Shape resonances of electron-molecule system formed in the low-energy electron attachment to four low-lying conformers of serine (serine 1, serine 2, serine 3, and serine 4) in gas phase are investigated using the q...Shape resonances of electron-molecule system formed in the low-energy electron attachment to four low-lying conformers of serine (serine 1, serine 2, serine 3, and serine 4) in gas phase are investigated using the quantum scattering method with the non-empirical model potentials in single-center expansion. In the attachment energy range of 0-10 eV, three shape resonances for serine 1, serine 2, and serine 4 and four shape resonances for serine 3 are predicted. The one-dimensional potential energy curves of the temporary negative ions of electron-serine are calculated to explore the correlations between the shape resonance and the bond cleavage. The bond-cleavage selectivity of the different resonant states for a certain conformer is demonstrated, and the recent experimental results about the dissociative electron attachment to serine are interpreted on the basis of present calculations.展开更多
Dipole coupled nanomagnets controlled by the static Zeeman field can form various magnetic logic interconnects.However, the corner wire interconnect is often unreliable and error-prone at room temperature. In this stu...Dipole coupled nanomagnets controlled by the static Zeeman field can form various magnetic logic interconnects.However, the corner wire interconnect is often unreliable and error-prone at room temperature. In this study, we address this problem by making it into a reliable type with trapezoid-shaped nanomagnets, the shape anisotropy of which helps to offer the robustness. The building method of the proposed corner wire interconnect is discussed,and both its static and dynamic magnetization properties are investigated. Static micromagnetic simulation demonstrates that it can work correctly and reliably. Dynamic response results are reached by imposing an ac microwave field on the proposed corner wire. It is found that strong ferromagnetic resonance absorption appears at a low frequency. With the help of a very small ac field with the peak resonance frequency, the required static Zeeman field to switch the corner wire is significantly decreased by ~21 m T. This novel interconnect would pave the way for the realization of reliable and low power nanomagnetic logic circuits.展开更多
We report elastic cross sections for low-energy electron scattering with formamide-(H_(2)O)n complexes(n=1,2)in the energy region of 0.01-8 eV.The scattering calculations are performed using the R-matrix method in the...We report elastic cross sections for low-energy electron scattering with formamide-(H_(2)O)n complexes(n=1,2)in the energy region of 0.01-8 eV.The scattering calculations are performed using the R-matrix method in the static-exchange(SE)approximation.We consider three structures of formamide-H_(2)O and six structures of formamide-(H_(2)O)_(2)in the present work.Our purpose is to investigate effects of water molecules hydrogen-bonding to formamide.We focus on the influence of microsolvation on theπ*andσ*resonances of formamide.The scattering result for complexes shows that the position ofπ*resonance appears at lower or higher energies in the cluster than in the isolated formamide depending on the complex structure and the water role in the hydrogen bonding.We explain this behavior according to the net charge of the solute.It is found that the microsolvation environment has a substantial effect on the width ofπ*resonance.Our results indicate that surrounding water molecules may affect the lifetime of the resonances,and hence the process is driven by the anion state,such as the dissociative electron attachment.展开更多
We perform benchmark calculations of the p-wave resonances in the exponentially cosine screened Coulomb potential using the uniform complex-scaling generalized pseudo-spectral method.The present results show significa...We perform benchmark calculations of the p-wave resonances in the exponentially cosine screened Coulomb potential using the uniform complex-scaling generalized pseudo-spectral method.The present results show significant improvement in calculation accuracy compared to previous predictions and correct the misidentification of resonance electron configuration in previous works.It is found that the resonance states approximately follow an n^(2)-scaling law which is similar to the bound counterparts.The birth of a new resonance would distort the trajectory of an adjacent higher-lying resonance.展开更多
The elastic scattering properties for collisions between two ^7Li atoms are investigated in the cold and ultracold regimes separately. Based on recent theoretical and experimental results, we present the improved hybr...The elastic scattering properties for collisions between two ^7Li atoms are investigated in the cold and ultracold regimes separately. Based on recent theoretical and experimental results, we present the improved hybrid potentials for the singlet X^1 ∑g^+ and triplet a^3 ∑u^+ ground states of the Li2, Our calculated values for the scattering lengths α and the effective ranges re are compared with previous ones, and found them to be in good agreement. The scattering lengths are 34.6α0 for the singlet state and -27.6α0 for the triplet state. Shape resonances occur in the collisions at low energies. We also calculate the total cross sections and the energy positions of shape resonances for both X^1 ∑g^+ and a^3 ∑u^+ states.展开更多
This paper reports that the interaction potential for the X3Z- state of NH radical is constructed at the CCSD(T)/ cc-PV6Z level of theory. Using this potential, this paper calculates the spectroscopic parameters (D...This paper reports that the interaction potential for the X3Z- state of NH radical is constructed at the CCSD(T)/ cc-PV6Z level of theory. Using this potential, this paper calculates the spectroscopic parameters (De, Re, ωe, ωeχe, αe and Be) and their values are of 3.578eV, 0.10368nm, 3286.833cm^-1, 78.433cm^-1, 0.6469cm^-1 and 16.6735cm^-1 respectively, which are in excellent agreement with the experiments. Then the total of 14 vibrational states has been found when J=0 by solving the radial Schrodinger equation of nuclear motion. For each vibrational state, the vibrational manifolds are reported for the first time. And last, the total cross sections, s-wave, p-wave and d-wave cross sections are computed for the elastic collisions between two ground-state atoms (hydrogen and nitrogen) at low temperatures. It finds that the total elastic cross sections are dominated by s-wave scattering when the collision energy is below 10^-6a.u. The pronounced shape resonance is found at energy of 6.1 × 10^-6a.u. Calculations have shown that the shape resonance comes from the p-wave contributions.展开更多
This paper constructs the interaction potential of the SH(X^2∏) radical by using the coupled-cluster singlesdoubles-approximate-triples theory combining the correlation-consistent quintuple basis set augmented with...This paper constructs the interaction potential of the SH(X^2∏) radical by using the coupled-cluster singlesdoubles-approximate-triples theory combining the correlation-consistent quintuple basis set augmented with the diffuse functions, aug-cc-pV5Z, in the valence range. Employing the potential, it accurately determines the spectroscopic parameters. The present De, Re, ωe, ωeχe, ae and Be values are of 3.7767eV, 0.13424nm, 2699.846 cm^-1, 47.7055 cm^-1, 0.2639cm^-1 and 9.4414 cm^-1, respectively, which are in excellent agreement with those obtained from the measure- ments. A total of 19 vibrational states has been found when J = 0 by solving the radial SchrSdinger equation of nuclear motion. The complete vibrational levels, classical turning points, initial rotation and centrifugal distortion constants when J = 0 are reported for the first time, which are in good accord with the experimental results. The total and various partial-wave cross sections are computed for the elastic collisions of sulfur and hydrogen in their ground states at low temperatures when two atoms approach each other along the SH(X^2∏) potential energy curve. Over the impact energy range from 1.0×10^-11 to 1.0×10^-4 a.u., eight shape resonances have been found in the total elastic cross sections. For each shape resonance, the resonant energy is accurately calculated. Careful investigations have pointed out that these resonances result from the 1 = 0, 1, 2, 3, 4, 6, 7, 8 partial-wave contributions.展开更多
The plasma screening of fast-electron-impact-ionization by excited state(3p) of Hydrogen-like ions was investigated in the first Born approximation with a plasma screening length δ varying from 1000a0 to 10a0. The ...The plasma screening of fast-electron-impact-ionization by excited state(3p) of Hydrogen-like ions was investigated in the first Born approximation with a plasma screening length δ varying from 1000a0 to 10a0. The generalized oscillator strength densities showed dramatic changes: some accessional minima occurred along with a remarkable enhancement in certain continuum-energy domains. The double-differential cross sections exhibit not only the same structures as the Bethe surface for moderate and large momentum transfers, but also a broadened enhancement for small momentum transfers.The single-differential cross sections exhibit a near-zero-energy-enhancement and prodigious multiple-shape resonances,depending on the continuum energy and the plasma screening length. These features are analogous to those of the photoionization cross section. These findings, for both types of cross section, can be explained by processes associated with continuum electrons, as long as the potential has a short-range character.展开更多
The PD(X^3∑^-) interaction potential is constructed using the CCSD(T) theory and the basis set, augcc-pV5Z. Using this potential, the spectroscopic parameters are accurately determined. The present Do, De, Re, ω...The PD(X^3∑^-) interaction potential is constructed using the CCSD(T) theory and the basis set, augcc-pV5Z. Using this potential, the spectroscopic parameters are accurately determined. The present Do, De, Re, ωe, ωeχe, αe, and Be are of 3.056 99 eV, 3.161 75 eV, 0.142 39 nm, 1701.558 cm^-1, 23.6583 cm^-1, 0.085 99 cm^-1, and 4.3963 cm^-1, respectively, which almost perfectly conform with the measurements. A total of 26 vibrational states is predicted when J = 0 by solving the radial Sehrodinger equation of nuclear motion. The complete vibrational levels, classical turning points, initial rotation and centrifugal distortion constants when J = 0 are reported for the first time, which favorably agree with the experiments. The total and various partial-wave cross sections are calculated for the elastic impact between two ground-state P and D atoms at 1.0 × 10^-12 - 1.0 × 10^-4 a.u. when they approach each other along the PD(X^3∑^-) potential. No shape resonances exist in the total elastic cross sections, though the peaks can be found for each partial wave until l=6. The shape of the total elastic cross sections is dominated by the s partial wave at very low temperatures. Due to the weakness of the shape resonances of each partial wave, they are all passed into oblivion by the strong total elastic cross sections.展开更多
Interaction potentials for LiCI(X^1∑+) are constructed by the highly accurate valence internally contracted multireference configuration interaction in combination with a number of large correlation-consistent bas...Interaction potentials for LiCI(X^1∑+) are constructed by the highly accurate valence internally contracted multireference configuration interaction in combination with a number of large correlation-consistent basis sets, which are used to determine the spectroscopic parameters (D0, De, Re, ωe, ωeχe, Be and αe). The potentials obtained at the basis sets, i.e., aug-cc-pV5Z-JKFI for Cl and cc-pV5Z for Li, are selected to study the elastic collision properties of Li and Cl atoms at the impact energies from 1.0 ×10^-12 to 1.0× 10-4 a.u. The derived total elastic cross sections are very large and almost constant at ultralow temperatures, and their shapes are mainly dominated by the s-partial wave at very low impact energies. Only one shape resonance can be found in the total elastic cross sections over the present collision energy regime, which is rather strong and obviously broadened by the overlap contributions of the abundant resonances coming from various partial waves. Abundant resonances exist for the elastic partial-wave cross sections until l= 22 partial waves. The vibrational manifolds of the LiCI(X^1∑+) molecule, which are predicted at the present level of theory and the basis sets cc-pV5Z for Li and the aug-cc-pV5Z-JKFI for Cl, should achieve much high accuracy due to the employment of the large correlation-consistent basis sets.展开更多
Interaction potential of the SiD(χ^2П) radical is constructed by using the CCSD(T) theory in combination with the largest correlation-consistent quintuple basis set augmented with the diffuse functions in the wl...Interaction potential of the SiD(χ^2П) radical is constructed by using the CCSD(T) theory in combination with the largest correlation-consistent quintuple basis set augmented with the diffuse functions in the wlence range. Using the interaction potential, the spectroscopic parameters are accurately determined. The present Do, De, Re, ωe, αe and Be values are of 3.0956 eV, 3.1863 eV, 0.15223 nm, 1472.894 cm^-1, 0.07799 cm^-1 and 3.8717 cm^-1, respectively, which are in excellent agreement with the measurements. A total of 26 vibrational states is predicted when J = 0 by solving the radial Schroedinger equation of nuclear motion. The complete vibrational levels, classical turning points, initial rotation and centrifugal distortion constants when J = 0 are reported for the first time, which are in good accord with the available experiments. The total and various partial-wave cross sections are calculated for the elastic collisions between Si and D atoms in their ground states at 1.0× 10^-11-1.0×10^-3 a.u. when the two atoms approach each other along the SiD(χ^2П) potential energy curve. Four shape resonances are found in the total elastic cross sections, and their resonant energies are of 1.73×10^-5, 4.0×10^-5, 6.45×10^-5 and 5.5×10^-4 a.u., respectively. Each shape resonance in the total elastic cross sections is carefully investigated. The results show that the shape of the total elastic cross sections is mainly dominated by the s partial wave at very low temperatures. Because of the weakness of the shape resonances coming from the higher partial waves, most of them are passed into oblivion by the strong s partial-wave elastic cross sections.展开更多
The elastic scattering properties for collisions between cold and ultracold 39K atoms in a triplet state are investigated. Based on the recent theoretical and experimental results, the improved hybrid potential is pre...The elastic scattering properties for collisions between cold and ultracold 39K atoms in a triplet state are investigated. Based on the recent theoretical and experimental results, the improved hybrid potential is presented for a triplet α3∑u^+ ground state of K2. Our calculated value of the s-wave scattering length a by using the Numerov method for the triplet state is 79.578α0 and found to be in good agreement with the previous ones. The numbers of bound states are supported by the molecular potential. Pronounced shape resonances appear for the l = 3 partial waves for the α3∑u^+ state. Furthermore, the s-wave scattering cross section, the total cross section and energy positions of shape resonances for the α3∑u^+ state are calculated.展开更多
An interaction potential for an N2(X^1∑g^+) molecule is constructed by using the highly accurate valence internally contracted multireference configuration interaction method and the largest basis set, aug-cc-pV6Z...An interaction potential for an N2(X^1∑g^+) molecule is constructed by using the highly accurate valence internally contracted multireference configuration interaction method and the largest basis set, aug-cc-pV6Z, in the valence range. The potential is used to investigate the elastic scattering of two N atoms at energies from 1.0×10^-11 to 1.0 × 10^-4 a.u. The derived total elastic cross sections are very large and almost constant at ultralow temperatures, and the shape of total elastic cross section curve is mainly dominated by the s-partial wave at very low collision energies. Three shape resonances are found in the total elastic cross sections. Concretely, the first one is very sharp and strong. It results from the g-partial-wave contribution and the resonant energy is 3.645 × 10^-6 a.u. The second one is contributed by the h-partial wave and the resonant energy is 1.752 × 10^-5 a.u. This resonance is broadened by those from the d- and f-partial waves. The third one comes from the l = 6 partial wave contribution and the resonant energy is 3.522 × 10^-5 a.u. This resonance is broadened by those from the g- and h-partial waves. The N2(X1∑g+) molecular parameters, which are determined at the current theoretical level, achieve very high accuracy due to the employment of the largest correlation-consistent basis set in the valence range.展开更多
We present elastic electron scattering cross sections with holmethane molecules CH_(2)Br_(2)and CCl_(2)Br_(2)in the lowenergy region ranging from 0.01 e V to 20 e V.The calculations are performed with the R-matrix met...We present elastic electron scattering cross sections with holmethane molecules CH_(2)Br_(2)and CCl_(2)Br_(2)in the lowenergy region ranging from 0.01 e V to 20 e V.The calculations are performed with the R-matrix method in static-exchange plus polarization(SEP)and close-coupling(CC)approximations.The integral,differential,and momentum transfer cross sections are calculated.The convergence of the obtained cross sections is checked at four different levels of SEP approximation.The predicted positions of the resonances agree well with available results.The precise resonance parameters are found to be sensitive to the treatment of polarization effects employed.We find that the polarization has a substantial effect on the cross sections,and this effect becomes even more important for lower impact energies.展开更多
This paper presents a lumped equivalent circuit model of the nonreciprocal magnetoelectric tunable microwave bandpass filter.The reciprocal coupled-line circuit is based on the converse magnetoelectric effect of magne...This paper presents a lumped equivalent circuit model of the nonreciprocal magnetoelectric tunable microwave bandpass filter.The reciprocal coupled-line circuit is based on the converse magnetoelectric effect of magnetoelectric composites,includes the electrical tunable equivalent factor of the piezoelectric layer,and is established by the introduced lumped elements,such as radiation capacitance,radiation inductance,and coupling inductance,according to the transmission characteristics of the electromagnetic wave and magnetostatic wave in an inverted-L-shaped microstrip line and ferrite slab.The nonreciprocal transmission property of the filter is described by the introduced T-shaped circuit containing controlled sources.Finally,the lumped equivalent circuit of a nonreciprocal magnetoelectric tunable microwave band-pass filter is given and the lumped parameters are also expressed.When the deviation angles of the ferrite slab are respectively 0° and45°,the corresponding magnetoelectric devices are respectively a reciprocal device and a nonreciprocal device.The curves of S parameter obtained by the lumped equivalent circuit model and electromagnetic simulation are in good agreement with the experimental results.When the deviation angle is between 0° and 45°,the maximum value of the S parameter predicted by the lumped equivalent circuit model is in good agreement with the experimental result.The comparison results of the paper show that the lumped equivalent circuit model is valid.Further,the effect of some key material parameters on the performance of devices is predicted by the lumped equivalent circuit model.The research can provide the theoretical basis for the design and application of nonreciprocal magnetoelectric tunable devices.展开更多
A kind of circular ring high frequency wideband underwater acoustic transducer is developed by using the Low Q value and broadband characteristics of the piezoelectricity composite material,and the dual mode coupling ...A kind of circular ring high frequency wideband underwater acoustic transducer is developed by using the Low Q value and broadband characteristics of the piezoelectricity composite material,and the dual mode coupling is used to broaden the bandwidth of the transducer by double ring stacking along the axial direction.Through theoretical analysis and simulation calculation,the geometric dimensions of the sensitive components are determined.The piezoelectric composite rings are processed and then the stack sensitive element can be made by stacking two piezoelectric composite rings with the same outer diameter and different thickness in axial direction by cutting piezoelectric ceramicsfilling the flexible polymer-coating electrode.Finally,the transducer can be made by pouring waterproof sound-permeable layer.The performances of transducer have also been tested in the water and the test results show that the resonant frequency is 410 kHz,the maximum transmit voltage response is 150 dB,the-3 dB bandwidth can reaches 60 kHz,the horizontal directivity(-5 dB) is 360°,and the vertical directivity(-3 dB) is 20°.It is also shown that the bandwidth of the transducer can be enlarged remarkably by using the method of stacking two different thickness piezoelectric composite rings along the axial direction,and the horizontal omnidirectional emission of acoustic wave can be realized展开更多
The two-dimensional nonlinear acoustic field of eleven exponential shaped res- onators was simulated with a computational fluid dynamics software Fluent. The influence of driving frequency and driving intensity on pre...The two-dimensional nonlinear acoustic field of eleven exponential shaped res- onators was simulated with a computational fluid dynamics software Fluent. The influence of driving frequency and driving intensity on pressure in resonator as well as its natural frequency was investigated. The relationship between natural frequency and theoretical calculation res- onance frequency was also explored. It is found that beating phenomena can be observed in the resonator when the driving frequency deviates from the natural frequency. Moreover, the natural frequency of resonator increases with the increasing of driving intensity, which shows a hard spring effect. However, the driving intensity plays little effect on natural frequency and the natural frequencies are smaller than the theoretical calculation values in any driving intensity. Meanwhile, a formula between the natural frequency and its first-order resonance frequency from theoretical calculation was obtained by linear fitting for all these exponential shaped resonators under consideration. It is also found that the highest pressure amplitude and highest pressure ratio can be obtained from the exponential shaped resonator of m = 2.8 under the same driving intensity. Moreover, the relation between natural frequency and the theoretical resonance frequency for m = 2.8-tube is slightly different from other tubes in consideration.展开更多
基金This work is supported by the National Natural Science Foundation of China (No.21303212 and No.21573209), the Ministry of Science and Technology of China (No.2013CB834602).
文摘Shape resonances of electron-molecule system formed in the low-energy electron attachment to four low-lying conformers of serine (serine 1, serine 2, serine 3, and serine 4) in gas phase are investigated using the quantum scattering method with the non-empirical model potentials in single-center expansion. In the attachment energy range of 0-10 eV, three shape resonances for serine 1, serine 2, and serine 4 and four shape resonances for serine 3 are predicted. The one-dimensional potential energy curves of the temporary negative ions of electron-serine are calculated to explore the correlations between the shape resonance and the bond cleavage. The bond-cleavage selectivity of the different resonant states for a certain conformer is demonstrated, and the recent experimental results about the dissociative electron attachment to serine are interpreted on the basis of present calculations.
基金Supported by the National Natural Science Foundation of China under Grant No 61302022
文摘Dipole coupled nanomagnets controlled by the static Zeeman field can form various magnetic logic interconnects.However, the corner wire interconnect is often unreliable and error-prone at room temperature. In this study, we address this problem by making it into a reliable type with trapezoid-shaped nanomagnets, the shape anisotropy of which helps to offer the robustness. The building method of the proposed corner wire interconnect is discussed,and both its static and dynamic magnetization properties are investigated. Static micromagnetic simulation demonstrates that it can work correctly and reliably. Dynamic response results are reached by imposing an ac microwave field on the proposed corner wire. It is found that strong ferromagnetic resonance absorption appears at a low frequency. With the help of a very small ac field with the peak resonance frequency, the required static Zeeman field to switch the corner wire is significantly decreased by ~21 m T. This novel interconnect would pave the way for the realization of reliable and low power nanomagnetic logic circuits.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1504109 and 11604085)the Program for Science and Technology Innovation Talents in the Universities of Henan Province,China(Grant No.19HASTIT018)。
文摘We report elastic cross sections for low-energy electron scattering with formamide-(H_(2)O)n complexes(n=1,2)in the energy region of 0.01-8 eV.The scattering calculations are performed using the R-matrix method in the static-exchange(SE)approximation.We consider three structures of formamide-H_(2)O and six structures of formamide-(H_(2)O)_(2)in the present work.Our purpose is to investigate effects of water molecules hydrogen-bonding to formamide.We focus on the influence of microsolvation on theπ*andσ*resonances of formamide.The scattering result for complexes shows that the position ofπ*resonance appears at lower or higher energies in the cluster than in the isolated formamide depending on the complex structure and the water role in the hydrogen bonding.We explain this behavior according to the net charge of the solute.It is found that the microsolvation environment has a substantial effect on the width ofπ*resonance.Our results indicate that surrounding water molecules may affect the lifetime of the resonances,and hence the process is driven by the anion state,such as the dissociative electron attachment.
基金supported by the National Natural Science Foundation of China(Grant No.12174147)the Chinese Scholarship Council(Grant Nos.202108210152 and 202006175016).
文摘We perform benchmark calculations of the p-wave resonances in the exponentially cosine screened Coulomb potential using the uniform complex-scaling generalized pseudo-spectral method.The present results show significant improvement in calculation accuracy compared to previous predictions and correct the misidentification of resonance electron configuration in previous works.It is found that the resonance states approximately follow an n^(2)-scaling law which is similar to the bound counterparts.The birth of a new resonance would distort the trajectory of an adjacent higher-lying resonance.
基金Project supported by the National Natural Science Foundation of China (Grant No 10174019).
文摘The elastic scattering properties for collisions between two ^7Li atoms are investigated in the cold and ultracold regimes separately. Based on recent theoretical and experimental results, we present the improved hybrid potentials for the singlet X^1 ∑g^+ and triplet a^3 ∑u^+ ground states of the Li2, Our calculated values for the scattering lengths α and the effective ranges re are compared with previous ones, and found them to be in good agreement. The scattering lengths are 34.6α0 for the singlet state and -27.6α0 for the triplet state. Shape resonances occur in the collisions at low energies. We also calculate the total cross sections and the energy positions of shape resonances for both X^1 ∑g^+ and a^3 ∑u^+ states.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574039)Science and Technology Innovation Talents in Universities of Henan Province in China (Grant No 2008HASTIT008)the Natural Science Foundation of Education Bureau of Henan Province, China (Grant No 2007140015)
文摘This paper reports that the interaction potential for the X3Z- state of NH radical is constructed at the CCSD(T)/ cc-PV6Z level of theory. Using this potential, this paper calculates the spectroscopic parameters (De, Re, ωe, ωeχe, αe and Be) and their values are of 3.578eV, 0.10368nm, 3286.833cm^-1, 78.433cm^-1, 0.6469cm^-1 and 16.6735cm^-1 respectively, which are in excellent agreement with the experiments. Then the total of 14 vibrational states has been found when J=0 by solving the radial Schrodinger equation of nuclear motion. For each vibrational state, the vibrational manifolds are reported for the first time. And last, the total cross sections, s-wave, p-wave and d-wave cross sections are computed for the elastic collisions between two ground-state atoms (hydrogen and nitrogen) at low temperatures. It finds that the total elastic cross sections are dominated by s-wave scattering when the collision energy is below 10^-6a.u. The pronounced shape resonance is found at energy of 6.1 × 10^-6a.u. Calculations have shown that the shape resonance comes from the p-wave contributions.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60777012 and 10574039)the Science & Technology Innovation Talents in Universities of Henan Province in China (Grant No 2008HASTIT0 08)
文摘This paper constructs the interaction potential of the SH(X^2∏) radical by using the coupled-cluster singlesdoubles-approximate-triples theory combining the correlation-consistent quintuple basis set augmented with the diffuse functions, aug-cc-pV5Z, in the valence range. Employing the potential, it accurately determines the spectroscopic parameters. The present De, Re, ωe, ωeχe, ae and Be values are of 3.7767eV, 0.13424nm, 2699.846 cm^-1, 47.7055 cm^-1, 0.2639cm^-1 and 9.4414 cm^-1, respectively, which are in excellent agreement with those obtained from the measure- ments. A total of 19 vibrational states has been found when J = 0 by solving the radial SchrSdinger equation of nuclear motion. The complete vibrational levels, classical turning points, initial rotation and centrifugal distortion constants when J = 0 are reported for the first time, which are in good accord with the experimental results. The total and various partial-wave cross sections are computed for the elastic collisions of sulfur and hydrogen in their ground states at low temperatures when two atoms approach each other along the SH(X^2∏) potential energy curve. Over the impact energy range from 1.0×10^-11 to 1.0×10^-4 a.u., eight shape resonances have been found in the total elastic cross sections. For each shape resonance, the resonant energy is accurately calculated. Careful investigations have pointed out that these resonances result from the 1 = 0, 1, 2, 3, 4, 6, 7, 8 partial-wave contributions.
基金supported by the National Basic Research Program of China(Grant No.2013CB922200)the National Natural Science Foundation of China(Grant Nos.11005049,11025417,and 10974021)
文摘The plasma screening of fast-electron-impact-ionization by excited state(3p) of Hydrogen-like ions was investigated in the first Born approximation with a plasma screening length δ varying from 1000a0 to 10a0. The generalized oscillator strength densities showed dramatic changes: some accessional minima occurred along with a remarkable enhancement in certain continuum-energy domains. The double-differential cross sections exhibit not only the same structures as the Bethe surface for moderate and large momentum transfers, but also a broadened enhancement for small momentum transfers.The single-differential cross sections exhibit a near-zero-energy-enhancement and prodigious multiple-shape resonances,depending on the continuum energy and the plasma screening length. These features are analogous to those of the photoionization cross section. These findings, for both types of cross section, can be explained by processes associated with continuum electrons, as long as the potential has a short-range character.
基金Supported by the Program for Science & Technology Innovation Talents in Universities of Henan Province in China under GrantNo. 2008HASTIT008the National Natural Science Foundation of China under Grant Nos. 60777012 and 10874064
文摘The PD(X^3∑^-) interaction potential is constructed using the CCSD(T) theory and the basis set, augcc-pV5Z. Using this potential, the spectroscopic parameters are accurately determined. The present Do, De, Re, ωe, ωeχe, αe, and Be are of 3.056 99 eV, 3.161 75 eV, 0.142 39 nm, 1701.558 cm^-1, 23.6583 cm^-1, 0.085 99 cm^-1, and 4.3963 cm^-1, respectively, which almost perfectly conform with the measurements. A total of 26 vibrational states is predicted when J = 0 by solving the radial Sehrodinger equation of nuclear motion. The complete vibrational levels, classical turning points, initial rotation and centrifugal distortion constants when J = 0 are reported for the first time, which favorably agree with the experiments. The total and various partial-wave cross sections are calculated for the elastic impact between two ground-state P and D atoms at 1.0 × 10^-12 - 1.0 × 10^-4 a.u. when they approach each other along the PD(X^3∑^-) potential. No shape resonances exist in the total elastic cross sections, though the peaks can be found for each partial wave until l=6. The shape of the total elastic cross sections is dominated by the s partial wave at very low temperatures. Due to the weakness of the shape resonances of each partial wave, they are all passed into oblivion by the strong total elastic cross sections.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60777012 and 10874064)the Program for Science and Technology Innovation Talents in Universities of Henan Province,China (Grant No. 2008HASTIT008)
文摘Interaction potentials for LiCI(X^1∑+) are constructed by the highly accurate valence internally contracted multireference configuration interaction in combination with a number of large correlation-consistent basis sets, which are used to determine the spectroscopic parameters (D0, De, Re, ωe, ωeχe, Be and αe). The potentials obtained at the basis sets, i.e., aug-cc-pV5Z-JKFI for Cl and cc-pV5Z for Li, are selected to study the elastic collision properties of Li and Cl atoms at the impact energies from 1.0 ×10^-12 to 1.0× 10-4 a.u. The derived total elastic cross sections are very large and almost constant at ultralow temperatures, and their shapes are mainly dominated by the s-partial wave at very low impact energies. Only one shape resonance can be found in the total elastic cross sections over the present collision energy regime, which is rather strong and obviously broadened by the overlap contributions of the abundant resonances coming from various partial waves. Abundant resonances exist for the elastic partial-wave cross sections until l= 22 partial waves. The vibrational manifolds of the LiCI(X^1∑+) molecule, which are predicted at the present level of theory and the basis sets cc-pV5Z for Li and the aug-cc-pV5Z-JKFI for Cl, should achieve much high accuracy due to the employment of the large correlation-consistent basis sets.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60777012 and 10574039)the Programfor Science & Technology Innovation Talents in Universities of Henan Province in China (Grant No 2008HASTIT008)
文摘Interaction potential of the SiD(χ^2П) radical is constructed by using the CCSD(T) theory in combination with the largest correlation-consistent quintuple basis set augmented with the diffuse functions in the wlence range. Using the interaction potential, the spectroscopic parameters are accurately determined. The present Do, De, Re, ωe, αe and Be values are of 3.0956 eV, 3.1863 eV, 0.15223 nm, 1472.894 cm^-1, 0.07799 cm^-1 and 3.8717 cm^-1, respectively, which are in excellent agreement with the measurements. A total of 26 vibrational states is predicted when J = 0 by solving the radial Schroedinger equation of nuclear motion. The complete vibrational levels, classical turning points, initial rotation and centrifugal distortion constants when J = 0 are reported for the first time, which are in good accord with the available experiments. The total and various partial-wave cross sections are calculated for the elastic collisions between Si and D atoms in their ground states at 1.0× 10^-11-1.0×10^-3 a.u. when the two atoms approach each other along the SiD(χ^2П) potential energy curve. Four shape resonances are found in the total elastic cross sections, and their resonant energies are of 1.73×10^-5, 4.0×10^-5, 6.45×10^-5 and 5.5×10^-4 a.u., respectively. Each shape resonance in the total elastic cross sections is carefully investigated. The results show that the shape of the total elastic cross sections is mainly dominated by the s partial wave at very low temperatures. Because of the weakness of the shape resonances coming from the higher partial waves, most of them are passed into oblivion by the strong s partial-wave elastic cross sections.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574039) and the Science Foundation for Young Scientists of Henan Normal University, China (Grant No 2005004).
文摘The elastic scattering properties for collisions between cold and ultracold 39K atoms in a triplet state are investigated. Based on the recent theoretical and experimental results, the improved hybrid potential is presented for a triplet α3∑u^+ ground state of K2. Our calculated value of the s-wave scattering length a by using the Numerov method for the triplet state is 79.578α0 and found to be in good agreement with the previous ones. The numbers of bound states are supported by the molecular potential. Pronounced shape resonances appear for the l = 3 partial waves for the α3∑u^+ state. Furthermore, the s-wave scattering cross section, the total cross section and energy positions of shape resonances for the α3∑u^+ state are calculated.
基金Project supported by the Program for Science and Technology Innovation Talents in Universities of Henan Province, China (Grant No. 2008HASTIT008)the National Natural Science Foundation of China (Grant Nos. 60777012 and 10874064)
文摘An interaction potential for an N2(X^1∑g^+) molecule is constructed by using the highly accurate valence internally contracted multireference configuration interaction method and the largest basis set, aug-cc-pV6Z, in the valence range. The potential is used to investigate the elastic scattering of two N atoms at energies from 1.0×10^-11 to 1.0 × 10^-4 a.u. The derived total elastic cross sections are very large and almost constant at ultralow temperatures, and the shape of total elastic cross section curve is mainly dominated by the s-partial wave at very low collision energies. Three shape resonances are found in the total elastic cross sections. Concretely, the first one is very sharp and strong. It results from the g-partial-wave contribution and the resonant energy is 3.645 × 10^-6 a.u. The second one is contributed by the h-partial wave and the resonant energy is 1.752 × 10^-5 a.u. This resonance is broadened by those from the d- and f-partial waves. The third one comes from the l = 6 partial wave contribution and the resonant energy is 3.522 × 10^-5 a.u. This resonance is broadened by those from the g- and h-partial waves. The N2(X1∑g+) molecular parameters, which are determined at the current theoretical level, achieve very high accuracy due to the employment of the largest correlation-consistent basis set in the valence range.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1504109 and 11604085)the Natural Science Foundation of Henan Province,China(Grant No.212300410054)。
文摘We present elastic electron scattering cross sections with holmethane molecules CH_(2)Br_(2)and CCl_(2)Br_(2)in the lowenergy region ranging from 0.01 e V to 20 e V.The calculations are performed with the R-matrix method in static-exchange plus polarization(SEP)and close-coupling(CC)approximations.The integral,differential,and momentum transfer cross sections are calculated.The convergence of the obtained cross sections is checked at four different levels of SEP approximation.The predicted positions of the resonances agree well with available results.The precise resonance parameters are found to be sensitive to the treatment of polarization effects employed.We find that the polarization has a substantial effect on the cross sections,and this effect becomes even more important for lower impact energies.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11172285,11472259,and 11302217)the Natural Science Foundation of Zhejiang Province,China(Grant No.LR13A020002)
文摘This paper presents a lumped equivalent circuit model of the nonreciprocal magnetoelectric tunable microwave bandpass filter.The reciprocal coupled-line circuit is based on the converse magnetoelectric effect of magnetoelectric composites,includes the electrical tunable equivalent factor of the piezoelectric layer,and is established by the introduced lumped elements,such as radiation capacitance,radiation inductance,and coupling inductance,according to the transmission characteristics of the electromagnetic wave and magnetostatic wave in an inverted-L-shaped microstrip line and ferrite slab.The nonreciprocal transmission property of the filter is described by the introduced T-shaped circuit containing controlled sources.Finally,the lumped equivalent circuit of a nonreciprocal magnetoelectric tunable microwave band-pass filter is given and the lumped parameters are also expressed.When the deviation angles of the ferrite slab are respectively 0° and45°,the corresponding magnetoelectric devices are respectively a reciprocal device and a nonreciprocal device.The curves of S parameter obtained by the lumped equivalent circuit model and electromagnetic simulation are in good agreement with the experimental results.When the deviation angle is between 0° and 45°,the maximum value of the S parameter predicted by the lumped equivalent circuit model is in good agreement with the experimental result.The comparison results of the paper show that the lumped equivalent circuit model is valid.Further,the effect of some key material parameters on the performance of devices is predicted by the lumped equivalent circuit model.The research can provide the theoretical basis for the design and application of nonreciprocal magnetoelectric tunable devices.
基金supported by the National Natural Science Foundation of China(614710470)
文摘A kind of circular ring high frequency wideband underwater acoustic transducer is developed by using the Low Q value and broadband characteristics of the piezoelectricity composite material,and the dual mode coupling is used to broaden the bandwidth of the transducer by double ring stacking along the axial direction.Through theoretical analysis and simulation calculation,the geometric dimensions of the sensitive components are determined.The piezoelectric composite rings are processed and then the stack sensitive element can be made by stacking two piezoelectric composite rings with the same outer diameter and different thickness in axial direction by cutting piezoelectric ceramicsfilling the flexible polymer-coating electrode.Finally,the transducer can be made by pouring waterproof sound-permeable layer.The performances of transducer have also been tested in the water and the test results show that the resonant frequency is 410 kHz,the maximum transmit voltage response is 150 dB,the-3 dB bandwidth can reaches 60 kHz,the horizontal directivity(-5 dB) is 360°,and the vertical directivity(-3 dB) is 20°.It is also shown that the bandwidth of the transducer can be enlarged remarkably by using the method of stacking two different thickness piezoelectric composite rings along the axial direction,and the horizontal omnidirectional emission of acoustic wave can be realized
基金jointly supported by National Natural Science Foundation of China(51405157,51476052)Scientific Research Fund of Hunan Provincial Education Department(14C0433,14B057)
文摘The two-dimensional nonlinear acoustic field of eleven exponential shaped res- onators was simulated with a computational fluid dynamics software Fluent. The influence of driving frequency and driving intensity on pressure in resonator as well as its natural frequency was investigated. The relationship between natural frequency and theoretical calculation res- onance frequency was also explored. It is found that beating phenomena can be observed in the resonator when the driving frequency deviates from the natural frequency. Moreover, the natural frequency of resonator increases with the increasing of driving intensity, which shows a hard spring effect. However, the driving intensity plays little effect on natural frequency and the natural frequencies are smaller than the theoretical calculation values in any driving intensity. Meanwhile, a formula between the natural frequency and its first-order resonance frequency from theoretical calculation was obtained by linear fitting for all these exponential shaped resonators under consideration. It is also found that the highest pressure amplitude and highest pressure ratio can be obtained from the exponential shaped resonator of m = 2.8 under the same driving intensity. Moreover, the relation between natural frequency and the theoretical resonance frequency for m = 2.8-tube is slightly different from other tubes in consideration.