity behavior with the fully recoverable strain of 2%at room temperature.展开更多
The effects of thermomechanical cycling on the shape memory behavior and transformation temperatures of a Ni50.2Ti49.8 alloy under a constant applied stress of 300 MPa were investigated, k is believed that thermomecha...The effects of thermomechanical cycling on the shape memory behavior and transformation temperatures of a Ni50.2Ti49.8 alloy under a constant applied stress of 300 MPa were investigated, k is believed that thermomechanical cycling induces defects such as dislocations, which evidently affect the shape memory behavior and transformation temperatures. The recovery strain decreases with increasing number of thermomechanical cycles, whereas the irreversible plastic strain increases, especially in the initial few cycles. The stored elastic strain energy has an important influence on transformation temperatures, the A5^σ decreases and the M5^σ increases with increasing number of thermomechanical cycles. The recovery strain, irreversible plastic strain, A5^σ , and M5^σ reach a saturation value after several cycles.展开更多
Thermal cycle training of CuZnAl shape memory alloys with differenttransformation temperatures was carried out. The influence of different pre-strains, heat treatmentsand media on the shape memory effect(SME) of CuZnA...Thermal cycle training of CuZnAl shape memory alloys with differenttransformation temperatures was carried out. The influence of different pre-strains, heat treatmentsand media on the shape memory effect(SME) of CuZnAl alloys with different transformationtemperatures was studied by means of scanning electron microscopy(SEM) and X-raydiffractometry(XRD). Experimental results show that despite respective variation in heat treatment,medium and cycling number, the recover}'' rate always decreases as pre-strain increases. The declineis obvious when pre-strain is less than 2.6 percent but not so sharp when pre-strain exceeds 2.6percent. Larger pre-strain results in more than one slip system and causes intercutting of themartensite strips among martensitic variants, then leads to the decline of SME. The SME of alloyswith transformation temperatures below 347 K is larger than that of alloys beyond 361 K by 20percent - 40 percent. The recovery rate of two-step aged alloy is higher than that of step-quenchedalloy by 20 percent - 25 percent. During thermal cycling, the recovery rate in oil is better thanthat in water.展开更多
The effects of quenching temperature on shape memory effect and microstructure of Fe 18Mn 5Si 8Cr 4Ni shape memory alloy have been studied. The results show that both the shape recovery ratio and the recovery stra...The effects of quenching temperature on shape memory effect and microstructure of Fe 18Mn 5Si 8Cr 4Ni shape memory alloy have been studied. The results show that both the shape recovery ratio and the recovery strain increased as quenching temperature increased, the amount of stress induced ε martensite in the process of cold work decreased with the increase of quenching temperature, the shape recovery ratio and the recovery strain reached maximum at 650℃, and then decreased rapidly with the further increase of quenching temperature,the stress induced ε martensite wholly disappeared at 1023K. But when the quenching temperature is higher than 1023K, the further increase of quenching temperature had little effect on shape recovery ratio, the amount and size of thermal induced ε martensite would increased with the further increase in quenching temperature. The shape memory effect can be improved by the moderate amount of pre exist ε martensite in the matrix before deforming.展开更多
The effect of heat treatment on shape memory properties of the ductile CuAlMn alloys was studied. The results show that the heating temperature for the solution treatment should be around 100 ℃ above the transformati...The effect of heat treatment on shape memory properties of the ductile CuAlMn alloys was studied. The results show that the heating temperature for the solution treatment should be around 100 ℃ above the transformation temperature in order to obtain good shape memory properties, heating for 10 min at this temperature doesn’t have much influence on the shape memory properties, faster cooling rate helps to obtain good shape memory properties and the shape recovery rate(SRR) decreases with raising ageing temperatures. For Cu 16Al 10Mn alloy, the heat treatment process to acquire higher recovery rate is heating at 800 ℃ for 15 min, quenching into ice water and ageing below 150 ℃ for 15 min. For Cu 17Al 10Mn alloy, the process is the same except heating at 700 ℃.[展开更多
The reverse transformation temperature and recovery strain ratio of the martensite formed during the cooling process under a constant stress in TiNi shape memory alloy wires are studied in this paper. Results sh...The reverse transformation temperature and recovery strain ratio of the martensite formed during the cooling process under a constant stress in TiNi shape memory alloy wires are studied in this paper. Results show that a higher level of the applied constant stress during the cooling process will induce martensite with a higher reverse martensitic transformation start temperature As and a smaller recovery strain ratio. Similarly, a prestrain at the room temperature elevates the As temperature and decreases the recovery strain ratio. However, the As temperature and the recovery strain ratio of the martensite formed during the cooling process under a constant stress are lower than those of the martensite formed by prestrain at the room temperature.展开更多
The cyclic transformation behaviors of polycrystalline super-elastic NiTi shape memory alloys (SMAs)under multiaxial loading paths with different angles between axial and torsional loading orientations were experiment...The cyclic transformation behaviors of polycrystalline super-elastic NiTi shape memory alloys (SMAs)under multiaxial loading paths with different angles between axial and torsional loading orientations were experimentally investigated.The experimental results showed that the start stresses of forward and reverse transformations decreased with the increase'in the number of cycles and exhibit obvious anisotropic evolutions.The start stresses of forward and reverse transformations in the tensile and torsional directions did not satisfy the yon Mises criterion.The shape of transformation surface during the forward and reverse transformations evolved with the increase in the number of cycles.Then,new cyclic anisotropic transformation surfaces were established by introducing an anisotropic tensor into the von Mises equivalent stress based on a typical transformation criterion related to J2 and J3.Moreover,the evolution equations of material parameters used in the proposed transformation surfaces were established to describe the subsequent evolutions of transformation surfaces.Finally,the start stresses of forward and reverse transformations predicted using the proposed transformation surfaces were compared with the experimental results.It shows that the proposed transformation surfaces can reasonably describe the start stresses of forward and reverse transformations,which are helpful for establishing a three-dimensional cyclic constitutive model to describe the cyclic transformation behaviors of super-elastic NiTi SMAs.展开更多
The thermo- induced and stress- induced transformations of a TiNi SMA after two times annealing werestudied by resistivity measurement and X-ray diffraction. The effect of heat treatment craft on characteristicsof SMA...The thermo- induced and stress- induced transformations of a TiNi SMA after two times annealing werestudied by resistivity measurement and X-ray diffraction. The effect of heat treatment craft on characteristicsof SMA was discussed by contrast between two sorts of TiNi SMA wires.展开更多
文摘The recovery strain, stress and transformation temperature of different pre-strained specimens of Ti44Ni47Nb9 were investigated by tensile test and electrical resistance measurement. The results indicated that pre-strain increases the reverse martensitic transformation temperature (A ' (s)) and hysteresis (A(s) - M-s). The recovery strain and stress are higher if the specimens are pre-strained between M-s and A(s) temperature than outside this temperature range. There exists an optimal pre-strain value, about 10%, at which the specimen exhibits maximum recovery strain and stress.
文摘The effect of pre-strain on phase transformation of TiNi shape memory alloy film was studied by differential scanning calorimeter measurement (DSC). Compared with un-defarmed TiNi film, the reverse transformation of pre-strained specimens was elevated to a higher temperature on the first heating, but martensite and reverse transformation on subsequent thermal cycles occurred at a lower temperature. The evolution of transformation behavior in pre-strained TiNi film was related to the change of elastic strain energy, irreversible energy and internal stress field.
文摘The effect of deformation on recovery stress of Ni144.7Ti46.3Nb9 alloy has been studjed using tensile test at various temperatures and TEM observation. It ls shown that the recovery stress increases with jncreasing total strain ET and reaches a maximum value (max) as ET= 9% but the maximum recov erV strain of the alloy is only about 4.6%. This is different from that of Ti-Ni binary alloy in which is obtained usually at maximum recovery strain and the reason of the difference is dis Cussed. Deformation temperature Td has a little effect on recovery stress when Td is less than Ms However, recovery stress decreases sharply when Td is higher than M, and lowers approximately down to zero near Msσ
基金Project(51071056) supported by the National Natural Science Foundation of ChinaProjects(HEUCFR1132,HEUCF121712) supported by the Fundamental Research Funds for the Central Universities of China
文摘Mechanical behavior of nickel?titanium shape memory alloy(NiTi SMA) under hot deformation was investigated according to the true stress—strain curves of NiTi samples under compression at the strain rates of 0.001-1 s-1 and at the temperatures of 600?1000℃.Dynamic recovery and dynamic recrystallization of NiTi SMA were systematically investigated by microstructural evolution.The influence of the strain rates,the deformation temperatures and the deformation degree on the dynamic recovery and dynamic recrystallization of NiTi SMA was obtained as well.NiTi SMA was characterized by the combination of dynamic recovery and dynamic recrystallization at 600℃ and 700℃,but the complete dynamic recrystallization occurred at other deformation temperatures.Increasing the deformation temperatures or decreasing the stain rates leads to larger equiaxed grains.The deformation degree has an important influence on the dynamic recrystallization of NiTi SMA.There exists the critical deformation degree during the dynamic recrystallization of NiTi SMA,beyond which the larger deformation degree contributes to obtaining the finer equiaxed grains.
文摘The mechanical behavior and the effect of pre-strain on recovery behavior of Ti50Ni47Fe3 (at. pct) alloy were investigated systematically by tensile and recovered tests accompanied by electrical resistance measurement. Ti50Ni47Fe3 alloy has different deformation behaviors at different temperature ranges, the deformation curves in different temperature range can be classified into four kinds. The start temperature of recovery increases with the increase of pre-strain. There exists an optimal deformation condition, at which the specimen exhibits maximum free recovery strain. With increasing pre-strain the recovery stress increases and reaches the maximum at 8% pre-strain. R-phase to parent transition offered about 0.2% recovery strain. With pre-strain increasing the recovery stress increases and reaches to the maximum at 8% pre-strain. The recovery stress is corresponding with the critical stress of stress-induced martensitic transformation.
文摘A six-parameter mathematical model was introduced to simulate the stress-strain hysteresis and the sinner hysteresis of polycrystalline shape memory alloys (SMAs). By the comparison with experiments of Cu-Zn-Al SMA, it was shown that the model could be used to calculate the stress-strain relations with rather good accuracy. Moreover, it was found that the six parameters introduced in this paper represented the characteristics of the stress-strain hysteresis of polycrystalline SMAs and could be used to characterize the hysteresis quantitatively.
文摘Measurements of electrical resistivity, X-ray diffraction, and tensile test at room temperature and ?196°C were performed to investigate the effects of Al addition substituting Ni on the phase transformation behaviors, the mechanical properties, and the shape memory effects of Ti50Ni47Fe2Al1 and Ti50Ni46.5Fe2.5Al1 alloys. It is found that 1at% Al addition dramatically decreases the martensitic start transformation temperature and expands the transformation temperature range of R-phase for TiNiFeAl alloys. The results of tensile test indicate that 1at% Al improves the yield strength of Ti50Ni47Fe2Al1 and Ti50Ni46.5Fe2.5Al1 alloys by 40% and 64%, but de- creases the plasticity to 11% and 12% from 26% and 27% respectively. Moreover, excellent shape memory effect of 6.6% and 7.5% were found in Ti50Ni47Fe2Al1 and Ti50Ni46.5Fe2.5Al1 alloys, which results from the stress-induced martensite transformation from the R-phase.
文摘Effect of carbon, compound RE, quenching temperature, pre-strain and recovery temperature on shape memory effect (SME) of Fe-Mn-Si-Ni-C-RE shape memory alloy was studied by bent measurement, thermal cycle training, SEM etc. It was shown that the grains of alloys addition with compound RE became finer and SME increased evidently. SME of the alloy was weakening gradually as carbon content increased under small strain (3%). But in the condition of large strain (more than 6%), SME of the alloy whose carbon content range from 0.1% to 0.12% showed small decreasing range, especially of alloy with the addition of compound RE. Results were also indicated that SME was improved by increasing quenching temperature (>1000℃). The amount of thermal induced martensite increased and the relative shape recovery ratio could be increased to more than 40% after 3-4 times thermal training. The relative shape recovery ratio decreased evidently depending on rising of pre-strain. Furthermore, because speed of martensite transition was extremely great under higher tempering temperature (more than 450℃, ε → γ transition completed in 10s meanwhile the relative shape recovery ratio of the alloy increased rapidly.
文摘The relationship between structure and hysteresis of phase transformation temperature in NiTi shape memory alloy has been investigated by means of TEM observation,positron an- nihilation and electrical resistivity measurement.The sequence of hysteresis for the alloy aged under different regimes was found to be:plate martensite>R-phase>tie-like martensite. The reversible displaeement of phase boundaries of these transformations is blocked by the co- herent stress field around Ti_(11)Ni_(14)phase particles.A linear relationship between S paramet- er of positron annihilation and maximum values of temperature hysteresis showed that the mismatch dislocation and elastic stress field established by Ti_(11)Ni_(14)phase precipitation are the main factor to determine the temperature hysteresis of phase transformation in NiTi shape memory alloy.
基金FundedbytheNationalNaturalScienceFoundationofChi na (No .5 0 0 75 0 72 )andtheOpenFoundationofTribologyInstituteofSouthwestJiaotongUniversity
文摘The deformation behavior of Ti-50.9at%Ni shape memory alloy under axial compression dynamic loads was investigated by an MTS 858Mini Bionix test machine. The alloy were aged at 500℃ for an hour before being machined into specimens. The compression experiments were conducted at 20℃ and the variety of dynamic loads were controlled by the strain rate, which was 3mm/min, 15mm/min, 30mm/min and 50mm/min, respectively. The experimental results indicate that in the case of 3mm/min, stress-induced martensitic transformation occurs at about 350MPa when loading and reverse transformation at about 200MPa when unloading, during which the aged Ti-50.9at%Ni alloy shows the recoverable nonlinear pseudoelastic strain of 4.3% with the residual strain of 1.2% reserved. With the strain rate increasing, the area encloses by loading-curve and unloading-curve, i.e stress (strain) hysteresis becomes smaller and smaller and the residual strain also decreases, while critical stress for inducing martensitic transformation rises. At a higher strain rate the alloy exhibits linear-like pseudoelasticity, which is up to 4.5%.
文摘The microstructures and interracial characteristics of matrices at the inwalls and the out-walls of the cold-rolled tube with different amounts of deformation were investigated by the scanning electronic microscope (SEM), the optical microscope (OM), and the transmission electronic microscope (TEM) techniques. It was observed that as the amount of deformation increases, the flaws nucleate at the out-walls of the cold rolled tube, the stress-induced martensites change from (111 ) type Ⅰ twins to (011) type Ⅱ twins and then to (100) compound twins, nanocrystals and bulk amorphisation happen, the high density dislocation causes stress concentration at the out-walls of the Ti50Ni50 cold-rolled tube, and then precipitates its fracture, and the Ti2Ni particles strengthen the grain boundaries and curb the dislocation movements during plastic deformation. The inhomogeneity level of the grains in the Ti50Ni50 alloy plays an important role on the fracture of the Ti50Ni50 cold rolled tube.
文摘The effect of quenching temperature on the recovery stress of Fe 18Mn 5Si 8Cr 4Ni shape memory alloy has been studied. The results show that both the maximum recovery stress σ h in heating and the recovery stress σ c at room temperature after heating increased as increasing quenching temperature increased, both σ h and σ c reached maximum at 650℃, and then decreased rapidly with the further increase in quenching temperature,but the descent degree of σ c was far bigger than that of σ h; When the quenching temperature is higher than 850℃, the further increase in quenching temperature had little effect on them; At random quenching temperature, σ c was far bigger than σ h.
基金financially supported by the National Natural Science Foundation of China(Nos.51871080,51931004 and 51571073)the Talent Training Program for Shandong Province Higher Educational Youth Innovative Teams(2019)。
文摘In the present work,the microstructure features,martensitic transformation,mechanical properties and strain recovery characteristics of Ti-Ta based shape memory alloys were tailored by changing Hf contents.The singleα"martensite phase was dominated in Ti-Ta alloy with 2 at.%H f.Upon Hf content exceeded2 at.%,βphase started to appear.Moreover,the amount ofβphase gradually increased with Hf content increasing.The martensitic transformation temperatures continuously decreased with the increased Hf content,which was attributed to the rising of valence electron concentration.Meanwhile,Hf addition improved the thermal cycling stability of Ti-Ta alloys due to the suppression ofωprecipitation.The yield stress of Ti-Ta based alloys firstly decreased and then increased with Hf content increasing.In addition,the completely recoverable strain of 4%can be obtained in Ti-Ta alloy with 6 at.%Hf as a consequence of the higher critical stress for dislocation slip.Besieds,the Ti-Ta based alloy containing 8 at.%Hf had the superior superelasticity behavior with the fully recoverable strain of 2%at room temperature.
文摘The effects of thermomechanical cycling on the shape memory behavior and transformation temperatures of a Ni50.2Ti49.8 alloy under a constant applied stress of 300 MPa were investigated, k is believed that thermomechanical cycling induces defects such as dislocations, which evidently affect the shape memory behavior and transformation temperatures. The recovery strain decreases with increasing number of thermomechanical cycles, whereas the irreversible plastic strain increases, especially in the initial few cycles. The stored elastic strain energy has an important influence on transformation temperatures, the A5^σ decreases and the M5^σ increases with increasing number of thermomechanical cycles. The recovery strain, irreversible plastic strain, A5^σ , and M5^σ reach a saturation value after several cycles.
基金Project(BE2004027) supported by the Science and Technology Foundation of Jiangsu Province,China
文摘Thermal cycle training of CuZnAl shape memory alloys with differenttransformation temperatures was carried out. The influence of different pre-strains, heat treatmentsand media on the shape memory effect(SME) of CuZnAl alloys with different transformationtemperatures was studied by means of scanning electron microscopy(SEM) and X-raydiffractometry(XRD). Experimental results show that despite respective variation in heat treatment,medium and cycling number, the recover}'' rate always decreases as pre-strain increases. The declineis obvious when pre-strain is less than 2.6 percent but not so sharp when pre-strain exceeds 2.6percent. Larger pre-strain results in more than one slip system and causes intercutting of themartensite strips among martensitic variants, then leads to the decline of SME. The SME of alloyswith transformation temperatures below 347 K is larger than that of alloys beyond 361 K by 20percent - 40 percent. The recovery rate of two-step aged alloy is higher than that of step-quenchedalloy by 20 percent - 25 percent. During thermal cycling, the recovery rate in oil is better thanthat in water.
文摘The effects of quenching temperature on shape memory effect and microstructure of Fe 18Mn 5Si 8Cr 4Ni shape memory alloy have been studied. The results show that both the shape recovery ratio and the recovery strain increased as quenching temperature increased, the amount of stress induced ε martensite in the process of cold work decreased with the increase of quenching temperature, the shape recovery ratio and the recovery strain reached maximum at 650℃, and then decreased rapidly with the further increase of quenching temperature,the stress induced ε martensite wholly disappeared at 1023K. But when the quenching temperature is higher than 1023K, the further increase of quenching temperature had little effect on shape recovery ratio, the amount and size of thermal induced ε martensite would increased with the further increase in quenching temperature. The shape memory effect can be improved by the moderate amount of pre exist ε martensite in the matrix before deforming.
文摘The effect of heat treatment on shape memory properties of the ductile CuAlMn alloys was studied. The results show that the heating temperature for the solution treatment should be around 100 ℃ above the transformation temperature in order to obtain good shape memory properties, heating for 10 min at this temperature doesn’t have much influence on the shape memory properties, faster cooling rate helps to obtain good shape memory properties and the shape recovery rate(SRR) decreases with raising ageing temperatures. For Cu 16Al 10Mn alloy, the heat treatment process to acquire higher recovery rate is heating at 800 ℃ for 15 min, quenching into ice water and ageing below 150 ℃ for 15 min. For Cu 17Al 10Mn alloy, the process is the same except heating at 700 ℃.[
基金supported by the National Natural Science Foundation of the People’s Republic of China under grant No.50071037.
文摘The reverse transformation temperature and recovery strain ratio of the martensite formed during the cooling process under a constant stress in TiNi shape memory alloy wires are studied in this paper. Results show that a higher level of the applied constant stress during the cooling process will induce martensite with a higher reverse martensitic transformation start temperature As and a smaller recovery strain ratio. Similarly, a prestrain at the room temperature elevates the As temperature and decreases the recovery strain ratio. However, the As temperature and the recovery strain ratio of the martensite formed during the cooling process under a constant stress are lower than those of the martensite formed by prestrain at the room temperature.
基金National Natural Science Foundation of China (1157226511532010),the Excellent Youth Found of Sichuan Province (2017JQ0019),the Open Project of Traction Power State Key Laboratory (TPL1606)and the Exploration Project of Traction Power State Key Laboratory (2017TPL_T04)are acknowledged.
文摘The cyclic transformation behaviors of polycrystalline super-elastic NiTi shape memory alloys (SMAs)under multiaxial loading paths with different angles between axial and torsional loading orientations were experimentally investigated.The experimental results showed that the start stresses of forward and reverse transformations decreased with the increase'in the number of cycles and exhibit obvious anisotropic evolutions.The start stresses of forward and reverse transformations in the tensile and torsional directions did not satisfy the yon Mises criterion.The shape of transformation surface during the forward and reverse transformations evolved with the increase in the number of cycles.Then,new cyclic anisotropic transformation surfaces were established by introducing an anisotropic tensor into the von Mises equivalent stress based on a typical transformation criterion related to J2 and J3.Moreover,the evolution equations of material parameters used in the proposed transformation surfaces were established to describe the subsequent evolutions of transformation surfaces.Finally,the start stresses of forward and reverse transformations predicted using the proposed transformation surfaces were compared with the experimental results.It shows that the proposed transformation surfaces can reasonably describe the start stresses of forward and reverse transformations,which are helpful for establishing a three-dimensional cyclic constitutive model to describe the cyclic transformation behaviors of super-elastic NiTi SMAs.
文摘The thermo- induced and stress- induced transformations of a TiNi SMA after two times annealing werestudied by resistivity measurement and X-ray diffraction. The effect of heat treatment craft on characteristicsof SMA was discussed by contrast between two sorts of TiNi SMA wires.