By computation and comparison of the critical spreading coefficient parameter, it was found that shaped fiber bundle is better for wetting. Liquid-air interface tension of liquid arising the shaped fiber bundle body i...By computation and comparison of the critical spreading coefficient parameter, it was found that shaped fiber bundle is better for wetting. Liquid-air interface tension of liquid arising the shaped fiber bundle body is considered as one critical factor besides liquid viscosity, inertia force and liquid-fiber interface tension. Experimental result simulation demonstrated that the liquid-air interface tension is correlated with the geometric size of the liquid arising in body, Φ0 (x) and which is affected by the cross sectional shape of fiber and the radius of single fiber. The shaped fiber bundle model is/ntroduced to/nvestigate liquid flow in fiber assembly. The model is generated based on a random function for stochastic forming of fibers in bundle and it is necessary to combine this fundamental model with physical explanation for investigation of liquid flow in fiber assembly.展开更多
A preliminary investigation of shape memory (SM) effects of SMPU (shape memory polyurethane) knitting fabric is presented in this paper. Three SMPU knitted fabrics series with different content of SMPU fibers: 100% SM...A preliminary investigation of shape memory (SM) effects of SMPU (shape memory polyurethane) knitting fabric is presented in this paper. Three SMPU knitted fabrics series with different content of SMPU fibers: 100% SMPU, 50% SMPU and 50% cotton, 16% SMPU and 84% cotton are designed and manufactured in our lab. Their shape memory behaviors at different temperatures are characterized in terms of bagging. Our experimental results showed that shape memory effect can be improved with increasing content of SMPU fibers. A comparison between Lycra and SMPU knitted fabrics was also made to validate the shape memory effects of SMPU knitted fabrics.展开更多
With the continuous development of technology and society, smart devices have filled people’s lives and become an indispensable part of people’s lives. At the same time, smart clothing has also been greatly develope...With the continuous development of technology and society, smart devices have filled people’s lives and become an indispensable part of people’s lives. At the same time, smart clothing has also been greatly developed. This article introduces several smart clothing materials, analyzes the current research status of smart clothing materials, and further discusses the applications of smart clothing materials in military, medical, intelligent decoration, and sports and leisure fields. Then the problems of smart clothing in safety, environmental protection, and industrial technology are analyzed, and the corresponding solutions to these problems are proposed, so as to provide reference and guidance for the future development of smart clothing in China. And the research shows that smart clothing will develop in the direction of fashion and diversification, function and comfort, safety and environmental protection, convenience and low cost in the future.展开更多
A new class of all-fiber beam shaping devices has been realized by inverse etching the end face of single mode and multimode fibers to form a concave cone tip. Concave tip fiber can convert a Gaussian beam profile to ...A new class of all-fiber beam shaping devices has been realized by inverse etching the end face of single mode and multimode fibers to form a concave cone tip. Concave tip fiber can convert a Gaussian beam profile to a flat top beam profile with a uniform intensity distribution. A flat top beam with intensity variation of approx. 5% and flat top diameter to spot diameter ratio of 67% has been achieved. This device can also change the beam shape from a Gaussian to a donut by moving the observation plane. A flat top multimode fiber beam delivery is attractive for applications which require high power and uniform intensity distribution. In single mode fiber, concave tips could be used to reduce the beam spot size diameter, enabling efficient light coupling from a single mode fiber to an integrated optical waveguide.展开更多
The orientation of suspended fibers in the turbulent contraction is strongly related to the contraction ratio,which in some cases may be detrimental to the actual production.Here for a certain contraction ratio,the co...The orientation of suspended fibers in the turbulent contraction is strongly related to the contraction ratio,which in some cases may be detrimental to the actual production.Here for a certain contraction ratio,the contraction geometry shape is optimized to obtain the desired fiber orientation.In view of the nonlinearity and the complexity of the turbulent flow equations,the parameterized shape curve,the dynamic mesh and a quasi-static assumption are used to model the contraction with the variable boundary and to search the optimal solution.Furthermore the Reynolds stress model and the fiber orientation distribution function are solved for various wall shapes.The fiber orientation alignment at the outlet is taken as the optimization objective.Finally the effect of the wall shape on the flow mechanism is discussed in detail.展开更多
Two-dimensional(2D) materials have emerged as attractive mediums for fabricating versatile optoelectronic devices. Recently, few-layer molybdenum disulfide(MoS2), as a shining 2D material, has been discovered to p...Two-dimensional(2D) materials have emerged as attractive mediums for fabricating versatile optoelectronic devices. Recently, few-layer molybdenum disulfide(MoS2), as a shining 2D material, has been discovered to possess both the saturable absorption effect and large nonlinear refractive index. Herein, taking advantage of the unique nonlinear optical properties of MoS2, we fabricated a highly nonlinear saturable absorption photonic device by depositing the few-layer MoS2 onto the microfiber. With the proposed MoS2 photonic device, apart from the conventional soliton patterns, the mode-locked pulses could be shaped into some new soliton patterns, namely,multiple soliton molecules, localized chaotic multipulses, and double-scale soliton clusters. Our findings indicate that the few-layer MoS2-deposited microfiber could operate as a promising highlynonlinear photonic device for the related nonlinear optics applications.展开更多
文摘By computation and comparison of the critical spreading coefficient parameter, it was found that shaped fiber bundle is better for wetting. Liquid-air interface tension of liquid arising the shaped fiber bundle body is considered as one critical factor besides liquid viscosity, inertia force and liquid-fiber interface tension. Experimental result simulation demonstrated that the liquid-air interface tension is correlated with the geometric size of the liquid arising in body, Φ0 (x) and which is affected by the cross sectional shape of fiber and the radius of single fiber. The shaped fiber bundle model is/ntroduced to/nvestigate liquid flow in fiber assembly. The model is generated based on a random function for stochastic forming of fibers in bundle and it is necessary to combine this fundamental model with physical explanation for investigation of liquid flow in fiber assembly.
基金Project support by the Study of Temperature-Sensitive Shape-Memory Polymers for Smart Textile Applications, Shape MemoryCenter of Hong Kong Polytechnic University, HK, China
文摘A preliminary investigation of shape memory (SM) effects of SMPU (shape memory polyurethane) knitting fabric is presented in this paper. Three SMPU knitted fabrics series with different content of SMPU fibers: 100% SMPU, 50% SMPU and 50% cotton, 16% SMPU and 84% cotton are designed and manufactured in our lab. Their shape memory behaviors at different temperatures are characterized in terms of bagging. Our experimental results showed that shape memory effect can be improved with increasing content of SMPU fibers. A comparison between Lycra and SMPU knitted fabrics was also made to validate the shape memory effects of SMPU knitted fabrics.
基金National Key Technology Research and Development Program of the Ministry of Science and Technology of China (No.2014BAE09B00)Tianjin Research Program of Application Foundation and Advanced Technology,China (No.16JCZDJC36400)。
文摘With the continuous development of technology and society, smart devices have filled people’s lives and become an indispensable part of people’s lives. At the same time, smart clothing has also been greatly developed. This article introduces several smart clothing materials, analyzes the current research status of smart clothing materials, and further discusses the applications of smart clothing materials in military, medical, intelligent decoration, and sports and leisure fields. Then the problems of smart clothing in safety, environmental protection, and industrial technology are analyzed, and the corresponding solutions to these problems are proposed, so as to provide reference and guidance for the future development of smart clothing in China. And the research shows that smart clothing will develop in the direction of fashion and diversification, function and comfort, safety and environmental protection, convenience and low cost in the future.
文摘A new class of all-fiber beam shaping devices has been realized by inverse etching the end face of single mode and multimode fibers to form a concave cone tip. Concave tip fiber can convert a Gaussian beam profile to a flat top beam profile with a uniform intensity distribution. A flat top beam with intensity variation of approx. 5% and flat top diameter to spot diameter ratio of 67% has been achieved. This device can also change the beam shape from a Gaussian to a donut by moving the observation plane. A flat top multimode fiber beam delivery is attractive for applications which require high power and uniform intensity distribution. In single mode fiber, concave tips could be used to reduce the beam spot size diameter, enabling efficient light coupling from a single mode fiber to an integrated optical waveguide.
基金supported by the National Natural Science Foundation of China(Grant No.11302110)the Public Project of Science and Technology Department of Zhejiang Province(Grant No.2015C31152)+1 种基金the Natural Science Foundation of Ningbo(Grant No.2014A610086)“Wang Weiming”Entrepreneurship Supporting Fund
文摘The orientation of suspended fibers in the turbulent contraction is strongly related to the contraction ratio,which in some cases may be detrimental to the actual production.Here for a certain contraction ratio,the contraction geometry shape is optimized to obtain the desired fiber orientation.In view of the nonlinearity and the complexity of the turbulent flow equations,the parameterized shape curve,the dynamic mesh and a quasi-static assumption are used to model the contraction with the variable boundary and to search the optimal solution.Furthermore the Reynolds stress model and the fiber orientation distribution function are solved for various wall shapes.The fiber orientation alignment at the outlet is taken as the optimization objective.Finally the effect of the wall shape on the flow mechanism is discussed in detail.
基金supported in part by the National Natural Science Foundation of China (Grant Nos. 11474108, 61378036, 61307058, 11304101, 11074078)the PhD Start-up Fund of Natural Science Foundation of Guangdong Province, China (Grant No. S2013040016320)+2 种基金the Scientific and Technological Innovation Project of Higher Education Institute, Guangdong, China (Grant No. 2013KJCX0051)the financial support from the Guangdong Natural Science Funds for Distinguished Young Scholarthe Zhujiang New-star Plan of Science & Technology in Guangzhou City (Grant No. 2014J2200008)
文摘Two-dimensional(2D) materials have emerged as attractive mediums for fabricating versatile optoelectronic devices. Recently, few-layer molybdenum disulfide(MoS2), as a shining 2D material, has been discovered to possess both the saturable absorption effect and large nonlinear refractive index. Herein, taking advantage of the unique nonlinear optical properties of MoS2, we fabricated a highly nonlinear saturable absorption photonic device by depositing the few-layer MoS2 onto the microfiber. With the proposed MoS2 photonic device, apart from the conventional soliton patterns, the mode-locked pulses could be shaped into some new soliton patterns, namely,multiple soliton molecules, localized chaotic multipulses, and double-scale soliton clusters. Our findings indicate that the few-layer MoS2-deposited microfiber could operate as a promising highlynonlinear photonic device for the related nonlinear optics applications.