Ni_(47)Ti_(44)Nb_(9)shape memory alloy(SMA)is a promising material in the aerospace field due to its wide transformation hysteresis.The application of shape memory effect depends on multistep thermomechan-ical loading...Ni_(47)Ti_(44)Nb_(9)shape memory alloy(SMA)is a promising material in the aerospace field due to its wide transformation hysteresis.The application of shape memory effect depends on multistep thermomechan-ical loading,viz.,low-temperature deformation and subsequent heating to recovery.Low-temperature deformation prestrain plays a pivotal role in shape memory properties tailoring of SMA components.However,microstructure evolution and deformation mechanisms of Ni_(47)Ti_(44)Nb_(9)SMA subjected to vari-ous prestrain levels are still unclear.To this end,microstructure evolution and shape memory behaviors of Ni_(47)Ti_(44)Nb_(9)alloy subjected to multistep thermomechanical loading with prestrain levels of 8%-16%at-28℃(M_(s)+30℃)were investigated.The results demonstrate that the stress-strain curve of the specimen exhibits four distinct stages at a maximal prestrain of 16%.Whereas stageⅡand stageⅢend at prestrains of∼8%and∼12%,respectively.In stageⅡ,the stress-induced martensitic transformation is accompanied by the dislocation slip of the NiTi matrix andβ-Nb inclusions.In stageⅢ,in addition to the higher density of dislocations and further growth of stress-induced martensite variants(SIMVs),(001)compound twins are introduced as a result of the(001)deformation twinning in stress-induced martensite.More{20-1}martensite twins are gradually introduced in stageⅣ.Correspondingly,after subsequent unloading and heating,a higher density of{114}austenite twins form in the specimen with a larger prestrain of 16%.With increasing prestrain from 8%to 16%,the recoverable strainε_(re)^(T)upon heating increases first and then decreases.Theε_(re)^(T)obtains a maximum of 7.03%at 10%prestrain and de-creases to 6.17%at 16%prestrain.The increase ofε_(re)^(T)can be attributed to the formation of new SIMVs,the further growth of existing SIMVs,and the recoverable(001)compound twins.While the decrease ofε_(re)^(T)is mainly associated with the irrecoverable strain by{20−1}martensite twins.The effect ofβ-Nb inclusions on the evolution of SIMVs is also found herein that deformedβ-Nb inclusions can significantly hinder the growth and recoverability of adjacent stress-induced martensite.展开更多
A novel hyperbranched poly(urethane-tetrazole)(HPUTZ) was synthesized via the "A2+BB2' " approach using hexadiisocyanate(HDI) and 3-(bis-(2-hydroxyethyl)) aminopropyltetrazole(HAPTZ).The molecular struct...A novel hyperbranched poly(urethane-tetrazole)(HPUTZ) was synthesized via the "A2+BB2' " approach using hexadiisocyanate(HDI) and 3-(bis-(2-hydroxyethyl)) aminopropyltetrazole(HAPTZ).The molecular structure was characterized by FTIR and 1H NMR spectroscopy.The number average molecular weight was measured to be 1.05×104 g/mol with a polydispersity of 1.27 by GPC analysis.The HPUTZ was further cured by the semi-adduct(PEG-IPDI) from polyethylene glycol(PEG) reacting with isophorone diisocyanate(IPDI) to form the crosslinked HAPTZ-PU film in different ratio of HAPTZ to PEG-IPDI.The glass transition temperature of HAPTZ-PU increased from 44.9 to 56.4 ℃ as the HPUTZ content increased from 20% to 33% from the DSC analysis.The DMA results indicated that the HPUTZ-PU with 20% HPUTZ possessed the highest storage modulus and loss tangent.However,the storage modulus increased with the increasing of HPUTZ segment at higher temperature.The shape memory study showed that all the films presented the excellent shape memory function.Over 98% shape recovery could be obtained for the HAPTZ-PU with 20%-33% HAPTZ segment content within 60 s in the tension deformation test and within 40 s at 80 ℃ in the bend deformation test.展开更多
A series of slightly crosslinked polyethylenes (SXLPE) was prepared by a one-step method using dicumyl peroxide as crosslinking agent in a Haake Mixer. The gel contents G (Soxhlet extracted) of the samples are in the...A series of slightly crosslinked polyethylenes (SXLPE) was prepared by a one-step method using dicumyl peroxide as crosslinking agent in a Haake Mixer. The gel contents G (Soxhlet extracted) of the samples are in the range from 5% to 20% by weight. Their shear viscosity, crystallization and melting behavior, dynamic mechanical properties and shape recovery effect were systematically investigated in terms of the content of the crosslinking agent. It shows that under certain experimental conditions the SXLPE's may exhibit good shape fixation ability and shape memory properties, which are similar to those of the commercially available shape memory polyethylenes prepared by gamma-irradiation technique. However the shape memory behavior of these samples is not very stable due to their low crosslinking degree, or gel content. Thus their application is limited in special cases with fast strain fixing procedures. (Author abstract) 9 Refs.展开更多
Electroactive shape memory composites were synthesized using polybutadiene epoxy (PBEP) and bisphenol A type cyanate ester (BACE) filled with different contents of carbon black (CB). Dynamic mechanical analysis ...Electroactive shape memory composites were synthesized using polybutadiene epoxy (PBEP) and bisphenol A type cyanate ester (BACE) filled with different contents of carbon black (CB). Dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), electrical performance and electroactive shape memory behavior were systematically investigated. It is found that the volume resistivity decreased due to excellent electrical conductivity of CB, in turn resulting in good electroactive shape memory properties. The content of CB and applied voltage had significant influence on electroactive shape memory effect of developed BACE/PBEP/CB composites. Shape recovery can be observed within a few seconds with the CB content of 5 wt% and voltage of 60 V. Shape recovery time decreased with increasing content of CB and voltage. The infrared thermometer revealed that the temperature rises above the glass transition temperature faster with the increase of voltage and the decrease of resistance.展开更多
In this study, high performance shape memory polyurethane (SMPU)/silica nanocomposites with different silica weight fraction including SMPU bulk, 3%, 4.5%, 6%, 7.5%, 10%, were prepared by sol-gel process initiated b...In this study, high performance shape memory polyurethane (SMPU)/silica nanocomposites with different silica weight fraction including SMPU bulk, 3%, 4.5%, 6%, 7.5%, 10%, were prepared by sol-gel process initiated by the solid acid catalyst of p-toluenesulfonic acid (PTSA). Field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) observation show that the silica nanoparticles are dispersed evenly in SMPU/silica nanocomposites. Tensile test and dynamic mechanical analysis (DMA) suggest that the mechanical properties and the glass transition temperature (Tg) of the nanocomposites were significantly influenced by silica weight fraction. Thermogravimetric analysis (TGA) was utilized to evaluate the thermal stability and determine the actual silica weight fraction. The TGA results indicate that the thermal stability can be enhanced with the hybridization of silica nanoparticles. Differential scanning calorimetry (DSC) was conducted to test the melting enthalpy (△H) and the results suggest that the AH was markedly improved for the SMPU/silica nanocomposites. Thermomechanical test was conducted to investigate the shape memory behavior and the results show that the shape fixity is improved by hybridization of silica and good shape recovery can be obtained with the increasing of cycle number for all the samples.展开更多
基金support from the National Natural Science Foundation of China(No.51775441)the National Science Fund for Excellent Young Scholars(No.51522509).
文摘Ni_(47)Ti_(44)Nb_(9)shape memory alloy(SMA)is a promising material in the aerospace field due to its wide transformation hysteresis.The application of shape memory effect depends on multistep thermomechan-ical loading,viz.,low-temperature deformation and subsequent heating to recovery.Low-temperature deformation prestrain plays a pivotal role in shape memory properties tailoring of SMA components.However,microstructure evolution and deformation mechanisms of Ni_(47)Ti_(44)Nb_(9)SMA subjected to vari-ous prestrain levels are still unclear.To this end,microstructure evolution and shape memory behaviors of Ni_(47)Ti_(44)Nb_(9)alloy subjected to multistep thermomechanical loading with prestrain levels of 8%-16%at-28℃(M_(s)+30℃)were investigated.The results demonstrate that the stress-strain curve of the specimen exhibits four distinct stages at a maximal prestrain of 16%.Whereas stageⅡand stageⅢend at prestrains of∼8%and∼12%,respectively.In stageⅡ,the stress-induced martensitic transformation is accompanied by the dislocation slip of the NiTi matrix andβ-Nb inclusions.In stageⅢ,in addition to the higher density of dislocations and further growth of stress-induced martensite variants(SIMVs),(001)compound twins are introduced as a result of the(001)deformation twinning in stress-induced martensite.More{20-1}martensite twins are gradually introduced in stageⅣ.Correspondingly,after subsequent unloading and heating,a higher density of{114}austenite twins form in the specimen with a larger prestrain of 16%.With increasing prestrain from 8%to 16%,the recoverable strainε_(re)^(T)upon heating increases first and then decreases.Theε_(re)^(T)obtains a maximum of 7.03%at 10%prestrain and de-creases to 6.17%at 16%prestrain.The increase ofε_(re)^(T)can be attributed to the formation of new SIMVs,the further growth of existing SIMVs,and the recoverable(001)compound twins.While the decrease ofε_(re)^(T)is mainly associated with the irrecoverable strain by{20−1}martensite twins.The effect ofβ-Nb inclusions on the evolution of SIMVs is also found herein that deformedβ-Nb inclusions can significantly hinder the growth and recoverability of adjacent stress-induced martensite.
基金support of the National Natural Science Foundation of China (50633010) is gratefully acknowledged
文摘A novel hyperbranched poly(urethane-tetrazole)(HPUTZ) was synthesized via the "A2+BB2' " approach using hexadiisocyanate(HDI) and 3-(bis-(2-hydroxyethyl)) aminopropyltetrazole(HAPTZ).The molecular structure was characterized by FTIR and 1H NMR spectroscopy.The number average molecular weight was measured to be 1.05×104 g/mol with a polydispersity of 1.27 by GPC analysis.The HPUTZ was further cured by the semi-adduct(PEG-IPDI) from polyethylene glycol(PEG) reacting with isophorone diisocyanate(IPDI) to form the crosslinked HAPTZ-PU film in different ratio of HAPTZ to PEG-IPDI.The glass transition temperature of HAPTZ-PU increased from 44.9 to 56.4 ℃ as the HPUTZ content increased from 20% to 33% from the DSC analysis.The DMA results indicated that the HPUTZ-PU with 20% HPUTZ possessed the highest storage modulus and loss tangent.However,the storage modulus increased with the increasing of HPUTZ segment at higher temperature.The shape memory study showed that all the films presented the excellent shape memory function.Over 98% shape recovery could be obtained for the HAPTZ-PU with 20%-33% HAPTZ segment content within 60 s in the tension deformation test and within 40 s at 80 ℃ in the bend deformation test.
基金This work was financially supported by the National Natural Science Foundation of China and the Science Foundation of Polymer Physics Laboratory, Chinese Academy of Sciences.
文摘A series of slightly crosslinked polyethylenes (SXLPE) was prepared by a one-step method using dicumyl peroxide as crosslinking agent in a Haake Mixer. The gel contents G (Soxhlet extracted) of the samples are in the range from 5% to 20% by weight. Their shear viscosity, crystallization and melting behavior, dynamic mechanical properties and shape recovery effect were systematically investigated in terms of the content of the crosslinking agent. It shows that under certain experimental conditions the SXLPE's may exhibit good shape fixation ability and shape memory properties, which are similar to those of the commercially available shape memory polyethylenes prepared by gamma-irradiation technique. However the shape memory behavior of these samples is not very stable due to their low crosslinking degree, or gel content. Thus their application is limited in special cases with fast strain fixing procedures. (Author abstract) 9 Refs.
文摘Electroactive shape memory composites were synthesized using polybutadiene epoxy (PBEP) and bisphenol A type cyanate ester (BACE) filled with different contents of carbon black (CB). Dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), electrical performance and electroactive shape memory behavior were systematically investigated. It is found that the volume resistivity decreased due to excellent electrical conductivity of CB, in turn resulting in good electroactive shape memory properties. The content of CB and applied voltage had significant influence on electroactive shape memory effect of developed BACE/PBEP/CB composites. Shape recovery can be observed within a few seconds with the CB content of 5 wt% and voltage of 60 V. Shape recovery time decreased with increasing content of CB and voltage. The infrared thermometer revealed that the temperature rises above the glass transition temperature faster with the increase of voltage and the decrease of resistance.
文摘In this study, high performance shape memory polyurethane (SMPU)/silica nanocomposites with different silica weight fraction including SMPU bulk, 3%, 4.5%, 6%, 7.5%, 10%, were prepared by sol-gel process initiated by the solid acid catalyst of p-toluenesulfonic acid (PTSA). Field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) observation show that the silica nanoparticles are dispersed evenly in SMPU/silica nanocomposites. Tensile test and dynamic mechanical analysis (DMA) suggest that the mechanical properties and the glass transition temperature (Tg) of the nanocomposites were significantly influenced by silica weight fraction. Thermogravimetric analysis (TGA) was utilized to evaluate the thermal stability and determine the actual silica weight fraction. The TGA results indicate that the thermal stability can be enhanced with the hybridization of silica nanoparticles. Differential scanning calorimetry (DSC) was conducted to test the melting enthalpy (△H) and the results suggest that the AH was markedly improved for the SMPU/silica nanocomposites. Thermomechanical test was conducted to investigate the shape memory behavior and the results show that the shape fixity is improved by hybridization of silica and good shape recovery can be obtained with the increasing of cycle number for all the samples.