To enhance the accuracy of 2πα and 2πβ particle surface emission rate measurements and address the identification issues of nuclides in conventional methods, this study introduces two artificial neural network(ANN...To enhance the accuracy of 2πα and 2πβ particle surface emission rate measurements and address the identification issues of nuclides in conventional methods, this study introduces two artificial neural network(ANN) algorithms: back-propagation(BP) and genetic algorithm-based back-propagation(GA-BP). These algorithms classify pulse signals from distinct α and β particles. Their discrimination efficacy is assessed by simulating standard pulse signals and those produced by contaminated sources, mixing α and β particles within the detector. This study initially showcases energy spectrum measurement outcomes, subsequently tests the ANNs on the measurement and validation datasets, and contrasts the pulse shape discrimination efficacy of both algorithms. Experimental findings reveal that the proportional counter's energy resolution is not ideal, thus rendering energy analysis insufficient for distinguishing between 2πα and 2πβ particles. The BP neural network realizes approximately 99% accuracy for 2πα particles and approximately 95% for 2πβ particles, thus surpassing the GA-BP's performance. Additionally, the results suggest enhancing β particle discrimination accuracy by increasing the digital acquisition card's threshold lower limit. This study offers an advanced solution for the 2πα and 2πβ surface emission rate measurement method, presenting superior adaptability and scalability over conventional techniques.展开更多
Heat treatment of Ti-50.9%Ni (mole fraction) alloy was studied by differential scanning calorimetry, X-ray diffraction, scanning electron microscopey and energy dispersive X-ray analysis to investigate the influence...Heat treatment of Ti-50.9%Ni (mole fraction) alloy was studied by differential scanning calorimetry, X-ray diffraction, scanning electron microscopey and energy dispersive X-ray analysis to investigate the influence of cooling rate on transformation behavior and microstructures of NiTi shape memory alloy. The experimental results show that three-stage phase transformation can be induced at a very low cooling rate such as cooling in furnace. The cooling rate also has a great influence on the phase transformation temperatures. Both martensitic start transformation temperature (Ms) and martensitic finish transformation temperature (Mf) decrease with the decrease of the cooling rate, and decreasing the cooling rate contributes to enhancing the M→A austenite transformation temperature. The phase transformation hysteresis (Af-Mf) increases with the decrease of the cooling rate. Heat treatment is unable to eliminate the textures formed in hot working of NiTi sample, but can weaken the intensity of them. The cooling rate has little influence on the grain size.展开更多
The influence of heating rate on double reversible transformation in CuZnAlMnNi shape memory alloy was investigated by differential scanning calorimetry. It was found that rapid heating inhibits X -->M transformati...The influence of heating rate on double reversible transformation in CuZnAlMnNi shape memory alloy was investigated by differential scanning calorimetry. It was found that rapid heating inhibits X -->M transformation but is favorable to the reverse martensite transformation, giving rise to the approach of the two transformation peaks. With the decrease of heating rate, the two transformation peaks separate gradually.展开更多
It is essential to precisely predict the crack growth,especially the near-threshold regime crack growth under different stress ratios,for most engineering structures consume their fatigue lives in this regime under ra...It is essential to precisely predict the crack growth,especially the near-threshold regime crack growth under different stress ratios,for most engineering structures consume their fatigue lives in this regime under random loading.In this paper,an improved unique curve model is proposed based on the unique curve model,and the determination of the shape exponents of this model is provided.The crack growth rate curves of some materials taken from the literature are evaluated using the improved model,and the results indicate that the improved model can accurately predict the crack growth rate in the nearthreshold and Paris regimes.The improved unique curve model can solve the problems about the shape exponents determination and weak ability around the near-threshold regime meet in the unique curve model.In addition,the shape exponents in the improved model at negative stress ratios are discussed,which can directly adopt that in the unique curve model.展开更多
Different fragments of a hot-rolled and homogenized Cu–Zn–Al shape memory alloy(SMA) were subjected to thermal cycling by means of a differential scanning calorimetric(DSC) device. During thermal cycling, heatin...Different fragments of a hot-rolled and homogenized Cu–Zn–Al shape memory alloy(SMA) were subjected to thermal cycling by means of a differential scanning calorimetric(DSC) device. During thermal cycling, heating was performed at the same constant rate of increasing temperature while cooling was carried out at different rates of decreasing temperature. For each cooling rate, the temperature decreased in the same thermal interval. During each cooling stage, an exothermic peak(maximum) was observed on the DSC thermogram. This peak was associated with forward martensitic transformation. The DSC thermograms were analyzed with PROTEUS software: the critical martensitic transformation start(Ms) and finish(Mf) temperatures were determined by means of integral and tangent methods, and the dissipated heat was evaluated by the area between the corresponding maximum plot and a sigmoid baseline. The effects of the increase in cooling rate, assessed from a calorimetric viewpoint, consisted in the augmentation of the exothermic peak and the delay of direct martensitic transformation. The latter had the tendency to move to lower critical transformation temperatures. The martensite plates changed in morphology by becoming more oriented and by an augmenting in surface relief, which corresponded with the increase in cooling rate as observed by scanning electron microscopy(SEM) and atomic force microscopy(AFM).展开更多
The effects of various split injection strategies on the opposed-piston opposed-cylinder(OPOC)diesel engine combustion and emission characteristics have been studied numerically using AVL-Fire CFD tools.The five rate-...The effects of various split injection strategies on the opposed-piston opposed-cylinder(OPOC)diesel engine combustion and emission characteristics have been studied numerically using AVL-Fire CFD tools.The five rate-shaped main injections were used in split injection strategies.The results show that ignition delay from a rectangular injection rate is the shortest.Maximum pressure of the trapezoid injection rate is the largest.And the NOx emission of the rectangular injection rate is the largest.Meanwhile,the soot emission of the trapezoid injection rate is the least among the five injection rates.展开更多
针对一阶噪声整形(NS)往往需要增加功耗而以较高的过采样比(OSR)来实现较高的有效位数(ENOB),提出了一种低OSR、低功耗的二阶无源NS SAR ADC。该无源NS模块较高的无源增益可以更好地抑制比较器的噪声;其残差电压是通过开关MOS阵列复用...针对一阶噪声整形(NS)往往需要增加功耗而以较高的过采样比(OSR)来实现较高的有效位数(ENOB),提出了一种低OSR、低功耗的二阶无源NS SAR ADC。该无源NS模块较高的无源增益可以更好地抑制比较器的噪声;其残差电压是通过开关MOS阵列复用积分电容实现采样,从而无需额外的残差采样电容,避免了残差采样电容清零和残差采样时kT/C噪声的产生,因此减小了总的kT/C噪声。180 nm CMOS工艺仿真结果表明,在不使用数字校准的情况下,所设计的10位二阶无源NS SAR ADC电路以100 kS/s的采样率和5的OSR,实现了13.5位ENOB,电路功耗仅为6.98μW。展开更多
文摘To enhance the accuracy of 2πα and 2πβ particle surface emission rate measurements and address the identification issues of nuclides in conventional methods, this study introduces two artificial neural network(ANN) algorithms: back-propagation(BP) and genetic algorithm-based back-propagation(GA-BP). These algorithms classify pulse signals from distinct α and β particles. Their discrimination efficacy is assessed by simulating standard pulse signals and those produced by contaminated sources, mixing α and β particles within the detector. This study initially showcases energy spectrum measurement outcomes, subsequently tests the ANNs on the measurement and validation datasets, and contrasts the pulse shape discrimination efficacy of both algorithms. Experimental findings reveal that the proportional counter's energy resolution is not ideal, thus rendering energy analysis insufficient for distinguishing between 2πα and 2πβ particles. The BP neural network realizes approximately 99% accuracy for 2πα particles and approximately 95% for 2πβ particles, thus surpassing the GA-BP's performance. Additionally, the results suggest enhancing β particle discrimination accuracy by increasing the digital acquisition card's threshold lower limit. This study offers an advanced solution for the 2πα and 2πβ surface emission rate measurement method, presenting superior adaptability and scalability over conventional techniques.
基金Project (51071056) supported by the National Natural Science Foundation of ChinaProjects (HEUCFR1132, HEUCF121712) supported by the Fundamental Research Funds for the Central Universities of China
文摘Heat treatment of Ti-50.9%Ni (mole fraction) alloy was studied by differential scanning calorimetry, X-ray diffraction, scanning electron microscopey and energy dispersive X-ray analysis to investigate the influence of cooling rate on transformation behavior and microstructures of NiTi shape memory alloy. The experimental results show that three-stage phase transformation can be induced at a very low cooling rate such as cooling in furnace. The cooling rate also has a great influence on the phase transformation temperatures. Both martensitic start transformation temperature (Ms) and martensitic finish transformation temperature (Mf) decrease with the decrease of the cooling rate, and decreasing the cooling rate contributes to enhancing the M→A austenite transformation temperature. The phase transformation hysteresis (Af-Mf) increases with the decrease of the cooling rate. Heat treatment is unable to eliminate the textures formed in hot working of NiTi sample, but can weaken the intensity of them. The cooling rate has little influence on the grain size.
文摘The influence of heating rate on double reversible transformation in CuZnAlMnNi shape memory alloy was investigated by differential scanning calorimetry. It was found that rapid heating inhibits X -->M transformation but is favorable to the reverse martensite transformation, giving rise to the approach of the two transformation peaks. With the decrease of heating rate, the two transformation peaks separate gradually.
文摘It is essential to precisely predict the crack growth,especially the near-threshold regime crack growth under different stress ratios,for most engineering structures consume their fatigue lives in this regime under random loading.In this paper,an improved unique curve model is proposed based on the unique curve model,and the determination of the shape exponents of this model is provided.The crack growth rate curves of some materials taken from the literature are evaluated using the improved model,and the results indicate that the improved model can accurately predict the crack growth rate in the nearthreshold and Paris regimes.The improved unique curve model can solve the problems about the shape exponents determination and weak ability around the near-threshold regime meet in the unique curve model.In addition,the shape exponents in the improved model at negative stress ratios are discussed,which can directly adopt that in the unique curve model.
基金supported by the project PN-II-ID-PCE-2012-4-0033,contract 13/2013
文摘Different fragments of a hot-rolled and homogenized Cu–Zn–Al shape memory alloy(SMA) were subjected to thermal cycling by means of a differential scanning calorimetric(DSC) device. During thermal cycling, heating was performed at the same constant rate of increasing temperature while cooling was carried out at different rates of decreasing temperature. For each cooling rate, the temperature decreased in the same thermal interval. During each cooling stage, an exothermic peak(maximum) was observed on the DSC thermogram. This peak was associated with forward martensitic transformation. The DSC thermograms were analyzed with PROTEUS software: the critical martensitic transformation start(Ms) and finish(Mf) temperatures were determined by means of integral and tangent methods, and the dissipated heat was evaluated by the area between the corresponding maximum plot and a sigmoid baseline. The effects of the increase in cooling rate, assessed from a calorimetric viewpoint, consisted in the augmentation of the exothermic peak and the delay of direct martensitic transformation. The latter had the tendency to move to lower critical transformation temperatures. The martensite plates changed in morphology by becoming more oriented and by an augmenting in surface relief, which corresponded with the increase in cooling rate as observed by scanning electron microscopy(SEM) and atomic force microscopy(AFM).
基金Supported by the National Natural Science Foundation of China(51605447)
文摘The effects of various split injection strategies on the opposed-piston opposed-cylinder(OPOC)diesel engine combustion and emission characteristics have been studied numerically using AVL-Fire CFD tools.The five rate-shaped main injections were used in split injection strategies.The results show that ignition delay from a rectangular injection rate is the shortest.Maximum pressure of the trapezoid injection rate is the largest.And the NOx emission of the rectangular injection rate is the largest.Meanwhile,the soot emission of the trapezoid injection rate is the least among the five injection rates.
文摘针对一阶噪声整形(NS)往往需要增加功耗而以较高的过采样比(OSR)来实现较高的有效位数(ENOB),提出了一种低OSR、低功耗的二阶无源NS SAR ADC。该无源NS模块较高的无源增益可以更好地抑制比较器的噪声;其残差电压是通过开关MOS阵列复用积分电容实现采样,从而无需额外的残差采样电容,避免了残差采样电容清零和残差采样时kT/C噪声的产生,因此减小了总的kT/C噪声。180 nm CMOS工艺仿真结果表明,在不使用数字校准的情况下,所设计的10位二阶无源NS SAR ADC电路以100 kS/s的采样率和5的OSR,实现了13.5位ENOB,电路功耗仅为6.98μW。