期刊文献+
共找到596篇文章
< 1 2 30 >
每页显示 20 50 100
Preparation and Characterization of KNO3/Diatomite Shape-Stabilized Composite Phase Change Material for High Temperature Thermal Energy Storage 被引量:16
1
作者 Yong Deng Jinhong Li +2 位作者 Tingting Qian Weimin Guan Xiang Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第2期198-203,共6页
A new potassium nitrate (KNO3)]diatomite shape-stabilized composite phase change material (SS- CPCM) was prepared by the mixing and sintering method. KNO3 served as the phase change material (PCM) for thermal en... A new potassium nitrate (KNO3)]diatomite shape-stabilized composite phase change material (SS- CPCM) was prepared by the mixing and sintering method. KNO3 served as the phase change material (PCM) for thermal energy storage, while diatomite acted as the carrier matrix to provide the structural strength and prevent the leakage of PCM. It was found that KNO3 could be retained 65 wt% into pores and on surfaces of diatomite without the leakage of melted KNO3 from the SS-CPCM. The calculated filling rate of molten KNO3 that could enter into the disc-like shape pore of diatomite verified the scanning elec- tronic microscopy images of SS-CPCM. X-ray diffraction and Fourier transform infrared spectroscopy results showed that no reaction occurred between KNO3 and diatomite, performing good compatibility. Accord- ing to the differential scanning calorimetry results, after 50 thermal cycles, the phase change temperatures for melting and freezing of SS-CPCM with 65 wt% KNO3 were changed from 330.23 ℃ and 332.90 ℃ to 330.11 ℃ and 332.84 ℃ and corresponding latent heats varied from 60.52 J/g and 47.30 J/g to 54.64 J/g and 41.25 J/g, respectively. The KNO3/diatomite SS-CPCM may be considered as a potential storage media in solar power plants for thermal energy storage. 展开更多
关键词 Potassium nitrate DIATOMITE shape-stabilized composite phase change material Thermal energy storage
原文传递
Preparation and Properties of Paraffin/PMMA Shape-stabilized Phase Change Material for Building Thermal Energy Storage 被引量:5
2
作者 孟多 ZHAO Kang +1 位作者 WANG Anqi WANG Baomin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第1期231-239,共9页
The composite phase change material(PCM) consisting of phase change paraffin(PCP) and polymethyl methacrylate(PMMA) was prepared as a novel type of shape-stabilized PCM for building energy conservation through the met... The composite phase change material(PCM) consisting of phase change paraffin(PCP) and polymethyl methacrylate(PMMA) was prepared as a novel type of shape-stabilized PCM for building energy conservation through the method of bulk polymerization. The chemical structure, morphology, phase change temperature and enthalpy, and mechanical properties of the composite PCM were studied to evaluate the encapsulation effect of PMMA on PCP and determine the optimal composition proportion. FTIR and SEM results revealed that PCP was physically immobilized in the PMMA so that its leakage from the composite was prevented. Based on the thermo-physical and mechanical properties investigations, the optimal mass fraction of PCP in the composite was determined as 70%. The phase change temperature of the composite was close to that of PCP, and its latent heat was equivalent to the calculated value according to the mass fraction of PCP in the composite. For estimating the usability in practical engineering, thermal stability, reliability and temperature regulation performance of the composite were also researched by TG analysis, thermal cycling treatments and heating-cooling test. The results indicated that PCP/PMMA composite PCM behaved good thermal stability depending on the PMMA protection and its latent heat degraded little after 500 thermal cycling. Temperature regulation performance of the composite before and after thermal cycling was both noticeable due to its latent heat absorption and release in the temperature variation processes. The PCP/PMMA phase change plate was fabricated and applied as thermal insulator in miniature concrete box to estimate its temperature regulation effect under the simulated environmental condition. It can be concluded that this kind of PCP/PMMA shape-stabilized PCM with the advantages of no leakage, suitable phase change temperature and enthalpy, good thermal stability and reliability, and effective temperature regulation performance have much potential for thermal energy storage in building energy conservation. 展开更多
关键词 shape-stabilized phase change material phase change PARAFFIN polymethyl METHACRYLATE temperature regulation BUILDING energy conservation
下载PDF
Melting Intercalation Method to Prepare Lauric Acid/Organophilic Montmorillonite Shape-stabilized Phase Change Material 被引量:3
3
作者 陈美祝 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第4期674-677,共4页
A kind of novel shape-stabilized phase change material (SSPCM) was prepared by using a melting intercalation technique. This kind of SSPCM was made of lauric acid (LA) as a phase change material and organophilic m... A kind of novel shape-stabilized phase change material (SSPCM) was prepared by using a melting intercalation technique. This kind of SSPCM was made of lauric acid (LA) as a phase change material and organophilic montmorillonite (OMMT) as a support material. And the thermal properties and morphology of the SSPCM were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electronic microscope (SEM), scanning calorimeter (DSC), and differential thermal cravimetry (TG). The DSC result shows that the phase change temperature of the SSPCM is close to that of LA, and its latent heat is equivalent to that of the calculated value based on the mass ratio of LA measured by TG. The XRD, SEM and TEM results demonstrate that the LA intercalates into the silicate layers of the OMMT, thus forming a typically intercalted hybrid, which can restrict the molecular chain of the LA within the structure of OMMT at high temperature. And consequently SSPCM can keep its solid state during its solid-liquid phase change processing. 展开更多
关键词 shape-stabilized phase change material lauric acid organophilic montmorillonite melting intercalation
下载PDF
Role of Composite Phase Change Material on the Thermal Performance of a Latent Heat Storage System: Experimental Investigation 被引量:2
4
作者 Jasim Abdulateef Ahmed F.Hasan Mustafa S.Mahdi 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2020年第1期44-51,共8页
Paraffin wax is a perfect phase change material(PCM)that can be used in latent heat storage units(LHSUs).The utilization of such LHSU is restricted by the poor conductivity of PCM.In the present work,a metal foam made... Paraffin wax is a perfect phase change material(PCM)that can be used in latent heat storage units(LHSUs).The utilization of such LHSU is restricted by the poor conductivity of PCM.In the present work,a metal foam made of aluminium with PCM was used to produce a composite PCM as a thermal conductivity technique in PCM⁃LHSU and water was used as heat transfer fluid(HTF).An experimental investigation was carried out to evaluate the heat transfer characteristics of LHSU using pure PCM and composite PCM.The study included time⁃dependent visualization of the PCM during the melting and solidification processes.Besides,a thermocouple network was placed inside the heat storage to record the temperature profile during each process.Results showed that better performance could be obtained using composite PCM⁃LHSU for both melting and solidification processes.The melting time of composite PCM⁃LHSU was about 83%faster than that of a simple PCM⁃LHSU,and the percentage decreasing in the solidification time was about 85%due to the provision of metal foam. 展开更多
关键词 phase change material metal foam latent heat composite PCM
下载PDF
Fly Ash/Paraffin Composite Phase Change Material Used to Treat Thermal and Mechanical Properties of Expansive Soil in Cold Regions 被引量:2
5
作者 Yong Chen Yinghao Huang +1 位作者 Min Wu Shuo Wang 《Journal of Renewable Materials》 SCIE EI 2022年第4期1153-1173,共21页
Phase change materials(PCMs)can store large amounts of energy in latent heat and release it during phase changes,which could be used to improve the freeze-thaw performance of soil.The composite phase change material w... Phase change materials(PCMs)can store large amounts of energy in latent heat and release it during phase changes,which could be used to improve the freeze-thaw performance of soil.The composite phase change material was prepared with paraffin as the PCM and 8%Class C fly ash(CFA)as the supporting material.Laboratory tests were conducted to reveal the influence of phase change paraffin composite Class C fly ash(CFA-PCM)on the thermal properties,volume changes and mechanical properties of expansive soil.The results show that PCM failed to establish a good improvement effect due to leakage.CFA can effectively adsorb phase change materials,and the two have good compatibility.CFA-PCM reduces the volume change and strength attenuation of the soil,and 8 wt.%PCM is the optimal content.CFA-PCM turns the phase change latent heat down of the soil and improves its thermal stability.CFA-PCM makes the impact small of freeze-thaw on soil pore structure damage and improves soil volume change and mechanical properties on a macroscopic scale.In addition,CFA-8 wt.%PCM treated expansive soil has apparent advantages in resisting repeated freeze-thaw cycles,providing a reference for actual engineering design. 展开更多
关键词 composite phase change material freeze-thaw performance expansive soil thermal properties mechanical properties
下载PDF
A New Kind of Shape-stabilized Phase Change Materials 被引量:2
6
作者 肖力光 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第3期491-494,共4页
Based on the lowest melting point and Schroeder’s theoretical calculation formula,nano- modified organic composite phase change materials(PCMs)were prepared.The phase transition temperature and the latent heat of t... Based on the lowest melting point and Schroeder’s theoretical calculation formula,nano- modified organic composite phase change materials(PCMs)were prepared.The phase transition temperature and the latent heat of the materials were 24℃and 172 J/g,respectively.A new shape-stabilized phase change materials were prepared,using high density polyethylene as supporting material.The PCM kept the shape when temperature was higher than melting point.Thus,it can directly contact with heat transfer media.The structure,morphology and thermal behavior of PCM were analyzed by FTIR,SEM and DSC. 展开更多
关键词 phase change material(PCM) shape-stabilized phase change materials high density polyethylene
下载PDF
Preparation of Composite Phase Change Material Based on Sol-Gel Method and Its Temperature-Adjustable Textile 被引量:2
7
作者 易世雄 马晓光 +1 位作者 张莹 李桦 《Journal of Donghua University(English Edition)》 EI CAS 2009年第3期284-289,共6页
In this study,the sol-gel method was introduced to prepare the composite phase change material (CPCM). The CPCM was added to fabric with coating techniques and the thermal activity of modified fabric was studied. In a... In this study,the sol-gel method was introduced to prepare the composite phase change material (CPCM). The CPCM was added to fabric with coating techniques and the thermal activity of modified fabric was studied. In addition,the thermal property and the microstructure of CPCM were also discussed in detail by means of polarization microscope and differential scanning calorimeter,respectively. According to the analysis of main influencial factors of the property of CPCM,the optimal preparing technique was determined. It was proved that CPCM could exhibit a good thermal property while phase transformation process took place,and a better appearance of the fabric modified with CPCM could be obtained due to the fact that in a warm circumstance,the liquid-state phase change material could be firmly enwrapped and embedded in the three-dimensional network all the time during the phase transformation. Besides,the fabric treated with CPCM had a high phase-transition enthalpy and an appropriate phase-transition temperature. As a result,a desirable temperature-adjustable function appeared. 展开更多
关键词 复合相变材料 温度调节功能 溶胶凝胶法 制备工艺 纺织品 织物面料 差示扫描量热 偏光显微镜
下载PDF
Numerical Investigation of the Thermal Behavior of a System with a Partition Wall Incorporating a Phase Change Material
8
作者 Nisrine Hanchi Hamid Hamza +2 位作者 Jawad Lahjomri Khalid Zniber Abdelaziz Oubarra 《Fluid Dynamics & Materials Processing》 EI 2023年第5期1227-1236,共10页
The work deals with the thermal behavior of a conventional partition wall incorporating a phase change material(PCM).The wall separates two environments with different thermal properties.The first one is conditioned,w... The work deals with the thermal behavior of a conventional partition wall incorporating a phase change material(PCM).The wall separates two environments with different thermal properties.The first one is conditioned,while the adjacent space is characterized by a temperature that changes sinusoidally in time.The effect of the PCM is assessed through a comparative analysis of the cases with and without PCM.The performances are evaluated in terms of dimensionless energy stored within the wall,comfort temperature and variations of these quantities as a function of the amount of PCM and its emplacement. 展开更多
关键词 phase change materials rangemelting temperature composite wall comfort temperature dimensionless energy stored
下载PDF
Preparation and Properties of 1-octadecanol/1,3:2,4-di-(3,4-dimethyl) Benzylidene Sorbitol/Expanded Graphite Form-stable Composite Phase Change Material
9
作者 许君 程晓敏 +1 位作者 LI Yuanyuan YU Guoming 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第3期728-735,共8页
A 1 -octadecanol (OD)/1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol (DMDBS)/expander graphite (EG) composite was prepared as a form-stable phase change material (PCM) by vacuum melting method. The results of field em... A 1 -octadecanol (OD)/1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol (DMDBS)/expander graphite (EG) composite was prepared as a form-stable phase change material (PCM) by vacuum melting method. The results of field emission-scanning electron microscopy (FE-SEM) showed that 1 -octadecanol was restricted in the three-dimensional network formed by DMDBS and the honeycomb network formed by EG. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) results showed that no chemical reaction occurred among the components of composite PCM in the preparation process. The gel-to-sol transition temperature of the composite PCMs containing DMDBS was much higher than the melting point of pure 1-octadecanol. The improvements in preventing leakage and thermal stability limits were mainly attributed to the synergistic effect of the three-dimensional network formed by DMDBS and the honeycomb network formed by EG. Differential scanning calorimeter (DSC) was used to determine the latent heat and phase change temperature of the composite PCMs. During melting and freezing process the latent heat values of the PCM with the composition of 91% OD/3% DMDBS/6% EG were 214.9 and 185.9 kJ kg'1, respectively. Its degree of supercooling was only 0.1 °C. Thermal constant analyzer results showed that its thermal conductivity (k) changed up to roughly 10 times over that of OD/DMDBS matrix. 展开更多
关键词 1-octadecanol 1 3:2 4-di-(3 4-dimethyl) BENZYLIDENE SORBITOL expander graphite composite phase change materials synergistic effect GELATOR
下载PDF
Preparation and Characterization of CA-MA Eutectic/Silicon Dioxide Nanoscale Composite Phase Change Material from Water Glass via Sol-Gel Method
10
作者 孟多 ZHAO Kang +1 位作者 ZHAO Wei JIANG Guowei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第5期1048-1056,共9页
This work mainly involved the preparation of a nano-scale form-stable phase change material(PCM) consisting of capric and myristic acid(CA-MA) binary eutectic acting as thermal absorbing material and nano silicon ... This work mainly involved the preparation of a nano-scale form-stable phase change material(PCM) consisting of capric and myristic acid(CA-MA) binary eutectic acting as thermal absorbing material and nano silicon dioxide(nano-SiO_2) serving as the supporting material. Industrial water glass for preparation of the nano silicon dioxide matrix and CA-MA eutectic mixture were compounded by single-step sol-gel method with the silane coupling agent. The morphology, chemical characterization and form stability property of the composite PCM were investigated by transmission electron microscopy(TEM), scanning electron microscopy(SEM), Fourier-transform infrared(FT-IR) spectroscopy and polarizing microscopy(POM). It was indicated that the average diameter of the composite PCM particle ranged from 30-100 nm. The CA-MA eutectic was immobilized in the network pores constructed by the Si-O bonds so that the composite PCM was allowed no liquid leakage above the melting temperature of the CA-MA eutectic. Differential scanning calorimetry(DSC) and thermogravimetric analysis(TGA) measurement were conducted to investigate the thermal properties and stability of the composite PCM. From the measurement results, the mass fraction of the CA-MA eutectic in the composite PCM was about 40%. The phase change temperature and latent heat of the composite were determined to be 21.15 ℃ and 55.67 J/g, respectively. Meanwhile, thermal conductivity of the composite was measured to be 0.208 W·m^(-1)·K^(-1) by using the transient hot-wire method. The composite PCM was able to maintain the surrounding temperature close to its phase change temperature and behaved well in thermalregulated performance which was verified by the heat storage-release experiment. This kind of form-stable PCM was supposed to complete thermal insulation even temperature regulation by the dual effect of relatively low thermal conductivity and phase change thermal storage-release properties. So it can be formulated that the nanoscale CA-MA/SiO_2 composite PCM with the form-stable property, good thermal storage capacity and relatively low thermal conductivity can be applied for energy conservation as a kind of thermal functional material. 展开更多
关键词 fatty acid eutectic silicon dioxide nanoscale composite phase change material water glass sol-gel
下载PDF
Preparation and Thermal Properties of a Novel Modified Ammonium Alum/Expanded Graphite Composite Phase Change Material
11
作者 YIN Shaowu HAN Jiawei +3 位作者 ZHANG Chao KANG Peng TONG Lige WANG Li 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第6期2093-2103,共11页
Thermal energy storage(TES)using phase change materials(PCMs)is a powerful solution to the improvement of energy efficiency.The application of Ammonium alum(A-alum,NH4Al(SO_(4))_(2)·12H_(2)O)in the latent thermal... Thermal energy storage(TES)using phase change materials(PCMs)is a powerful solution to the improvement of energy efficiency.The application of Ammonium alum(A-alum,NH4Al(SO_(4))_(2)·12H_(2)O)in the latent thermal energy storage(LTES)systems is hampered due to its high supercooling and low thermal conductivity.In this work,modified A-alum(M-PCM)containing different nucleating agents was prepared and further adsorbed in expanded graphite(EG)to obtain composite phase change material(CPCM)to overcome the disadvantages of A-alum.Thermal properties,thermal cycle stability,microstructure and chemical compatibility of CPCM were characterized by differential scanning calorimetry,thermal constant analysis,scanning electron microscopy,X-ray diffraction and Fourier transform infrared spectroscopy.The cold rewarming phenomenon of CPCM was established and explained.Results showed that the latent heat and melting point of CPCM were 187.22 J/g and 91.54℃,respectively.The supercooling of CPCM decreased by 9.61℃,and thermal conductivity increased by 27 times compared with pure A-alum.Heat storage and release tests indicated that 2 wt%calcium chloride dihydrate(CCD,CaCl_(2)·2H_(2)O)was the optimum nucleating agent for A-alum.The result of TG and 30 thermal cycles revealed that CPCM exhibited favorable thermal stability and reliability during the operating temperature.The prepared modified A-alum/EG CPCM has a promising application prospect for LTES. 展开更多
关键词 composite phase change material thermal property ammonium alum expanded graphite SUPERCOOLING thermal conductivity
原文传递
Processing Compressed Expanded Natural Graphite for Phase Change Material Composites
12
作者 Alexander BULK Adewale ODUKOMAIYA +1 位作者 Ethan SIMMONS Jason WOODS 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第3期1213-1226,共14页
Phase change materials(PCMs)are used in various thermal energy storage applications but are limited by their low thermal conductivity.One method to increase conductivity involves impregnating organic PCMs into highly ... Phase change materials(PCMs)are used in various thermal energy storage applications but are limited by their low thermal conductivity.One method to increase conductivity involves impregnating organic PCMs into highly porous conductive matrix materials.Of these materials,compressed expanded natural graphite(CENG)matrices have received the most attention.Despite this attention,the effect that CENG processing has on PCM saturation and overall matrix thermal conductivity has not been fully investigated.Therefore,the effect of the heat treatment process used to expand intercalated graphite flakes is evaluated here.Higher heat treatment temperatures yielded higher saturation rates and overall saturation at similar matrix porosities.For example,increasing temperature from 300℃to 700℃resulted in approximately 60%-70%increase in pore saturation after 100 minutes of soaking.The exposure time to heat treatment had less of an effect on PCM saturation.The exposure time had negligible effect above 30 min and above 500℃heating temperatures.However,because the expanded graphite was found to oxidize around 700℃,the use of longer exposure time in manufacturing applications can be beneficial if a shortened impregnation time is needed.Heat treatment conditions did not impact thermal conductivity.The composite latent heat of fusion was also reduced approximately proportionally to the PCM mass fraction.A local maximum in axial thermal conductivity was observed at around 83%porosity,which is similar to previous studies.The observed conductivity at this maximum was a factor of 81 times greater than the conductivity of the PCM. 展开更多
关键词 phase change materials thermal energy storage compressed expanded natural graphite thermal conductivity enhancement porous material sorptivity composite matrix
原文传递
Experimental Approaches to Improve Thermal Stability of Organic Phase Change Properties
13
作者 Amin Al Irobaidi 《Journal of Materials Science and Chemical Engineering》 2018年第7期125-135,共11页
This study investigates the thermal behavior of Polyolefin containing Paraffin and Nano Hydrated aluminum silicate Al2Si2O5 (OH) 4 (Kaolin) particles to enhance store energy at ambient temperature. The hybrid Nano com... This study investigates the thermal behavior of Polyolefin containing Paraffin and Nano Hydrated aluminum silicate Al2Si2O5 (OH) 4 (Kaolin) particles to enhance store energy at ambient temperature. The hybrid Nano composite is based on polyolefin PE as a matrix, whereby paraffin wax and Kaolin were hot blended at varying concentrations. In addition Carbon Nanotube (CNTs) was added in different relative low concentrations to improve the thermal transition among the polymer matrix, since polymer domains are considered as isolator. The composite was prepared by melt mixing using a Brabender Plasrograph and a Two Role Mill. Thermal properties of the composite were determined using DSC and Melt flow Index. Because TES materials are subjected to melting and freezing during life time, multiple extrusion tests to simulate the degradation process of the composite were carried out. FTIR was applied to determine the degradation effect and investigate microstructure changes of the composite. The results obtained demonstrate that the blend shows a tendency to be thermally active at low temperatures. DSC tests evidenced a decrease in melt tempera-ture as a result of increasing Kaolin content and some changes in the latent heat of the compound. 展开更多
关键词 phase change materials Polymer composites Nano KAOLIN TES Carbon NANOTUBES PE-Wax
下载PDF
High density polyethylene (HDPE)--Graphite composite manufactured by extrusion:A novel way to fabricate phase change materials for thermal energy storage 被引量:1
14
作者 A.Sciacovelli M.E.Navarro +5 位作者 Yi Jin Geng Qiao Lifang Zheng Guanghui Leng Li Wang Yulong Ding 《Particuology》 SCIE EI CAS CSCD 2018年第5期131-140,共10页
Thermal energy storage (TES)has the potential to facilitate the deployment of renewable energy through addressing the demand-supply mismatch,ultimately leading to the decarbonisation of heat supply. Among the TES tech... Thermal energy storage (TES)has the potential to facilitate the deployment of renewable energy through addressing the demand-supply mismatch,ultimately leading to the decarbonisation of heat supply. Among the TES technologies,latent heat based TES with composite phase change materials (PCMs)has shown great potential,which has attracted significant attention in recent years.However,large scale and reliable manufacturing methods for composite PCMs are still largely lacking.Here,we present a study aimed to develop,for the first time,an extrusion process capable of fabricating high density polyethylene based graphite PCM composites at a high throughput and with enhanced thermal properties.The PCM composites were fabricated under different extrusion process parameters and characterized for their thermo-physical properties by multiple techniques including differential scanning calorimetry,thermal gravitational analyzer,and Fourier transform infrared spectroscopy.The results show that the extrusion process has the potential to fabricate PCM composite bars in a continuous fashion with a manufacturing throughput higher than traditional method;the fabricated PCM composites show enhanced properties (e.g.up to +70% increase in thermal diffusivity);and there is a clear link between extrusion process parameters and PCMs properties.Microstructural analyses show a more homogeneous structure with a lower extrusion speed;whereas a high extrusion speed gives a more microscopically heterogeneous structure with visible graphite agglomerates distributed relatively homogeneous macroscopically;and a higher graphite content gives a larger agglomerate size.The results of this work suggest that the elucidation of composition-process-property relationships is crucial:for a given formulation (composition), only through fine tuning of high throughput manufacturing process can make it possible to achieve the desired performance of the PCM composites. 展开更多
关键词 composite phase change materials Thermal energy storage Continuous manufacture composition-process-structure-property RELATIONSHIPS
原文传递
Thermal Analysis of Metal Foam Matrix Composite Phase Change Material 被引量:1
15
作者 SONG Xiange 《Journal of Thermal Science》 SCIE EI CAS CSCD 2015年第4期386-390,共5页
In this paper,CPCM(Composite Phase Change Material)was manufactured with metal foam matrix used as filling material.The temperature curves were obtained by experiment.The performance of heat transfer was analyzed.The ... In this paper,CPCM(Composite Phase Change Material)was manufactured with metal foam matrix used as filling material.The temperature curves were obtained by experiment.The performance of heat transfer was analyzed.The experimental results show that metal foam matrix can improve temperature uniformity in phase change thermal storage material and enhance heat conduction ability.The thermal performance of CPCM is significantly improved.The efficiency of temperature control can be obviously improved by adding metal foam in phase change material.CPCM is in solid-liquid two-phase region when temperature is close to phase change point of paraffin.An approximate plateau appears.The plateau can be considered as the temperature control zone of CPCM.Heat can be transferred fiom hot source and be uniformly spread in thermal storage material by using metal foam matrix since thermal storage material has the advantage of strong heat storage capacity and disadvantage of poor heat conduction ability.Natural convection promotes the melting of solid-liquid phase change material.Good thermal conductivity of foam metal accelerates heat conduction of solid-liquid phase change material.The interior temperature difference decreases and the whole temperature becomes more uniform.For the same porosity with a metal foam,melting time of solid-liquid phase change material decreases.Heat conduction is enhanced and natural convection is suppressed when pore size of metal foam is smaller.The thermal storage time decreases and heat absorption rate increases when the pore size of metal foam reduces.The research results can be used to guide fabricating the CPCM. 展开更多
关键词 复合相变材料 金属泡沫 热分析 相变储热材料 固液两相区 温度均匀性 温度曲线 泡沫金属
原文传递
Efficient Preconstruction of Three‑Dimensional Graphene Networks for Thermally Conductive Polymer Composites 被引量:6
16
作者 Hao‑Yu Zhao Ming‑Yuan Yu +3 位作者 Ji Liu Xiaofeng Li Peng Min Zhong‑Zhen Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第8期72-111,共40页
Electronic devices generate heat during operation and require efficient thermal management to extend the lifetime and prevent performance degradation.Featured by its exceptional thermal conductivity,graphene is an ide... Electronic devices generate heat during operation and require efficient thermal management to extend the lifetime and prevent performance degradation.Featured by its exceptional thermal conductivity,graphene is an ideal functional filler for fabricating thermally conductive polymer composites to provide efficient thermal management.Extensive studies have been focusing on constructing graphene networks in polymer composites to achieve high thermal conductivities.Compared with conventional composite fabrications by directly mixing graphene with polymers,preconstruction of three-dimensional graphene networks followed by backfilling polymers represents a promising way to produce composites with higher performances,enabling high manufacturing flexibility and controllability.In this review,we first summarize the factors that affect thermal conductivity of graphene composites and strategies for fabricating highly thermally conductive graphene/polymer composites.Subsequently,we give the reasoning behind using preconstructed three-dimensional graphene networks for fabricating thermally conductive polymer composites and highlight their potential applications.Finally,our insight into the existing bottlenecks and opportunities is provided for developing preconstructed porous architectures of graphene and their thermally conductive composites. 展开更多
关键词 Graphene networks Thermal conductivity Thermal interface materials phase change composites Anisotropic aerogels
下载PDF
石蜡/碱改性硅藻土/膨胀石墨复合相变储热材料的制备及性能
17
作者 陈丽梅 赵梦菲 +4 位作者 陈琳 李丁 李巍 韩维野 王鸿斌 《无机化学学报》 SCIE CAS CSCD 北大核心 2024年第3期533-543,共11页
通过碱处理,优化了硅藻土(DIA)的孔隙结构,提高了孔隙率,增加了石蜡(paraffin)负载量。通过直接浸渍法制备了新型性状稳定的石蜡/碱改性DIA/膨胀石墨(EG-alDIAP)复合材料,并研究了其结构与性能的关系。结果表明,复合相变材料的石蜡负载... 通过碱处理,优化了硅藻土(DIA)的孔隙结构,提高了孔隙率,增加了石蜡(paraffin)负载量。通过直接浸渍法制备了新型性状稳定的石蜡/碱改性DIA/膨胀石墨(EG-alDIAP)复合材料,并研究了其结构与性能的关系。结果表明,复合相变材料的石蜡负载量从47.4%提高到了61.1%,进而提高了复合材料的储热性能;向改性DIA中添加膨胀石墨(EG)提高了复合材料的传热能力,添加质量分数10%EG时导热系数提高了113%(从0.276 W·m^(-1)·K^(-1)提高到了0.589 W·m^(-1)·K^(-1))。随着EG含量的升高,复合相变材料的相变潜热有所增加,但化学相容性、稳定性等无明显变化。含10%EG的石蜡/碱改性DIA复合材料具有可靠的储能性能、良好的温度调节性能和蓄放热能力。 展开更多
关键词 复合相变材料 石蜡 碱改性硅藻土 膨胀石墨
下载PDF
PEG4000/聚苯胺形状稳定复合相变材料的制备及其储热性能
18
作者 李敏 任士兵 +4 位作者 刘星照 陶璋 杨海彬 黄智 杨穆 《工程科学学报》 EI CSCD 北大核心 2024年第3期458-469,共12页
以聚苯胺气凝胶(PANI)为支撑骨架,聚乙二醇4000(PEG4000)为相变材料,银纳米线(AgNWs)为导热增强填料,采用低温氧化聚合法和真空浸渍法制备得到具有良好形状和循环稳定性的定形相变复合材料PEG4000@Ag/PANI.聚苯胺气凝胶的高孔隙率及PEG4... 以聚苯胺气凝胶(PANI)为支撑骨架,聚乙二醇4000(PEG4000)为相变材料,银纳米线(AgNWs)为导热增强填料,采用低温氧化聚合法和真空浸渍法制备得到具有良好形状和循环稳定性的定形相变复合材料PEG4000@Ag/PANI.聚苯胺气凝胶的高孔隙率及PEG4000与基体材料间的氢键作用和毛细作用,使得相变复合材料的最高负载率能够达到94.17%(熔融焓为165.17 J·g^(–1),凝固焓为152.77 J·g^(–1));加入AgNWs与PANI气凝胶共同搭建导热通路,提高了相变复合材料的导热性能(热导率最高为0.45 W·m^(–1)·K^(–1),比纯PEG4000提高80%);借助Ag NWs和聚苯胺优异的光吸收能力,相变复合材料的光–热转换效率达到90.61%.高储能密度、高光热转换能力和高热导率定形相变复合材料的成功制备为新型相变复合材料的合成提供了新思路,为太阳能光–热转换和储能应用提供了新材料,实现对太阳能的高效利用. 展开更多
关键词 聚苯胺气凝胶 定形相变复合材料 热导率 银纳米线 光热转换
下载PDF
LA-MA/陶粒相变储能材料热物性试验与分析
19
作者 张经双 秦瑞汉 缪鹏 《安徽理工大学学报(自然科学版)》 CAS 2024年第1期46-52,共7页
目的为拓宽相变材料在建筑节能领域中的应用,针对单一相变材料难以满足建筑热工性能要求的问题。方法以十二醇(LA)和十四酸(MA)为复合相变材料、页岩陶粒为载体,制备一种新型相变储能骨料。采用差式扫描量热仪(DSC)、傅里叶红外光谱仪(F... 目的为拓宽相变材料在建筑节能领域中的应用,针对单一相变材料难以满足建筑热工性能要求的问题。方法以十二醇(LA)和十四酸(MA)为复合相变材料、页岩陶粒为载体,制备一种新型相变储能骨料。采用差式扫描量热仪(DSC)、傅里叶红外光谱仪(FT-IR)、热重分析仪(TG)等对相变储能骨料的热物性和不同封装方式下的相变循环稳定性进行分析。结果经复合后相变材料、相变储能骨料的相变温度和相变潜热分别为22.08℃、22.92℃和182.1J/g、22.33J/g。LA-MA复合相变材料和页岩陶粒之间仅存在物理嵌合关系,相变储能骨料在70℃以下未发生物质分解。苯丙乳液封装相变储能骨料在5℃~45℃范围内经历100次相变循环后,质量损失率为0.80%。结论LA-MA/陶粒相变储能骨料的热物性满足建筑节能要求,化学结构稳定,热稳定性好,具有优异的循环耐久性,可应用到建筑围护结构中,研究结论对相变储能材料在建筑围护结构中的应用具有参考价值。 展开更多
关键词 复合相变材料 相变储能骨料 热物性 相变循环稳定性
下载PDF
柔性复合相变材料用于锂离子电池热管理的效果模拟研究 被引量:1
20
作者 耿银良 李建立 张云芳 《化工新型材料》 CAS CSCD 北大核心 2024年第3期187-192,共6页
以石蜡为相变材料、苯乙烯-乙烯/丁烯-苯乙烯嵌段共聚物为弹性载体、石墨烯为导热增强剂,制备了一种柔性复合相变材料(FCPCM),对FCPCM用于锂离子电池热管理的效果进行了模拟研究。结果表明:与空气自然对流热管理手段相比,将FCPCM贴敷于... 以石蜡为相变材料、苯乙烯-乙烯/丁烯-苯乙烯嵌段共聚物为弹性载体、石墨烯为导热增强剂,制备了一种柔性复合相变材料(FCPCM),对FCPCM用于锂离子电池热管理的效果进行了模拟研究。结果表明:与空气自然对流热管理手段相比,将FCPCM贴敷于锂离子电池表面进行被动式控温,可使锂离子电池表面中心最高温度至少降低1.89℃;在一定范围内增大FCPCM的导热系数和厚度,可减小电池表面中心最高温度和电池厚度方向的温差;FCPCM与锂离子电池之间的接触热阻也明显影响热管理效果,随着接触热阻增大,热管理效果下降。 展开更多
关键词 柔性复合相变材料 锂离子电池热管理 放电倍率 参数化模拟
下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部