期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
Paraffin/SiC as a Novel Composite Phase-Change Material for a Lithium-Ion Battery Thermal Management System 被引量:2
1
作者 Wei Kang Yiqiang Zhao +3 位作者 Xueheng Jia Lin Hao Leping Dang Hongyuan Wei 《Transactions of Tianjin University》 EI CAS 2021年第1期55-63,共9页
A lithium-ion battery thermal management system has always been a hot spot in the battery industry. In this study, a novel high-thermal-conductivity composite phase-change material(CPCM) made by paraffin wax and silic... A lithium-ion battery thermal management system has always been a hot spot in the battery industry. In this study, a novel high-thermal-conductivity composite phase-change material(CPCM) made by paraffin wax and silicon was adopted to facilitate heat transfer. Moreover, high resistance or even insulation of CPCM is capable of preventing short circuits between the cells. The heat transfer mechanism of CPCMs was determined under a scanning electron microscope. A thermogravimetric analyzer was employed to determine the thermal stability. A diff erential scanning calorimeter was used to explore the thermophysical properties of the composite samples. By comparing the results of the experiment, it was reported that under the silicon carbide content of 5%, the parameters were better than others. The phase-change enthalpy of CPCM was 199.4 J/g, the leakage rate of liquid was 4.6%, and the melting point was 53.6℃. To verify the practicality of CPCM, a three-dimensional layered battery pack model was built in the COMSOL Multiphysics software. By simulating the thermal runaway inside the battery packs of various materials, it was reported that the addition of CPCM significantly narrowed the temperature range of the battery pack from 300–370 to 303–304 K. Therefore, CPCM can eff ectively increase the rate of heat transfer to prevent the chain of thermal runaway reactions. It also enables the battery pack to run at a stable temperature. 展开更多
关键词 Lithium-ion battery phase-change material PARAFFIN Silicon carbide Thermal runaway
下载PDF
Universal memory based on phase-change materials:From phase-change random access memory to optoelectronic hybrid storage 被引量:1
2
作者 刘波 魏涛 +5 位作者 胡敬 李宛飞 凌云 刘倩倩 程淼 宋志棠 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第5期128-149,共22页
The era of information explosion is coming and information need to be continuously stored and randomly accessed over long-term periods,which constitute an insurmountable challenge for existing data centers.At present,... The era of information explosion is coming and information need to be continuously stored and randomly accessed over long-term periods,which constitute an insurmountable challenge for existing data centers.At present,computing devices use the von Neumann architecture with separate computing and memory units,which exposes the shortcomings of“memory bottleneck”.Nonvolatile memristor can realize data storage and in-memory computing at the same time and promises to overcome this bottleneck.Phase-change random access memory(PCRAM)is called one of the best solutions for next generation non-volatile memory.Due to its high speed,good data retention,high density,low power consumption,PCRAM has the broad commercial prospects in the in-memory computing application.In this review,the research progress of phase-change materials and device structures for PCRAM,as well as the most critical performances for a universal memory,such as speed,capacity,and power consumption,are reviewed.By comparing the advantages and disadvantages of phase-change optical disk and PCRAM,a new concept of optoelectronic hybrid storage based on phase-change material is proposed.Furthermore,its feasibility to replace existing memory technologies as a universal memory is also discussed as well. 展开更多
关键词 universal memory optoelectronic hybrid storage phase-change material phase-change random access memory
下载PDF
An artificial synapse by superlattice-like phase-change material for low-power brain-inspired computing 被引量:1
3
作者 胡庆 董博义 +5 位作者 王伦 黄恩铭 童浩 何毓辉 徐明 缪向水 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第7期49-54,共6页
Phase-change material(PCM)is generating widespread interest as a new candidate for artificial synapses in bioinspired computer systems.However,the amorphization process of PCM devices tends to be abrupt,unlike contin... Phase-change material(PCM)is generating widespread interest as a new candidate for artificial synapses in bioinspired computer systems.However,the amorphization process of PCM devices tends to be abrupt,unlike continuous synaptic depression.The relatively large power consumption and poor analog behavior of PCM devices greatly limit their applications.Here,we fabricate a GeTe/Sb2Te3 superlattice-like PCM device which allows a progressive RESET process.Our devices feature low-power consumption operation and potential high-density integration,which can effectively simulate biological synaptic characteristics.The programming energy can be further reduced by properly selecting the resistance range and operating method.The fabricated devices are implemented in both artificial neural networks(ANN)and convolutional neural network(CNN)simulations,demonstrating high accuracy in brain-like pattern recognition. 展开更多
关键词 superlattice-like phase-change material artificial synapse low-power consumption
下载PDF
Design of broadband achromatic metasurface device based on phase-change material Ge_(2)Sb_(2)Te_(5)
4
作者 吕淑媛 李新慧 +1 位作者 罗文峰 贾洁 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第12期259-265,共7页
Based on the phase-change material Ge_(2)Sb_(2)Te_(5)(GST),achromatic metasurface optical device in the longer-infrared wavelength is designed.With the combination of the linear phase gradient GST nanopillar and the a... Based on the phase-change material Ge_(2)Sb_(2)Te_(5)(GST),achromatic metasurface optical device in the longer-infrared wavelength is designed.With the combination of the linear phase gradient GST nanopillar and the adjustment of the crystalline fraction m value of GST,the polarization insensitive achromic metalenses and beam deflector metasurface within the longer-infrared wavelength 9.5μm to 13μm are realized.The design results show that the achromatic metalenses can be focused on the same focal plane within the working waveband.The simulation calculation results show that the fullwidth at half-maximum(FWHM)of the focusing spot reaches the diffraction limit at each wavelength.In addition,the same method is also used to design a broadband achromatic beam deflector metasurface with the same deflection angle of 19°.The method proposed in this article not only provides new ideas for the design of achromatic metasurfaces,but also provides new possibilities for the integration of optical imaging,optical coding and other related optical systems. 展开更多
关键词 metasurface optical device phase-change material ACHROMATIC
下载PDF
Melting and Solidification Heat Transfer Characteristics of a Phase-Change Material in a Latent Heat Storage Vessel: Effects of a Perforated Partition Plate and Metal Fiber
5
作者 Than Tun Naing Akihiko Horibe +1 位作者 Naoto Haruki Yutaka Yamada 《Journal of Power and Energy Engineering》 2017年第8期13-29,共17页
Today, latent heat storage technology has advanced to allow reuse of waste heat in the middle-temperature range. This paper describes an approach to develop a latent heat storage system using middle-temperature waste ... Today, latent heat storage technology has advanced to allow reuse of waste heat in the middle-temperature range. This paper describes an approach to develop a latent heat storage system using middle-temperature waste heat (~100oC - 200oC) from factories. Direct contact melting and solidification behavior between a heat-transfer fluid (oil) and a latent heat storage material mixture were observed. The mixture consisted of mannitol and erythritol (Cm = 70 mass %, Ce = 30 mass %) as a phase-change material (PCM). The weight of the PCM was 3.0 kg and the flow rate of the oil, foil, was 1.0, 1.5, or 2.0 kg/min. To decrease the solidified height of the PCM mixture during the solidification process, a perforated partition plate was installed in the PCM region in the heat storage vessel. PCM coated oil droplets were broken by the perforated partition plate, preventing the solidified height of the PCM from increasing. The solidification and melting processes were repeated using metal fiber. It was found that installing the metal fiber was more effective than installing the perforated partition plate to prevent the flow out problem of the PCM. 展开更多
关键词 Heat Storage VESSEL SOLIDIFIED Height phase-change material (PCM) Mixture Perforated PARTITION PLATE Metal Fiber
下载PDF
Experimental evaluation of factors affecting performance of concentrating photovoltaic/thermal system integrated with phase‐change materials(PV/T‐CPCM)
6
作者 Zhaoyang Luan Lanlan Zhang +2 位作者 Xiangfei Kong Han Li Man Fan 《Energy Storage and Saving》 2024年第1期30-41,共12页
The photovoltaic/thermal(PV/T)system is a promising option for countering energy shortages.To improve the performance of PV/T systems,compound parabolic concentrators(CPCs)and phase-change materials(PCMs)were jointly ... The photovoltaic/thermal(PV/T)system is a promising option for countering energy shortages.To improve the performance of PV/T systems,compound parabolic concentrators(CPCs)and phase-change materials(PCMs)were jointly applied to construct a concentrating photovoltaic/thermal system integrated with phase-change materials(PV/T-CPCM).An open-air environment is used to analyze the effects of different parameters and the intermittent operation strategy on the system performance.The results indicate that the short-circuit current and open-circuit voltage are positively correlated with the solar irradiance,but the open-circuit voltage is negatively correlated with the temperature of the PV modules.When the solar irradiance is 500 W⋅m^(−2) and the temperature of the PV modules is 27.5℃,the short-circuit current and open-circuit voltage are 1.0 A and 44.5 V,respectively.Higher solar irradiance results in higher thermal power,whereas the thermal efficiency is under lower solar irradiance(136.2-167.1 W⋅m^(−2) is twice under higher solar irradiance(272.3-455.7 W⋅m^(−2))).In addition,a higher mass flow rate corresponds to a better cooling effect and greater pump energy consumption.When the mass flow rate increases from 0.01 to 0.02 kg⋅s^(-1),the temperature difference between the inlet and outlet decreases by 1.8℃,and the primary energy-saving efficiency decreases by 0.53%.The intermittent operation of a water pump can reduce the energy consumption of the system,and the combination of liquid cooling with PCMs provides better thermal regulation and energy-saving effects under various conditions. 展开更多
关键词 Compound parabolic concentrator Factor analysis Open-air experiment phase-change materials Photovoltaic/thermal system
原文传递
Heat Transfer of Heat Sinking Vest with Phase-change Material 被引量:5
7
作者 QIU Yifen JIANG Nan +2 位作者 WU Wei ZHANG Guangwei XIAO Baoliang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2011年第6期720-725,共6页
To investigate thermal protection effects of heat sinking vest with phase-change material (PCM), human thermoregulation model is introduced, and a thermal mathematical model of heat transfer with phase change has be... To investigate thermal protection effects of heat sinking vest with phase-change material (PCM), human thermoregulation model is introduced, and a thermal mathematical model of heat transfer with phase change has been developed with the enthalpy method. The uniform energy equation is constructed for the whole domain, and the equation is implicitly discreted by control volume and finite difference method. Then the enthalpy in each node is solved by using chasing method to calculate the tridiagonal equations, and the inner surface temperature of PCM could be obtained. According to the human thermoregulation model of heat sinking vest, the dynamic temperature distribution and sweat of the body are solved. Calculation results indicate that the change of core temperature matches the experimental result, and the sweat difference is small. This thermal mathematical model of heat transfer with phase change is credible and appropriate. Through comparing the dynamic temperature distribution and sweat of the body wearing heat sinking vest to results of the body not wearing this clothing, it is evident that wearing heat sinking vest can reduce the body heat load significantly. 展开更多
关键词 thermal protection heat sinking vest heat transfer phase-change material enthalpy method
原文传递
Study on the Heat Conduction of Phase-Change Material Microcapsules 被引量:3
8
作者 Gangtao Zhao Xiaohui Xu +2 位作者 Lin Qiu Xinghua Zheng Dawei Tang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2013年第3期257-260,共4页
The 3ω approach was used to measure the effective thermal conductivity of phase-change material microcapsules (PCMMs) based on urea formaldehyde and sliced paraffin. The effective thermal conductivities of PCMMs with... The 3ω approach was used to measure the effective thermal conductivity of phase-change material microcapsules (PCMMs) based on urea formaldehyde and sliced paraffin. The effective thermal conductivities of PCMMs with different densities were measured within the phase-change temperature range. The relationships between effective thermal conductivity, density and temperature were analysed. The effective thermal conductivity reached peak values within the phase-change temperature range and the temperature peak value was consistent with the peak value of the phase-change temperature. The effective thermal conductivity increased with increasing density due to the decreased porosity of samples and their increased solid-phase conduction. 展开更多
关键词 3ω-method EFFECTIVE THERMAL conductivity phase-change material MICROCAPSULES
原文传递
Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials 被引量:5
9
作者 Ximin Tian Zhi-Yuan Li 《Photonics Research》 SCIE EI 2016年第4期146-152,共7页
We numerically demonstrate a novel ultra-broadband polarization-independent metamaterial perfect absorber in the visible and near-infrared region involving the phase-change material Ge_2Sb_2Te_5(GST).The novel perfect... We numerically demonstrate a novel ultra-broadband polarization-independent metamaterial perfect absorber in the visible and near-infrared region involving the phase-change material Ge_2Sb_2Te_5(GST).The novel perfect absorber scheme consists of an array of high-index strong-absorbance GST square resonators separated from a continuous Au substrate by a low-index lossless dielectric layer(silica)and a high-index GST planar cavity.Three absorption peaks with the maximal absorbance up to 99.94% are achieved,owing to the excitation of plasmon-like dipolar or quadrupole resonances from the high-index GST resonators and cavity resonances generated by the GST planar cavity.The intensities and positions of the absorption peaks show strong dependence on structural parameters.A heat transfer model is used to investigate the temporal variation of temperature within the GST region.The results show that the temperature of amorphous GST can reach up to 433 K of the phase transition temperature from room temperature in just 0.37 ns with a relatively low incident light intensity of 1.11×10~8W∕m^2,due to the enhanced ultra-broadband light absorbance through strong plasmon resonances and cavity resonance in the absorber.The study suggests a feasible means to lower the power requirements for photonic devices based on a thermal phase change via engineering ultra-broadband light absorbers. 展开更多
关键词 MMPA Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials GST
原文传递
Tunable near-infrared plasmonic perfect absorber based on phase-change materials 被引量:5
10
作者 Yiguo Chen Xiong Li +2 位作者 Xiangang Luo Stefan AMaier Minghui Hong 《Photonics Research》 SCIE EI 2015年第3期54-57,共4页
A tunable plasmonic perfect absorber with a tuning range of 650 nm is realized by introducing a 20 nm thick phase-change material Ge2Sb2Te5 layer into the metal–dielectric–metal configuration.The absorption at the p... A tunable plasmonic perfect absorber with a tuning range of 650 nm is realized by introducing a 20 nm thick phase-change material Ge2Sb2Te5 layer into the metal–dielectric–metal configuration.The absorption at the plasmonic resonance is kept above 0.96 across the whole tuning range.In this work we study this extraordinary optical response numerically and reveal the geometric conditions which support this phenomenon.This work shows a promising route to achieve tunable plasmonic devices for multi-band optical modulation,communication,and thermal imaging. 展开更多
关键词 GST Tunable near-infrared plasmonic perfect absorber based on phase-change materials
原文传递
Fabrication and integration of photonic devices for phase-change memory and neuromorphic computing
11
作者 Wen Zhou Xueyang Shen +2 位作者 Xiaolong Yang Jiangjing Wang Wei Zhang 《International Journal of Extreme Manufacturing》 SCIE EI CAS 2024年第2期2-27,共26页
In the past decade,there has been tremendous progress in integrating chalcogenide phase-change materials(PCMs)on the silicon photonic platform for non-volatile memory to neuromorphic in-memory computing applications.I... In the past decade,there has been tremendous progress in integrating chalcogenide phase-change materials(PCMs)on the silicon photonic platform for non-volatile memory to neuromorphic in-memory computing applications.In particular,these non von Neumann computational elements and systems benefit from mass manufacturing of silicon photonic integrated circuits(PICs)on 8-inch wafers using a 130 nm complementary metal-oxide semiconductor line.Chip manufacturing based on deep-ultraviolet lithography and electron-beam lithography enables rapid prototyping of PICs,which can be integrated with high-quality PCMs based on the wafer-scale sputtering technique as a back-end-of-line process.In this article,we present an overview of recent advances in waveguide integrated PCM memory cells,functional devices,and neuromorphic systems,with an emphasis on fabrication and integration processes to attain state-of-the-art device performance.After a short overview of PCM based photonic devices,we discuss the materials properties of the functional layer as well as the progress on the light guiding layer,namely,the silicon and germanium waveguide platforms.Next,we discuss the cleanroom fabrication flow of waveguide devices integrated with thin films and nanowires,silicon waveguides and plasmonic microheaters for the electrothermal switching of PCMs and mixed-mode operation.Finally,the fabrication of photonic and photonic–electronic neuromorphic computing systems is reviewed.These systems consist of arrays of PCM memory elements for associative learning,matrix-vector multiplication,and pattern recognition.With large-scale integration,the neuromorphic photonic computing paradigm holds the promise to outperform digital electronic accelerators by taking the advantages of ultra-high bandwidth,high speed,and energy-efficient operation in running machine learning algorithms. 展开更多
关键词 nanofabrication silicon photonics phase-change materials non-volatile photonic memory neuromorphic photonic computing
下载PDF
Investigation of phase-change materials for interior temperature regulation in public transport
12
作者 Md Nahidul Islam Md Nahid Hossain Dewan HasanAhmed 《Clean Energy》 EI 2022年第1期178-192,共15页
Regulating the indoor temperature of public transport on hot sunny days is a prime concern,as both the external and internal heat sources play an active role in heat gain.Experimental studies have been carried out on ... Regulating the indoor temperature of public transport on hot sunny days is a prime concern,as both the external and internal heat sources play an active role in heat gain.Experimental studies have been carried out on a bus model using sodium sulphate decahydrate as a phase-change material(PCM)that is placed in between the ceiling and the roof.Studies are conducted on a sunny day and also for different cases of external(300-W surface heater)and internal(25-W light bulb)heat sources.The results show that PCM,in the presence of an external heat source,can help to keep the indoor temperature lower and delay the time period for increasing the temperature by absorbing heat during the phase change.On the other hand,the presence of the internal heat source contributes to a detrimental effect on the indoor temperature,which gradually increases with the elapse of time.With the combination of the external and internal heat sources,it is found that the internal heat source plays a dominating factor to raise the indoor temperature.It is revealed from the experimental results that a 12.7-mm single layer and a single PCM are not enough to counter the internal heat of 25 W unless the thickness of the PCM layer is increased to delay the increase in the indoor temperature.An additional PCM layer with a lower melting temperature could be placed at the inner portion of the ceiling to have effective thermal-energy storage by absorbing the substantial heat gain from the internal heat sources. 展开更多
关键词 latent heat sodium sulphate decahydrate phase-change material TRANSPORTATION thermal-energy storage
原文传递
Phase-change composite filled natural nanotubes in hydrogel promote wound healing under photothermally triggered drug release 被引量:2
13
作者 Jing-Jing Ye Long-Fei Li +9 位作者 Rui-Nan Hao Min Gong Tong Wang Jian Song Qing-Han Meng Na-Na Zhao Fu-Jian Xu Yuri Lvov Li-Qun Zhang Jia-Jia Xue 《Bioactive Materials》 SCIE CSCD 2023年第3期284-298,共15页
It is of great importance to treat a bacterial-infected wound by a smart dressing capable of delivering antibiotics in a smart manner without causing drug resistance.The construction of smart release nanocontainers re... It is of great importance to treat a bacterial-infected wound by a smart dressing capable of delivering antibiotics in a smart manner without causing drug resistance.The construction of smart release nanocontainers responsive to near-infrared(NIR)laser irradiation in an on-demand and stepwise way is a promising strategy for avoiding the emergence of multidrug-resistant bacteria.Here,we develop a hydrogel composite made of alginate and nanotubes with an efficient NIR-triggered release of rifampicin and outstanding antibacterial ability.This composite hydrogel is prepared through co-encapsulating antibacterial drug(rifampicin),NIR-absorbing dye(indocyanine green),and phase-change materials(a eutectic mixture of fatty acids)into halloysite nanotubes,followed by incorporation into alginate hydrogels,allowing the in-situ gelation at room temperature and maintaining the integrity of drug-loaded nanotubes.Among them,the eutectic mixture with a melting point of 39℃ serves as the biocompatible phase-change material to facilitate the NIR-triggered drug release.The resultant phase-change material gated-nanotubes exhibit a prominent photothermal efficiency with multistep drug release under laser irradiation.In an in vitro assay,composite hydrogel provides good antibacterial potency against Staphylococcus aureus,one of the most prevalent microorganisms of dangerous gas gangrene.A bacterial-infected rat full-thickness wound model demonstrates that the NIR-responsive composite hydrogel inhibits the bacteria colonization and suppresses the inflammatory response caused by bacteria,promoting angiogenesis and collagen deposition to accelerate wound regeneration.The NIR-responsive composite hydrogel has a great po-tential as an antibacterial wound dressing functionalized with controlled multistep treatment of the infected sites. 展开更多
关键词 ANTI-BACTERIA Clay nanotubes Alginate hydrogel phase-change material NIR-Triggered drug release Infected wound healing
原文传递
Electrically programmable phase-change photonic memory for optical neural networks with nanoseconds in situ training capability 被引量:1
14
作者 Maoliang Wei Junying Li +18 位作者 Zequn Chen Bo Tang Zhiqi Jia Peng Zhang Kunhao Lei Kai Xu Jianghong Wu Chuyu Zhong Hui Ma Yuting Ye Jialing Jian Chunlei Sun Ruonan Liu Ying Sun Wei.E.I.Sha Xiaoyong Hu Jianyi Yang Lan Li Hongtao Lin 《Advanced Photonics》 SCIE EI CAS CSCD 2023年第4期42-50,共9页
Optical neural networks (ONNs), enabling low latency and high parallel data processing withoutelectromagnetic interference, have become a viable player for fast and energy-efficient processing andcalculation to meet t... Optical neural networks (ONNs), enabling low latency and high parallel data processing withoutelectromagnetic interference, have become a viable player for fast and energy-efficient processing andcalculation to meet the increasing demand for hash rate. Photonic memories employing nonvolatile phase-change materials could achieve zero static power consumption, low thermal cross talk, large-scale, andhigh-energy-efficient photonic neural networks. Nevertheless, the switching speed and dynamic energyconsumption of phase-change material-based photonic memories make them inapplicable for in situ training.Here, by integrating a patch of phase change thin film with a PIN-diode-embedded microring resonator,a bifunctional photonic memory enabling both 5-bit storage and nanoseconds volatile modulation wasdemonstrated. For the first time, a concept is presented for electrically programmable phase-changematerial-driven photonic memory integrated with nanosecond modulation to allow fast in situ training and zerostatic power consumption data processing in ONNs. ONNs with an optical convolution kernel constructedby our photonic memory theoretically achieved an accuracy of predictions higher than 95% when testedby the MNIST handwritten digit database. This provides a feasible solution to constructing large-scalenonvolatile ONNs with high-speed in situ training capability. 展开更多
关键词 phase-change materials optical neural networks photonic memory silicon photonics reconfigurable photonics
原文传递
Preparation and phase change performance of Na_2HPO_4·12H_2O@poly(lactic acid) capsules for thermal energy storage 被引量:4
15
作者 Na Fan Lang Chen +3 位作者 Guoyong Xie Donghong Yin Chak-Tong Au Shuangfeng Yin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第3期695-700,共6页
Micro-encapsulated phase-change materials(micro PCMs) with Na_2 HPO_4·12 H_2 O encapsulated in poly(lactic acid)(PLA) shell were prepared by a solvent evaporation–precipitation method that involves the use of a ... Micro-encapsulated phase-change materials(micro PCMs) with Na_2 HPO_4·12 H_2 O encapsulated in poly(lactic acid)(PLA) shell were prepared by a solvent evaporation–precipitation method that involves the use of a coaxial needle. The effects of PLA concentration, stirring speed, injection rate of core and shell solutions, and polyvinyl alcohol(PVA) concentration on phase change properties were investigated. The thermal properties of microP CMs were characterized by differential scanning calorimetry(DSC). The capsules prepared under the optimal conditions are about 2 mm in diameter and show a latent heat of up to 122.2 J·g^(-1). 展开更多
关键词 Micro-encapsulated phase-change materials Na2HPO4·12H2O Coaxial needle Poly(lactic acid) Thermal energy storage CAPSULE
下载PDF
Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage 被引量:21
16
作者 Guoqiang Qi Jie Yang +5 位作者 Ruiying Bao Dongyun Xia Min Cao Wei Yang Mingbo Yang Dacheng Wei 《Nano Research》 SCIE EI CAS CSCD 2017年第3期802-813,共12页
Recently, graphene foam (GF) with a three-dimensional (3D) interconnected network produced by template-directed chemical vapor deposition (CVD) has been used to prepare composite phase-change materials (PCMs) ... Recently, graphene foam (GF) with a three-dimensional (3D) interconnected network produced by template-directed chemical vapor deposition (CVD) has been used to prepare composite phase-change materials (PCMs) with enhanced thermal conductivity. However, the pore size of GF is as large as hundreds of micrometers, resulting in a remarkable thermal resistance for heat transfer from the PCM inside the large pores to the GF strut walls. In this study, a novel 3D hierarchical GF (HGF) is obtained by filling the pores of GF with hollow graphene networks. The HGF is then used to prepare a paraffin wax (PW)-based composite PCM. The thermal conductivity of the PW/HGF composite PCM is 87% and 744% higher than that of the PW/GF composite PCM and pure PW, respectively. The PW/HGF composite PCM also exhibits better shape stability than the PW/GF composite PCM, negligible change in the phase-change temperature, a high thermal energy storage density that is 95% of pure PW, good thermal reliability, and chemical stability with cycling for 100 times. More importantly, PW/HGF composite PCM allows light-driven thermal energy storage with a high light-to- thermal energy conversion and storage efficiency, indicating its great potential for applications in solar-energy utilization and storage. 展开更多
关键词 phase-change materials hierarchical graphene foam light-to-thermal energyconversion thermal conductivity solar energy
原文传递
Preparation and characterization of capric-palmitic-stearic acid ternary eutectic mixture/expanded vermiculite composites as form-stabilized thermal energy storage materials 被引量:8
17
作者 Weiyi Zhang Xiaoguang Zhang +5 位作者 Zhaohui Huang Zhaoyu Yin Ruilong Wen Yaoting Huang Xiaowen Wu Xin Min 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第2期379-386,共8页
In this study, a composite of form-stable phase change materials (FSPCMs) were prepared by the incorporation of a eutectic mixture of capric-palmitic-stearic acid (CA-PA-SA) into expanded vermiculite (EV) via va... In this study, a composite of form-stable phase change materials (FSPCMs) were prepared by the incorporation of a eutectic mixture of capric-palmitic-stearic acid (CA-PA-SA) into expanded vermiculite (EV) via vacuum impregnation. In the composites, CA-PA-SA was utilized as a thermal energy storage material, and EV served as the supporting material. X-ray diffraction and Fourier transform infrared spectroscopy results demonstrated that CA-PA-SA and EV in the composites only undergo physical combination, not a chemical reaction. Scanning electron microscopy images indicated that CA-PA-SA is sufficiently absorbed in the expanded vermiculite porous network. According to differential scanning calorimetry results, the 70 wt% CA-PA-SA/EV sample melts at 19.3 ℃ with a latent heat of 117.6J/g and solidifies at 17.1 ℃ with a latent heat of 118.3J/g. Thermal cycling measurements indicated that FSPCMs exhibit adequate stability even after being subjected to 200 melting-freezing cycles. Furthermore, the thermal conductivity of the composites increased by approximately 49.58% with the addition of 5 wt% of Cu powder. Hence, CA-PA-SA/EV FSPCMs are effective latent heat thermal energy storage building materials. 展开更多
关键词 Capric-palmitic-stearic acid Expanded vermiculite Form-stable composite phase-change material (PCM)
原文传递
The Application of Microcapsule in the Infrared Stealth Camouflage 被引量:1
18
作者 ZHANG Juan LIU Bo-yu +1 位作者 LIU Bei WANG Yao 《青岛大学学报(自然科学版)》 CAS 2018年第B09期19-22,共4页
Infrared radiation is one of the main exposure symptoms of military targets. Infrared radiation differences between targets and backgrounds should be eliminated to the greatest extent to fight against all kinds of inf... Infrared radiation is one of the main exposure symptoms of military targets. Infrared radiation differences between targets and backgrounds should be eliminated to the greatest extent to fight against all kinds of infrared reconnaissance. In addition to the employment of the camouflage paint with low emissivity, reducing the surface temperature of targets is an urgent and difficult challenge. PCM (phase-change material) can be used to effectively solve this problem. The application of microcapsule in the infrared stealth materials greatly promotes the development of infrared stealth technology. 展开更多
关键词 PCM (phase-change material) MICROCAPSULE INFRARED STEALTH
下载PDF
Local structural characteristics of Sb_2Te_3 films studied by reverse Monte Carlo modeling
19
作者 Ling Zhang San-Nian Song +5 位作者 He Lin Yan Cheng Wei Xi Le Li Yan He Zhi-Tang Song 《Nuclear Science and Techniques》 SCIE CAS CSCD 2017年第3期91-96,共6页
Atomic configuration and connectivity of Sb_2Te_3 thin film are investigated using high-energy X-ray diffraction and reverse Monte Carlo simulation. Atomic model details of Sb_2Te_3 thin film are compared with liquid ... Atomic configuration and connectivity of Sb_2Te_3 thin film are investigated using high-energy X-ray diffraction and reverse Monte Carlo simulation. Atomic model details of Sb_2Te_3 thin film are compared with liquid and amorphous Sb_2Te_3 reported in other article. Simulations show that both Sb–Sb and Te–Te homopolar bonds are present in the models. In phase transition process,atomic configuration of the sample rearranges gradually through the forming of Sb–Te bonds and the breaking of Sb–Sb and Te–Te bonds. 展开更多
关键词 phase-change material REVERSE MONTE Carlo ATOMIC CONFIGURATION
下载PDF
Reactive ion etching of Si_2Sb_2Te_5 in CF_4/Ar plasma for a nonvolatile phase-change memory device
20
作者 李俊焘 刘波 +5 位作者 宋志棠 姚栋宁 冯高明 何敖东 彭程 封松林 《Journal of Semiconductors》 EI CAS CSCD 2013年第5期126-130,共5页
Phase change random access memory (PCRAM) is one of the best candidates for next generation non- volatile memory, and phase change SiESbETe5 material is expected to be a promising material for PCRAM. In the fabricat... Phase change random access memory (PCRAM) is one of the best candidates for next generation non- volatile memory, and phase change SiESbETe5 material is expected to be a promising material for PCRAM. In the fabrication of phase change random access memories, the etching process is a critical step. In this paper, the etching characteristics of Si2Sb2Te5 films were studied with a CF4/Ar gas mixture using a reactive ion etching system. We observed a monotonic decrease in etch rate with decreasing CF4 concentration, meanwhile, Ar concentration went up and smoother etched surfaces were obtained. It proves that CF4 determines the etch rate while Ar plays an im- portant role in defining the smoothness of the etched surface and sidewall edge acuity. Compared with GeESbETe5, it is found that Si2Sb2Te5 has a greater etch rate. Etching characteristics of Si2SbETe5 as a function of power and pressure were also studied. The smoothest surfaces and most vertical sidewalls were achieved using a CF4/Ar gas mixture ratio of 10/40, a background pressure of 40 mTorr, and power of 200 W. 展开更多
关键词 reactive ion etching phase-change material Si2Sb2Te5
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部