期刊文献+
共找到1,729篇文章
< 1 2 87 >
每页显示 20 50 100
Shape Memory Polymer Composite Booms with Applications in Reel-Type Solar Arrays
1
作者 Hong Xiao Sijie Wu +4 位作者 Dongdong Xie Hongwei Guo Li Ma Yuxuan Wei Rongqiang Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第3期326-338,共13页
Solar arrays are the primary energy source for spacecraft.Although traditional rigid solar arrays improve power supply,the quality increases proportionally.Hence,it is difficult to satisfy the requirements of high-pow... Solar arrays are the primary energy source for spacecraft.Although traditional rigid solar arrays improve power supply,the quality increases proportionally.Hence,it is difficult to satisfy the requirements of high-power and low-cost space applications.In this study,a shape-memory polymer composite(SMPC)boom was designed,fabricated,and characterized for flexible reel-type solar arrays.The SMPC boom was fabricated from a smart material,a shape-memory polymer composite,whose mechanical properties were tested.Additionally,a mathematical model of the bending stiffness of the SMPC boom was developed,and the bending and buckling behaviors of the boom were further analyzed using the ABAQUS software.An SMPC boom was fabricated to demonstrate its shape memory characteristics,and the driving force of the booms with varying geometric parameters was investigated.We also designed and manufactured a reel-type solar array based on an SMPC boom and verified its self-deployment capability.The results indicated that the SMPC boom can be used as a deployable unit to roll out flexible solar arrays. 展开更多
关键词 shape memory polymer composite Reel-type solar array Deployable boom Bending behavior
下载PDF
Nonlinear dynamic characteristics and optimal control of a giant magnetostrictive film-shaped memory alloy composite plate subjected to in-plane stochastic excitation 被引量:2
2
作者 竺致文 张庆昕 许佳 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第8期165-171,共7页
The nonlinear dynamic characteristics and optimal control of a giant magnetostrictive film (GMF)-shaped memory alloy (SMA) composite plate subjected to in-plane stochastic excitation are studied. GMF is prepared b... The nonlinear dynamic characteristics and optimal control of a giant magnetostrictive film (GMF)-shaped memory alloy (SMA) composite plate subjected to in-plane stochastic excitation are studied. GMF is prepared based on an SMA plate, and combined into a GMF-SMA composite plate. The Van der Pol item is improved to explain the hysteretic phenomena of GMF and SMA, and the nonlinear dynamics model of a GMF-SMA composite cantilever plate subjected to in-plane stochastic excitation is developed. The stochastic stability of the system is analyzed, and the steady-state probability density function of the dynamic response of the system is obtained. The condition of stochastic Hopf bifurcation is discussed, the reliability function of the system is provided, and then the probability density of the first-passage time is given. Finally, the stochastic optimal control strategy is proposed by the stochastic dynamic programming method. Numerical simulation shows that the stability of the trivial solution varies with bifurcation parameters, and stochastic Hopf bifurcation appears in the process; the system's reliability is improved through stochastic optimal control, and the first- passage time is delayed. A GMF-SMA composite plate combines the advantages of GMF and SMA, and can reduce vibration through passive control and active control effectively. The results are helpful for the engineering applications of GMF-SMA composite plates. 展开更多
关键词 giant magnetostrictive film shape memory alloy composite cantilever plate stochastic Hopf bifurcation optimal control
下载PDF
Numerical simulations of stress wave propagation and attenuation at arc-shaped interface inlayered SiC/Al composite 被引量:1
3
作者 孙明燕 张朝晖 +2 位作者 杨瑞 王富耻 李树奎 《Journal of Beijing Institute of Technology》 EI CAS 2013年第4期557-562,共6页
The effects of interface shape on stress wave distribution and attenuation were investiga- ted using finite element method ( FEM ). The simulation results indicate that when the stress wave propagates from SiC ceram... The effects of interface shape on stress wave distribution and attenuation were investiga- ted using finite element method ( FEM ). The simulation results indicate that when the stress wave propagates from SiC ceramic to A1 alloy, the tensile stress decreases and the attenuation coefficient of the stress wave increases with increasing central angle of the concave interface between SiC and A1. But for the convex interface, the tensile stress increases and attenuation coefficient decreases with increasing central angle. As the stress wave propagates from A1 alloy to SiC ceramic, the atten- uation coefficient of stress wave decreases with increasing the central angle of the concave interface. For the convex interface, the attenuation coefficient increases with increasing central angle. 展开更多
关键词 SiC/A1 composite arc-shaped interface stress wave attenuation numerical simula-tion
下载PDF
INTEGRATION SHAPE AND SIZING OPTIMIZATION OF COMPOSITE WING STRUCTURE BASED ON RESPONSE SURFACE METHOD 被引量:7
4
作者 王伟 杨伟 常楠 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第2期94-100,共7页
An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitabl... An effective optimization method for the shape/sizing design of composite wing structures is presented with satisfying weight-cutting results. After decoupling, a kind of two-layer cycled optimization strategy suitable for these integrated shape/sizing optimization is obtained. The uniform design method is used to provide sample points, and approximation models for shape design variables. And the results of sizing optimization are construct- ed with the quadratic response surface method (QRSM). The complex method based on QRSM is used to opti- mize the shape design variables and the criteria method is adopted to optimize the sizing design variables. Compared with the conventional method, the proposed algorithm is more effective and feasible for solving complex composite optimization problems and has good efficiency in weight cutting. 展开更多
关键词 composite structures shape optimization WINGS sizing optimization response surface method
下载PDF
Online composite shape recognition based on relevance feedback
5
作者 王强 孙正兴 《Journal of Southeast University(English Edition)》 EI CAS 2005年第2期153-158,共6页
This paper describes a novel method of online composite shape recognition interms of the relevance feedback technology to capture a user's intentions incrementally, and adynamic user modeling method to adapt to va... This paper describes a novel method of online composite shape recognition interms of the relevance feedback technology to capture a user's intentions incrementally, and adynamic user modeling method to adapt to various users' styles. First, the relevance feedback isadapted to refine the recognition results and reduce the ambiguity incrementally based on theestablishment of a feature-based vector model of a user's sketches. Secondly, a dynamic usermodeling is introduced to model the user's sketching habits based on recording and analyzinghistorical information incrementally. A model-based matching strategy is also employed in the methodto recognize sketches dynamically. Experiments prove that the proposed method is both effective andefficient. 展开更多
关键词 sketchy-based user interface online composite shape recognition dynamicuser modeling relevance feedback
下载PDF
STUDY ON THE RESPONSE TO LOW-VELOCITY IMPACT OF A COMPOSITE PLATE IMPROVED BY SHAPE MEMORY ALLOY 被引量:2
6
作者 Ying Wu YongdongWu Yuanxun Wang Weifang Zhong 《Acta Mechanica Solida Sinica》 SCIE EI 2007年第4期357-362,共6页
Improvement from the pseudo-elastic effect of shape memory alloy (SMA) on the low-velocity impact (LVI) resistance of a composite plate is investigated by the finite element method (FEM). The stiffness matrix of... Improvement from the pseudo-elastic effect of shape memory alloy (SMA) on the low-velocity impact (LVI) resistance of a composite plate is investigated by the finite element method (FEM). The stiffness matrix of the dynamic finite element equation is established step by step and the martensite fraction is obtained at each time step. The direct Newmark integration method is employed in solving the dynamic finite element equation, while the impact contact force is determined using the modified Hertz's law. It is found that SMA can effectively improve the performance of a composite structure subjected to low-velocity impact. Numerical results show that the deflection of a SMA-hybrid composite plate has been reduced approximately by thirty percent when the volume fraction of the embedded SMA reaches 0.3. 展开更多
关键词 shape memory alloy composite plate low-velocity impact FEM
下载PDF
Martensitic Transformation of TiNi Shape Memory Alloy Fiber Reinforced Ni Matrix Composites 被引量:1
7
作者 LishanCUI FanLI +1 位作者 YaniunZHENG HuibinXU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第5期416-418,共3页
In this paper, a TiNi shape memory alloy fiber Ni matrix composite was fabricated by an electroplating method using TiNi alloy as the cathode and Ni as the anode. The constrained martensitic transformation behaviors o... In this paper, a TiNi shape memory alloy fiber Ni matrix composite was fabricated by an electroplating method using TiNi alloy as the cathode and Ni as the anode. The constrained martensitic transformation behaviors of the TiNi alloy were studied by differential scanning calorimeter (DSC), and the results showed that two endothermic peaks appear on the DSC heating curves and the reverse transformation temperatures increase with increasing prestrain levels. Moreover, comparing to the free transformation, the temperature window of the constrained reverse transformation is widely expanded due to the influence of recovery stress. 展开更多
关键词 shape memory alloys Martensitic transformation composite
下载PDF
SOLUTION OF DIFFERENT HOLES SHAPE BORDERS OF FIBRE REINFORCED COMPOSITE PLATES BY INTEGRAL EQUATIONS 被引量:3
8
作者 LI Cheng ZHENG Yanping CHEN Zhongzhong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第5期23-27,共5页
Accurate boundary conditions of composite material plates with different holes are founded to settle boundary condition problems of complex holes by conformal mapping method upon the nonhomogeneous anisotropic elastic... Accurate boundary conditions of composite material plates with different holes are founded to settle boundary condition problems of complex holes by conformal mapping method upon the nonhomogeneous anisotropic elastic and complex function theory. And then the two stress functions required were founded on Cauchy integral by boundary conditions. The final stress distributions of opening structure and the analytical solution on composite material plate with rectangle hole and wing manholes were achieved. The influences on hole-edge stress concentration factors are discussed under different loads and fiber direction cases, and then contrast calculates are carried through FEM. 展开更多
关键词 Fibre reinforced composite Accurate boundary conditions Mapping functions Complex hole shape Integral equations
下载PDF
Influence of thickness and projectile shape on penetration resistance of the compliant composite 被引量:1
9
作者 Vishwas Mahesh Sharnappa Joladarashi Satyabodh M.Kulkarni 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期245-256,共12页
The present study deals with development of conceptual proof for jute rubber based flexible composite block to completely arrest the projectile impacting the target at high velocity impact of 400 m/s through numerical... The present study deals with development of conceptual proof for jute rubber based flexible composite block to completely arrest the projectile impacting the target at high velocity impact of 400 m/s through numerical simulation approach using finite element(FE)method.The proposed flexible composite blocks of repeating jute/rubber/jute(JRJ)units are modelled with varying thickness from 30 mm to 120 mm in increments of 30 mm and impacted by flat(F),ogival(O)and hemispherical(HS)shaped projectiles.All the considered projectiles are impacted with proposed flexible composite blocks of different thicknesses and the penetration behaviour of the projectile in each case is studied.The penetration depth of the projectile in case of partially penetrated cases are considered and the effect of thickness and projectile shape on percentage of penetration depth is statistically analyzed using Taguchi’s design of experiments(DOE).Results reveal that the though proposed flexible composite block with thickness of 90 mm is just sufficient to arrest the complete penetration of the projectile,considering the safety issues,it is recommended to use the flexible composite with thickness of 120 mm.The nature of damage caused by the projectile in the flexible composite is also studied.Statistical studies show that thickness of the block plays a prominent role in determining the damage resistance of the flexible composite. 展开更多
关键词 Flexible composite blocks JUTE RUBBER High velocity Projectile shapes Thickness Damage resistance Penetration depth
下载PDF
Modeling of the Shape Forming of Composite Roll 被引量:2
10
作者 Chengsong CUI, Zhenyu LI, Fuyang CAO and Qingchun LI (School of Materials Science and Engineering, Harbin Institute of Technology, 150001, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第3期337-340,共4页
A shape modeling of spray formed composite roll, which is utilized to predict the shape and dimension of roll during spray forming process, is developed in this paper. The influences of the principal spray forming par... A shape modeling of spray formed composite roll, which is utilized to predict the shape and dimension of roll during spray forming process, is developed in this paper. The influences of the principal spray forming parameters, such as the spatial distribution of melt mass flux, spray distance, rotating and translating speeds of substrate bar etc. , on the geometry and dimension of spray formed product were investigated. 展开更多
关键词 Modeling of the shape Forming of composite Roll
下载PDF
Flexural behaviour of SFRRAC two-way composite slab with different shapes 被引量:1
11
作者 Luo Bin Huang Wei 《Journal of Southeast University(English Edition)》 EI CAS 2020年第4期414-424,共11页
To promote the application of green renewable materials in concrete composite slabs(CCSs)and study the flexural behavior of CCSs with different shapes,the bending performances of three CCSs with a SFRRAC base plate,on... To promote the application of green renewable materials in concrete composite slabs(CCSs)and study the flexural behavior of CCSs with different shapes,the bending performances of three CCSs with a SFRRAC base plate,one cast-in-site concrete slab of ordinary concrete and one CCS of ordinary concrete by steel bar truss(as recommended in the technical specification for precast concrete structures in Chinese)were compared through experiments.The carrying capacity,flexural behaviour and bi-directional mechanical properties of the specimens were systematically analyzed from the failure modes,load-deflection curves,load-bar strain curves,load-slip curves and crack distributions.Results show that the bending failure process of CCSs with a SFRRAC base plate is similar to that of the cast-in-site concrete slab of ordinary concrete and CCS of ordinary concrete by steel bar truss,as all of them went through the plastic phase,elastic plastic phase and failure phase with fully developed cracks and deflection.No sudden breakage or horizontal cracking of the connecting interface between the base plate and concrete topping was observed.The shape of the base plate has a major impact on the bearing capacity of the CCS with the SFRRAC base plate.When calculating the ultimate bearing capacity with the plastic yield line theory,the influence of the base plate shape on the plastic yield line position should be taken into account. 展开更多
关键词 concrete composite slab(CCS) shape steel bar truss bending performance ultimate bearing capacity
下载PDF
LOW VELOCITY RESPONSE CHARACTERISTICS OF COMPOSITE PLATE WITH EMBEDDED SHAPE MEMORY ALLOY 被引量:1
12
作者 Wu Yongdong Zhong Weifang Liang Yide 《Acta Mechanica Solida Sinica》 SCIE EI 2004年第3期251-257,共7页
This paper analyzes the characteristics of utilizing shape memory e?ect (SME) of shape memory alloy (SMA) in improving the low velocity impact resistance performance of com- posite plate by using ?nite element... This paper analyzes the characteristics of utilizing shape memory e?ect (SME) of shape memory alloy (SMA) in improving the low velocity impact resistance performance of com- posite plate by using ?nite element method. The constitutive relation for SMA hybrid composite plates is presented. The analytic model of ?nite element for SMA composite plate subjected to low velocity impact is established. The modi?ed Hertz’s contact law is used to determine the impact contact force. The computing procedures for solving the ?nite element equation using Newmark direct integration method are given. The numerical modelling results show that the SMA can e?ectively improve the low velocity impact resistance performance of composite plate. 展开更多
关键词 shape memory alloy (SMA) composite plate low velocity impact finite element method
下载PDF
Low Velocity Impact Response Analysis of Shape Memory Alloy Reinforced Composite Beam
13
作者 吴永东 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第3期70-73,共4页
The low velocity impact responses of shape memory alloy ( SMA ) reinforced composite beams were analyzed by employing the finite element method. The finite element dynamic equntion was solved by the Newmark direct i... The low velocity impact responses of shape memory alloy ( SMA ) reinforced composite beams were analyzed by employing the finite element method. The finite element dynamic equntion was solved by the Newmark direct integration method, the impact contact force was determined asing the Hertzian contact law, and the influence of SMA .fibers on stiffiwss matrix is studied. Numerical results show that the SMA fibers can effectively improve the low velocity impact response property of composite beam. 展开更多
关键词 shape memory alloy composite beam low velocity impact FEM
下载PDF
STUDY ON Ni_(25)Ti_(50)Cu_(25) SHAPE MEMORY PARTICLE/Al MATRIX COMPOSITE
14
作者 L.S.Cui M.Qi +2 位作者 P.Shi F.X.Chen D.Z.Yang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1996年第6期589-594,共6页
Ni_(25)Ti_(50)Cu_(25) shape memory particle/Al matrix composite was prepared by hot pressing and further extrusion.The Ni_(25)Ti_(50)Cu_(25) particles embeded in Al matrix still keep B19 and B19 structure,and have a g... Ni_(25)Ti_(50)Cu_(25) shape memory particle/Al matrix composite was prepared by hot pressing and further extrusion.The Ni_(25)Ti_(50)Cu_(25) particles embeded in Al matrix still keep B19 and B19 structure,and have a good thermal-elastic martensitic transition with 6K thermal hysteresis,the phase transition temperatures remaining constant during cycling. The scratching force of Ni_(25)Ti_(50)Cu_(25) particle is two times that of Al matrix,When the scratching force is larger than 4.2N, the Ni_(25)Ti_(50)Cu_(25) particle is separated from Al matrix. 展开更多
关键词 Ni_(25)Ti_(50)Cu_(25) shape memory particle Al matrix composite thermal-elastic martensitic transformation.
下载PDF
Anchorage Performance and Interfacial Mechanics Transfer Characteristics of a Composite Anchor Bolt with Different Surface Shape
15
作者 Jianwei Yue Anquan Xu +2 位作者 Tingting Yue Da Song Kai Zheng 《Open Journal of Civil Engineering》 2016年第2期217-224,共8页
To solve the deficiency of steel anchor blot in corrosion resistance and flaw of GFRP anchor bolt in fracture resistance, our research group develops a new composite anchor bolt made of steel strands wrapped up with c... To solve the deficiency of steel anchor blot in corrosion resistance and flaw of GFRP anchor bolt in fracture resistance, our research group develops a new composite anchor bolt made of steel strands wrapped up with compound fiber resin. To improve the cohesion performance of the composite anchor bolt, pull-out tests of different composite anchor bolts with different groove intervals and depths were made and analyzed. The results show that the pulling resistance of the composite anchor bolt increases with the increase of groove interval and depth, but groove interval and depth have optimal value. Based on elastic mechanics, the cohesion between anchor bolts and anchor bodies and its distribution characteristics caused by axial tension are analyzed and cohesion formula is obtained. By contrast, the experimental result is consistent with the theoretical analysis. Therefore, the surficial change of anchor colts could influence the performance of the composite anchor bolt. The cohesion force and anchorage performance can be improved by changing the surface of anchor bolts. Research results show that the new composite anchor bolt is high-performance material in the civil engineering. 展开更多
关键词 composite Anchor Bolt Pullout Test Surficial shape COHESION
下载PDF
Characterisation of wear particles from biomedical carbon/carbon composites with different preforms in hip joint simulator 被引量:4
16
作者 张磊磊 李贺军 +5 位作者 张守阳 卢锦花 张雨雷 赵雪妮 谷彩阁 曾燮榕 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2562-2568,共7页
A hip joint simulator was employed to predict the clinical wear behaviour of carbon/carbon (C/C) composites with needled carbon cloth preform and carbon felt preform. Wear particles generated from the two kinds of C... A hip joint simulator was employed to predict the clinical wear behaviour of carbon/carbon (C/C) composites with needled carbon cloth preform and carbon felt preform. Wear particles generated from the two kinds of C/C composites were isolated and characterised by the size distribution and morphology. The evolvement of wear particles in the hip joint simulator was proposed. The results show that the wear particles from two kinds of C/C composites have a size ranging from submicron to tens of micrometers. The wear particles have various morphologies including broken fiber, fragment fiber, slice pyrolytic carbon and spherical pyrolytic carbon. C/C composites with needled carbon cloth preforms have larger size range and more broken fiber particles and slice pyrolytic carbon particles in comparison with C/C composites with carbon felt preforms. The evolvement of pyrolytic carbon particles is caused by surface regularization, whereas, the evolvement of carbon fiber particles is related to stress direction in the hip joint simulator. 展开更多
关键词 carbon/carbon composites particle shape BIO-TRIBOLOGY hip joint
下载PDF
Analysis on the Composition and Structure of Branches of Two Kinds of Tree Shapes in Korla Fragrant Pear 被引量:2
17
作者 成小龙 廖康 +4 位作者 李楠 赵世荣 孙慧瑛 曼苏尔.那斯尔 刘娟 《Agricultural Science & Technology》 CAS 2013年第7期954-958,共5页
ObjectiveThe thesis aims at investigating the distribution and structural characteristics of various branches in canopy of Korla fragrant pear. MethodStatistic work and analysis were conducted on the numbers and distr... ObjectiveThe thesis aims at investigating the distribution and structural characteristics of various branches in canopy of Korla fragrant pear. MethodStatistic work and analysis were conducted on the numbers and distribution characteristics of various branches in each cubic lattice by using the canopy cellular method. ResultThe results showed that: The total number of scaffold branches of evacuation layered tree shape was 97, which mainly distributed in the lower layer and middle part of the canopy; the total number of scaffold branches of open-center tree shape was 94, which mainly distributed in the lower layer and middle part of the canopy. The total number of annual branches of evacuation layered tree shape was 3 920, which mainly distributed in the middle layer and outer part of the canopy; and the total number of annual branches of the open-center tree shape was 3 183, which mainly distributed in middle layer and outer part of the canopy. The total number of perennial branches of evacuation layered tree shape was 2 184, which mainly distributed in lower layer and outer part of the canopy; the total number of perennial branches of open-center tree shape was 1 444, which mainly distributed in middle layer and outer part of the canopy. ConclusionThe total number and the distribution positions of scaffold branches in the canopy of each tree shape were basically the same. The total numbers of annual branches of the two kinds of tree shapes were different, but the distribution positions were basically the same. The total numbers and the distribution positions of perennial branches in the canopy of the two kinds of tree shapes were different. 展开更多
关键词 Korla fragrant pear Tree shape composition and structure of branch
下载PDF
Application of interpolated double network model for carbon nanotube composites in electrothermal shape memory behaviors
18
作者 Ting Fu Zhao Yan +2 位作者 Li Zhang Ran Tao Yiqi Mao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2024年第8期133-153,共21页
Multi-wall carbon nanotube filled shape memory polymer composite(MWCNT/SMC)possessed enhanced modulus,strength,and electric conductivity,as well as excellent electrothermal shape memory properties,showing wide design ... Multi-wall carbon nanotube filled shape memory polymer composite(MWCNT/SMC)possessed enhanced modulus,strength,and electric conductivity,as well as excellent electrothermal shape memory properties,showing wide design scenarios and engineering application prospects.The thermoelectrically triggered shape memory process contains complex multi-physical mechanisms,especially when coupled with finite deformation rooted on micro-mechanisms.A multi-physical finite deformation model is necessary to get a deep understanding on the coupled electro-thermomechanical properties of electrothermal shape memory composites(ESMCs),beneficial to its design and wide application.Taking into consideration of micro-physical mechanisms of the MWCNTs interacting with double-chain networks,a finite deformation theoretical model is developed in this work based on two superimposed network chains of physically crosslinked network formed among MWCNTs and the chemically crosslinked network.An intact crosslinked chemical network is considered featuring with entropic-hyperelastic properties,superimposed with a physically crosslinked network where percolation theory is based on electric conductivity and electric-heating mechanisms.The model is calibrated by experiments and used for shape recoveries triggered by heating and electric fields.It captures the coupled electro-thermomechanical behavior of ESMCs and provides design guidelines for MWCNTs filled shape memory polymers. 展开更多
关键词 shape memory polymer composite Viscoplastic constitutive relations Electro-thermomechanics Double network model Multiple shape memory
原文传递
Theoretical Analysis of the Buckling Behaviors of Inhomogeneous Shape Memory Polymer Composite Laminates Considering Prestrains
19
作者 Hanxing Zhao Pengyu Cao +4 位作者 Fengfeng Li Xin Lan Liwu Liu Yanju Liu Jinsong Leng 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2024年第2期271-284,共14页
The mismatch in thermal expansion coefficients between the fiber-rich and resin-rich regions of a shape memory polymer composite(SMPC)laminate,along with the residual strain during SMPC fabrication,results in buckling... The mismatch in thermal expansion coefficients between the fiber-rich and resin-rich regions of a shape memory polymer composite(SMPC)laminate,along with the residual strain during SMPC fabrication,results in buckling deformation of the inhomogeneous laminate.This paper presents a macroscopic model for buckling of an inhomogeneous SMPC laminate under initial biaxial prestrains.Both linear and nonlinear buckling analyses are carried out using the energy method.The influences of prestrain biaxiality,temperature,and ply angle on the buckling wavelength,critical buckling prestrain,and buckling amplitude are calculated.The results demonstrate that the critical buckling wavelength of the SMPC laminate is independent of the prestrain,while the amplitude is almost independent of temperature.In addition,the optimal fiber stacking configuration with the maximum critical buckling prestrains of inhomogeneous SMPC laminates is determined by a genetic algorithm. 展开更多
关键词 shape memory polymer composite Buckling behavior Inhomogeneous laminate Biaxial prestrains
原文传递
Preparation of multi-walled carbon nanotube-reinforced TiNi matrix composites from elemental powders by spark plasma sintering 被引量:7
20
作者 CAI Wei,FENG Xue,and SUI Jiehe National Key Laboratory Precision Hot Processing of Metals,School of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China 《Rare Metals》 SCIE EI CAS CSCD 2012年第1期48-50,共3页
Carbon nanotube (CNT)-reinforced TiNi matrix composites were synthesized by spark plasma sintering (SPS) employing elemental powders.The phase structure,morphology and transformation behaviors were studied.It was foun... Carbon nanotube (CNT)-reinforced TiNi matrix composites were synthesized by spark plasma sintering (SPS) employing elemental powders.The phase structure,morphology and transformation behaviors were studied.It was found that thermoelastic martensitic transformation be-haviors could be observed from the samples sintered above 800 ℃ even with a short sintering time (5min),and the transformation tempera-tures gradually increased with increasing sintering temperature because of more Ti-rich TiNi phase formation.Although decreasing the sin-tering temperature and time to 700 ℃ and 5min could not protect defective MWCNTs from reacting with Ti,still-perfect MWCNTs re-mained in the specimens sintered at 900 ℃.This method is expected to supply a basis for preparing CNT-reinforced TiNi composites. 展开更多
关键词 metallic composites shape memory materials carbon nanotubes spark plasma sintering
下载PDF
上一页 1 2 87 下一页 到第
使用帮助 返回顶部