A train of three equally spaced femtosecond laser pulses is employed to control the photoionization/photodissociation processes of cyclopentanone. With the increase of pulse separation, a strong modulation of product ...A train of three equally spaced femtosecond laser pulses is employed to control the photoionization/photodissociation processes of cyclopentanone. With the increase of pulse separation, a strong modulation of product ion yield is observed. More than ten-fold changes of ion yield ratio between different products can be realized. The experimental observations further explain the compositions and formation pathways of peaks in the mass spectra. The controlling mechanisms are also discussed.展开更多
Femtosecond coherent anti-Stokes Raman scattering (CARS) suffers from poor selectivity between neighbouring Raman levels due to the large bandwidth of the femtosecond pulses. This paper provides a new method to real...Femtosecond coherent anti-Stokes Raman scattering (CARS) suffers from poor selectivity between neighbouring Raman levels due to the large bandwidth of the femtosecond pulses. This paper provides a new method to realize the selective excitation and suppression of femtosecond CARS by manipulating both the probe and pump (or Stokes) spectra. These theoretical results indicate that the CARS signals between neighbouring Raman levels are differentiated from their indistinguishable femtosecond CARS spectra by tailoring the probe spectrum, and then their selective excitation and suppression can be realized by supplementally manipulating the pump (or Stokes) spectrum with the π spectral phase step.展开更多
The angular distribution of CH3I is investigated experimentally using a single Fourier transform-limited laser pulse and a pulse train, where a 90-fs 800-nm linearly polarized laser field with a moderate intensity of ...The angular distribution of CH3I is investigated experimentally using a single Fourier transform-limited laser pulse and a pulse train, where a 90-fs 800-nm linearly polarized laser field with a moderate intensity of 2.8 × 10^13 W/cm2 is used. The dynamic alignment is demonstrated in a single pulse experiment. Moreover, a pulse train is used to optimize the molecular alignment, and the alignment degree is almost identical to that with the single pulse. The results are analysed by using chirped femtosecond laser pulses, and it demonstrates that the structure of pulse train rather than its effective duration is crucial to the molecular alignment.展开更多
The characteristics of N-type accumulation-mode MOS (NMOS) varactors line periodically loaded with resonant tunneling diodes (RTDs) are used for soliton-like pulses generation and shaping. The problem of wide pulse br...The characteristics of N-type accumulation-mode MOS (NMOS) varactors line periodically loaded with resonant tunneling diodes (RTDs) are used for soliton-like pulses generation and shaping. The problem of wide pulse breaking up into multiple pulses rather than a single is solved. Applying perturbative analysis, we show that the dynamics of the nonlinear transmission line (NLTL) is reduced to expanded Korteweg-de Vries (KdV) equation. Moreover, numerical integration of nonlinear differential and difference equations that result from the mathematical analysis of the line is discussed. As results, NLTL can simultaneously sharpen both leading and trailing of pulse edges and one could obtain a rising and sharpening step pulse.展开更多
The ultralow detection threshold,ultralow intrinsic background,and excellent energy resolution of ptype point-contact germanium detectors are important for rare-event searches,in particular for the detection of direct...The ultralow detection threshold,ultralow intrinsic background,and excellent energy resolution of ptype point-contact germanium detectors are important for rare-event searches,in particular for the detection of direct dark matter interactions,coherent elastic neutrino-nucleus scattering,and neutrinoless double beta decay.Anomalous bulk events with an extremely fast rise time are observed in the CDEX-1B detector.We report a method of extracting fast bulk events from bulk events using a pulse shape simulation and reconstructed source experiment signature.Calibration data and the distribution of X-rays generated by intrinsic radioactivity verified that the fast bulk experienced a single hit near the passivation layer.The performance of this germanium detector indicates that it is capable of single-hit bulk spatial resolution and thus provides a background removal technique.展开更多
In this study,the anti-noise performance of a pulse-coupled neural network(PCNN)was investigated in the neutron and gamma-ray(n-γ)discrimination field.The experiments were conducted in two groups.In the first group,r...In this study,the anti-noise performance of a pulse-coupled neural network(PCNN)was investigated in the neutron and gamma-ray(n-γ)discrimination field.The experiments were conducted in two groups.In the first group,radiation pulse signals were pre-processed using a Fourier filter to reduce the original noise in the signals,whereas in the second group,the original noise was left untouched to simulate an extremely high-noise scenario.For each part,artificial Gaussian noise with different intensity levels was added to the signals prior to the discrimination process.In the aforementioned conditions,the performance of the PCNN was evaluated and compared with five other commonly used methods of n-γdiscrimination:(1)zero crossing,(2)charge comparison,(3)vector projection,(4)falling edge percentage slope,and(5)frequency gradient analysis.The experimental results showed that the PCNN method significantly outperforms other methods with outstanding FoM-value at all noise levels.Furthermore,the fluctuations in FoM-value of PCNN were significantly better than those obtained via other methods at most noise levels and only slightly worse than those obtained via the charge comparison and zerocrossing methods under extreme noise conditions.Additionally,the changing patterns and fluctuations of the FoMvalue were evaluated under different noise conditions.Hence,based on the results,the parameter selection strategy of the PCNN was presented.In conclusion,the PCNN method is suitable for use in high-noise application scenarios for n-γdiscrimination because of its stability and remarkable discrimination performance.It does not rely on strict parameter settings and can realize satisfactory performance over a wide parameter range.展开更多
To reduce the experimental uncertainty in the 235 U resonance energy region and improve the detection efficiency for neutron total cross section measurements compared with those obtained with the neutron total cross s...To reduce the experimental uncertainty in the 235 U resonance energy region and improve the detection efficiency for neutron total cross section measurements compared with those obtained with the neutron total cross section spectrometer(NTOX), a dedicated lithium-containing scintillation detector has been developed on the Back-n beam line at the China Spallation Neutron Source. The Fast Scintillator-based Neutron Total Cross Section(FAST) spectrometer has been designed based on a Cs2Li La Br6(CLLB) scintillator considering the γ-ray flash and neutron environment on the Back-n beam line. The response of the CLLB scintillator to neutrons and γ-rays was evaluated with different 6Li/7 Li abundance ratios using Geant4. The neutron-γdiscrimination performance of the CLLB has been simulated considering different scintillation parameters, physical designs,and light readout modes. A cubic 6Li-enriched( > 90%) CLLB scintillator, which has a thickness of 4-9 mm and side length of no less than 50 mm to cover the Φ 50 mm neutron beam at the spectrometer position, has been proposed coupling to a side readout SiPM array to construct the FAST spectrometer. The developed simulation techniques for neutron-γ discrimination performance could provide technical support for other neutron-induced reaction measurements on the Back-n beam line.展开更多
This paper describes the generation of shaped femtosecond multiple pulses by using the phase-only Dammann filters in 4f femtosecond shaper and gives the experimental result of femtosecond pulse characterization by the...This paper describes the generation of shaped femtosecond multiple pulses by using the phase-only Dammann filters in 4f femtosecond shaper and gives the experimental result of femtosecond pulse characterization by the frequency- resolved optical gating (FROG) technique. With the theoretical simulation, it concludes that the quality of the generated output array is relevant to the number of pixels and the spacing between the components.展开更多
In this study we experimentally reveal that the phase change mechanism can be selectively triggered by shaping femtosecond pulse trains based on electron dynamics control (EDC), including manipulation of excitations...In this study we experimentally reveal that the phase change mechanism can be selectively triggered by shaping femtosecond pulse trains based on electron dynamics control (EDC), including manipulation of excitations, ionizations, densities, and temperatures of electrons. By designing the pulse energy distribution to adjust the absorptions, excitations, ionizations, and recombinations of electrons, the dominant phase change mechanism experiences transition from nonthermal to thermal process. This phenomenon is observed in quadruple, triple, and double pulses per train ablation of fused silica separately. This opens up possibilities for controlling phase change mechanisms by EDC, which is of great significance in laser processing of dielectrics and fabrication of integrated nano- and micro-optical devices.展开更多
The up-conversion luminescence tuning of rare-earth ions is an important research topic for understanding luminescence mechanisms and promoting related applications. In this paper, we experimentally study the up-conve...The up-conversion luminescence tuning of rare-earth ions is an important research topic for understanding luminescence mechanisms and promoting related applications. In this paper, we experimentally study the up-conversion luminescence tuning of Er3+-doped ceramic glass excited by the unshaped, V-shaped and cosine-shaped femtosecond laser field with different laser powers. The results show that green and red up-conversion luminescence can be effectively tuned by varying the power or spectral phase of the femtosecond laser field. We further analyze the up-conversion luminescence tuning mechanism by considering different excitation processes, including single-photon absorption(SPA), two-photon absorption(TPA), excited state absorption(ESA), and energy transfer up-conversion(ETU). The relative weight of TPA in the whole excitation process can increase with the increase of the laser power, thereby enhancing the intensity ratio between green and red luminescence(I547/I656). However, the second ETU(ETU2) process can generate red luminescence and reduce the green and red luminescence intensity ratio I547/I656, while the third ESA(ESA3) process can produce green luminescence and enhance its control efficiency. Moreover, the up-conversion luminescence tuning mechanism is further validated by observing the up-conversion luminescence intensity, depending on the laser power and the down-conversion luminescence spectrum under the excitation of 400-nm femtosecond laser pulse. These studies can present a clear physical picture that enables us to understand the up-conversion luminescence tuning mechanism in rare-earth ions, and can also provide an opportunity to tune up-conversion luminescence to promote its related applications.展开更多
Identification of acetone and its two isomers, and the control of their ionization and dissociation processes are performed using a dual-mass-spectrometer scheme. The scheme employs two sets of time of flight mass spe...Identification of acetone and its two isomers, and the control of their ionization and dissociation processes are performed using a dual-mass-spectrometer scheme. The scheme employs two sets of time of flight mass spectrometers to simultaneously acquire the mass spectra of two different molecules under the irradiation of identically shaped femtosecond laser pulses. The optimal laser pulses are found using closed-loop learning method based on a genetic algorithm. Compared with the mass spectra of the two isomers that are obtained with the transform limited pulse, those obtained under the irradiation of the optimal laser pulse show large differences and the various reaction pathways of the two molecules are selectively controlled. The experimental results demonstrate that the scheme is quite effective and useful in studies of two molecules having common mass peaks, which makes a traditional single mass spectrometer unfeasible.展开更多
Over the past two decades,femtosecond laser-induced periodic structures(femtosecond-LIPSs)have become ubiquitous in a variety of materials,including metals,semiconductors,dielectrics,and polymers.Femtosecond-LIPSs hav...Over the past two decades,femtosecond laser-induced periodic structures(femtosecond-LIPSs)have become ubiquitous in a variety of materials,including metals,semiconductors,dielectrics,and polymers.Femtosecond-LIPSs have become a useful laser processing method,with broad prospects in adjusting material properties such as structural color,data storage,light absorption,and luminescence.This review discusses the formation mechanism of LIPSs,specifically the LIPS formation processes based on the pump-probe imaging method.The pulse shaping of a femtosecond laser in terms of the time/frequency,polarization,and spatial distribution is an efficient method for fabricating high-quality LIPSs.Various LIPS applications are also briefly introduced.The last part of this paper discusses the LIPS formation mechanism,as well as the high-efficiency and high-quality processing of LIPSs using shaped ultrafast lasers and their applications.展开更多
An X-ray radiation source with approximately constant radiation temperature is realized by irradiating golden hohlraum with a shaped laser pulse. A simple theoretical model based on power balance is used to design the...An X-ray radiation source with approximately constant radiation temperature is realized by irradiating golden hohlraum with a shaped laser pulse. A simple theoretical model based on power balance is used to design the shape of the drive laser pulse. Experiments are carried out on the Shenguang III prototype laser facility, and the experimentM results are presented for radiation sources with the flat-top lasting about 2.5 ns at two different peak temperatures of about 150 eV and 170 eV, respectively, including the the drive laser pulses and the time integrated possible improvements are discussed. time histories of the temperatures, the shapes of radiation spectra. The validity of the model and展开更多
The use of a broadband, frequency shaped femtosecond laser on translationally cold cesium molecules has recently demonstrated to be a very efficient method of cooling also the vibrational degree of freedom. A sample o...The use of a broadband, frequency shaped femtosecond laser on translationally cold cesium molecules has recently demonstrated to be a very efficient method of cooling also the vibrational degree of freedom. A sample of cold molecules, initially distributed over several vibrational levels, has thus been transfered into a single selected vibrational level of the singlet X^1∑g ground electronic state. Our method is based on repeated optical pumping by laser light with a spectrum broad enough to excite all populated vibrational levels but limited in its frequency bandwidth with a spatial light modulator. In such a way we are able to eliminate transitions from the selected level, in which molecules accumulate. In this paper we briefly report the main experimental results and then address, in a detailed way by computer simulations, the perspectives for a "complete" cooling of the molecules, including also the rotational degree of freedom. Since the pumping process strongly depends on the relative shape of the ground and excited potential curves, ro-vibrational cooling through different excited states is theoretically compared.展开更多
Mobile WiMAX(worldwide interoperability for microwave access) air interface adopts orthogonal frequency division multiple access(OFDMA) as multiple access technique for its uplink(UL) and downlink(DL) to improve the m...Mobile WiMAX(worldwide interoperability for microwave access) air interface adopts orthogonal frequency division multiple access(OFDMA) as multiple access technique for its uplink(UL) and downlink(DL) to improve the multipath performance.All OFDMA based networks,like mobile WiMAX,experience the problem of high peak-to-average power ratio(PAPR).The high PAPR increases the complexity of analog-to-digital(A/D) and digital-to-analog(D/A) convertors,and also reduces the efficiency of RF high-power-amplifier(HPA).In this work,a new zadoff-chu matrix transform(ZCMT) precoding based random interleaved orthogonal frequency division multiple access(OFDMA) system was proposed for PAPR reduction in mobile WiMAX system.The system is based on precoding the constellation symbols with the ZCMT precoder before subcarrier mapping.The PAPR of proposed system is analyzed with the root-raised-cosine(RRC) pulse shaping to keep out of band radiation low and meet the transmission spectrum mask requirement.Simulation results show that the proposed system has better PAPR gain than the hadamard transform(WHT) precoded random interleaved OFDMA systems and the conventional random interleaved OFDMA systems.Symbol-error-rate(SER) performance of the system is also better than the conventional random interleaved OFDMA systems and the random interleaved OFDMA systems with WHT.The good improvement in PAPR significantly reduces the cost and the complexity of the transmitter.展开更多
A novel time-domain ultra-fast pulse shaping approach for multi-TBaud serial optical communication signal (e.g. QPSK and 16-QAM) generation based on the first-order Born approximation in feasible all-fiber long-period...A novel time-domain ultra-fast pulse shaping approach for multi-TBaud serial optical communication signal (e.g. QPSK and 16-QAM) generation based on the first-order Born approximation in feasible all-fiber long-period gratings is proposed and numerically demonstrated.展开更多
The neutron flux monitor (NFM), as a significant diagnostic system in the International Thermonuclear Experimental Reactor (ITER), will play an important role in the readings of a series of key parameters in the f...The neutron flux monitor (NFM), as a significant diagnostic system in the International Thermonuclear Experimental Reactor (ITER), will play an important role in the readings of a series of key parameters in the fusion reaction process. As the core of the main electronic system of the NFM, the neutron-gamma pulse shape discrimination (n-γ PSD) can distinguish the neutron pulse from the gamma pulse and other disturbing pulses according to the thresholds of the rising time and the amplitude pre-installed on the board, the double timing point CFD method is used to get the rising time of the pulse. The n-γ PSD can provide an accurate neutron count.展开更多
We propose and demonstrate a silicon-on-insulator (SOI) on-chip optical pulse shaper based on four-tap finite impulse response. Due to different width designs in phase region of each tap, the phase differences for a...We propose and demonstrate a silicon-on-insulator (SOI) on-chip optical pulse shaper based on four-tap finite impulse response. Due to different width designs in phase region of each tap, the phase differences for all taps are controlled by an external thermal source, resulting in an optical pulse shaper. We further demonstrate optical arbitrary waveform generation based on the optical pulse shaper assisted by an optical frequency comb injection. Four different optical waveforms are generated when setting the central wavelengths at 1533.78 nm and 1547.1 nm and setting the thermal source temperatures at 23 ℃ and 33 ℃, respectively. Our scheme has distinct advantages of compactness, capability for integrating with electronics since the integrated silicon waveguide is employed.展开更多
Improving the up-conversion luminescence efficiency crucial in several related application areas. In this work, of rare-earth ions via the multi-photon absorption process is we theoretically propose a feasible scheme ...Improving the up-conversion luminescence efficiency crucial in several related application areas. In this work, of rare-earth ions via the multi-photon absorption process is we theoretically propose a feasible scheme to enhance the resonance-mediated two-photon absorption in Er3+ ions by shaping the femtosecond laser field with a rectangle phase modulation. Our theoretical results show that the resonance-mediated two-photon absorption can be decomposed into the on-resonant and near-resonant parts, and the on-resonant part mainly comes from the contribution of laser central frequency components, while the near-resonant part mainly results from the excitation of low and high laser frequency components. So, the rectangle phase modulation can induce a constructive interference between the two parts by properly designing the modulation depth and width, and finally realizes the resonance-mediated two-photon absorption enhancement. More- over, our results also show that the enhancement efficiency of resonance-mediated two-photon absorption depends on the laser pulse width (or laser spectral bandwidth), final state transition frequency, and intermediate and final state absorption bandwidths. The enhancement efficiency modulation can be attributed to the relative weight manipulation of on-resonant and near-resonant two-photon absorption in the whole excitation process. This study presents a clear physical insight for the quantum control of resonance-mediated two-photon absorption in the rare-earth ions, and there will be an important significance for improving the up-conversion luminescence efficiency of rare-earth ions.展开更多
Enhancing the upconversion luminescence of rare earth ions is crucial for their applications in the laser sources,fiber optic communications,color displays,biolabeling,and biomedical sensors.In this paper,we theoretic...Enhancing the upconversion luminescence of rare earth ions is crucial for their applications in the laser sources,fiber optic communications,color displays,biolabeling,and biomedical sensors.In this paper,we theoretically study the resonance-mediated(1+2)-three-photon absorption in Pr^(3+) ions by a rectangle phase modulation.The results show that the resonance-mediated(1+2)-three-photon absorption can be effectively enhanced by properly designing the depth and width of the rectangle phase modulation,which can be attributed to the constructive interference between on-resonant and near-resonant three-photon excitation pathways.Further,the enhancement efficiency of resonance-mediated(1+2)-threephoton absorption can be affected by the pulse width(or spectral bandwidth)of femtosecond laser field,final state transition frequency,and absorption bandwidths.This research can provide a clear physical picture for understanding and controlling the multi-photon absorption in rare-earth ions,and also can provide theoretical guidance for improving the up-conversion luminescence.展开更多
基金Project supported by the National Basic Research Program of China (973 Program) (Grant No.2013CB922200)the National Natural Science Foundation of China,(Grant Nos.10774056 and 10974070)+1 种基金the Fundamental Research Funds for the Central Universities,China (Grant No.200903371)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No.20100061110045)
文摘A train of three equally spaced femtosecond laser pulses is employed to control the photoionization/photodissociation processes of cyclopentanone. With the increase of pulse separation, a strong modulation of product ion yield is observed. More than ten-fold changes of ion yield ratio between different products can be realized. The experimental observations further explain the compositions and formation pathways of peaks in the mass spectra. The controlling mechanisms are also discussed.
基金Project supported by Programme for Changjiang Scholars and Innovative Research Team in University(PCSIRT)Shanghai Leading Academic Discipline Project(Grant No.B408)+3 种基金National Key Project for Basic Research of China(Grant Nos.2006CB806006 and 2006CB921105)Ministry of Education of China(Grant No.30800)Shanghai Municipal Natural Science Foundation(Grant No.09ZR1409300)Shanghai Municipal Science and Technology Commission(Grant No.07DZ22025)
文摘Femtosecond coherent anti-Stokes Raman scattering (CARS) suffers from poor selectivity between neighbouring Raman levels due to the large bandwidth of the femtosecond pulses. This paper provides a new method to realize the selective excitation and suppression of femtosecond CARS by manipulating both the probe and pump (or Stokes) spectra. These theoretical results indicate that the CARS signals between neighbouring Raman levels are differentiated from their indistinguishable femtosecond CARS spectra by tailoring the probe spectrum, and then their selective excitation and suppression can be realized by supplementally manipulating the pump (or Stokes) spectrum with the π spectral phase step.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10774056 and 10974070)the Fundamental Research Funds for the Central Universities, China (Grant No. 200903371)the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20100061110045)
文摘The angular distribution of CH3I is investigated experimentally using a single Fourier transform-limited laser pulse and a pulse train, where a 90-fs 800-nm linearly polarized laser field with a moderate intensity of 2.8 × 10^13 W/cm2 is used. The dynamic alignment is demonstrated in a single pulse experiment. Moreover, a pulse train is used to optimize the molecular alignment, and the alignment degree is almost identical to that with the single pulse. The results are analysed by using chirped femtosecond laser pulses, and it demonstrates that the structure of pulse train rather than its effective duration is crucial to the molecular alignment.
文摘The characteristics of N-type accumulation-mode MOS (NMOS) varactors line periodically loaded with resonant tunneling diodes (RTDs) are used for soliton-like pulses generation and shaping. The problem of wide pulse breaking up into multiple pulses rather than a single is solved. Applying perturbative analysis, we show that the dynamics of the nonlinear transmission line (NLTL) is reduced to expanded Korteweg-de Vries (KdV) equation. Moreover, numerical integration of nonlinear differential and difference equations that result from the mathematical analysis of the line is discussed. As results, NLTL can simultaneously sharpen both leading and trailing of pulse edges and one could obtain a rising and sharpening step pulse.
基金supported by the National Key Research and Development Program of China(No.2017YFA0402203)the National Natural Science Foundation of China(No.11975162)the SPARK project of the research and innovation program of Sichuan University(No.2018SCUH0051)。
文摘The ultralow detection threshold,ultralow intrinsic background,and excellent energy resolution of ptype point-contact germanium detectors are important for rare-event searches,in particular for the detection of direct dark matter interactions,coherent elastic neutrino-nucleus scattering,and neutrinoless double beta decay.Anomalous bulk events with an extremely fast rise time are observed in the CDEX-1B detector.We report a method of extracting fast bulk events from bulk events using a pulse shape simulation and reconstructed source experiment signature.Calibration data and the distribution of X-rays generated by intrinsic radioactivity verified that the fast bulk experienced a single hit near the passivation layer.The performance of this germanium detector indicates that it is capable of single-hit bulk spatial resolution and thus provides a background removal technique.
基金supported by the National Natural Science Foundation of China(Nos.4210040255,U19A2086)the Sichuan Science and Technology Program(No.2021JDRC0108)。
文摘In this study,the anti-noise performance of a pulse-coupled neural network(PCNN)was investigated in the neutron and gamma-ray(n-γ)discrimination field.The experiments were conducted in two groups.In the first group,radiation pulse signals were pre-processed using a Fourier filter to reduce the original noise in the signals,whereas in the second group,the original noise was left untouched to simulate an extremely high-noise scenario.For each part,artificial Gaussian noise with different intensity levels was added to the signals prior to the discrimination process.In the aforementioned conditions,the performance of the PCNN was evaluated and compared with five other commonly used methods of n-γdiscrimination:(1)zero crossing,(2)charge comparison,(3)vector projection,(4)falling edge percentage slope,and(5)frequency gradient analysis.The experimental results showed that the PCNN method significantly outperforms other methods with outstanding FoM-value at all noise levels.Furthermore,the fluctuations in FoM-value of PCNN were significantly better than those obtained via other methods at most noise levels and only slightly worse than those obtained via the charge comparison and zerocrossing methods under extreme noise conditions.Additionally,the changing patterns and fluctuations of the FoMvalue were evaluated under different noise conditions.Hence,based on the results,the parameter selection strategy of the PCNN was presented.In conclusion,the PCNN method is suitable for use in high-noise application scenarios for n-γdiscrimination because of its stability and remarkable discrimination performance.It does not rely on strict parameter settings and can realize satisfactory performance over a wide parameter range.
基金supported by the Key Laboratory of Nuclear Data Foundation(No.JCKY2022201C153)National Natural Science Foundation of China(No.11505216),Educational Commission of Hunan Province of China(No.19B488)Natural Science Foundation of Hunan Province of China(Nos.2021JJ40444 and 2020RC3054).
文摘To reduce the experimental uncertainty in the 235 U resonance energy region and improve the detection efficiency for neutron total cross section measurements compared with those obtained with the neutron total cross section spectrometer(NTOX), a dedicated lithium-containing scintillation detector has been developed on the Back-n beam line at the China Spallation Neutron Source. The Fast Scintillator-based Neutron Total Cross Section(FAST) spectrometer has been designed based on a Cs2Li La Br6(CLLB) scintillator considering the γ-ray flash and neutron environment on the Back-n beam line. The response of the CLLB scintillator to neutrons and γ-rays was evaluated with different 6Li/7 Li abundance ratios using Geant4. The neutron-γdiscrimination performance of the CLLB has been simulated considering different scintillation parameters, physical designs,and light readout modes. A cubic 6Li-enriched( > 90%) CLLB scintillator, which has a thickness of 4-9 mm and side length of no less than 50 mm to cover the Φ 50 mm neutron beam at the spectrometer position, has been proposed coupling to a side readout SiPM array to construct the FAST spectrometer. The developed simulation techniques for neutron-γ discrimination performance could provide technical support for other neutron-induced reaction measurements on the Back-n beam line.
文摘This paper describes the generation of shaped femtosecond multiple pulses by using the phase-only Dammann filters in 4f femtosecond shaper and gives the experimental result of femtosecond pulse characterization by the frequency- resolved optical gating (FROG) technique. With the theoretical simulation, it concludes that the quality of the generated output array is relevant to the number of pixels and the spacing between the components.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB013000)the National Natural Science Foundation of China (Grant Nos. 90923039 and 51025521)
文摘In this study we experimentally reveal that the phase change mechanism can be selectively triggered by shaping femtosecond pulse trains based on electron dynamics control (EDC), including manipulation of excitations, ionizations, densities, and temperatures of electrons. By designing the pulse energy distribution to adjust the absorptions, excitations, ionizations, and recombinations of electrons, the dominant phase change mechanism experiences transition from nonthermal to thermal process. This phenomenon is observed in quadruple, triple, and double pulses per train ablation of fused silica separately. This opens up possibilities for controlling phase change mechanisms by EDC, which is of great significance in laser processing of dielectrics and fabrication of integrated nano- and micro-optical devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51132004,11474096,11604199,U1704145,and 11747101)the Fund from the Science and Technology Commission of Shanghai Municipality,China(Grant No.14JC1401500)+1 种基金the Henan Provincial Natural Science Foundation,China(Grant No.182102210117)the Higher Educational Key Program of Henan Province of China(Gant Nos.17A140025 and 16A140030)
文摘The up-conversion luminescence tuning of rare-earth ions is an important research topic for understanding luminescence mechanisms and promoting related applications. In this paper, we experimentally study the up-conversion luminescence tuning of Er3+-doped ceramic glass excited by the unshaped, V-shaped and cosine-shaped femtosecond laser field with different laser powers. The results show that green and red up-conversion luminescence can be effectively tuned by varying the power or spectral phase of the femtosecond laser field. We further analyze the up-conversion luminescence tuning mechanism by considering different excitation processes, including single-photon absorption(SPA), two-photon absorption(TPA), excited state absorption(ESA), and energy transfer up-conversion(ETU). The relative weight of TPA in the whole excitation process can increase with the increase of the laser power, thereby enhancing the intensity ratio between green and red luminescence(I547/I656). However, the second ETU(ETU2) process can generate red luminescence and reduce the green and red luminescence intensity ratio I547/I656, while the third ESA(ESA3) process can produce green luminescence and enhance its control efficiency. Moreover, the up-conversion luminescence tuning mechanism is further validated by observing the up-conversion luminescence intensity, depending on the laser power and the down-conversion luminescence spectrum under the excitation of 400-nm femtosecond laser pulse. These studies can present a clear physical picture that enables us to understand the up-conversion luminescence tuning mechanism in rare-earth ions, and can also provide an opportunity to tune up-conversion luminescence to promote its related applications.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB922200)the National Natural Science Foundation of China(Grant No.11374124)
文摘Identification of acetone and its two isomers, and the control of their ionization and dissociation processes are performed using a dual-mass-spectrometer scheme. The scheme employs two sets of time of flight mass spectrometers to simultaneously acquire the mass spectra of two different molecules under the irradiation of identically shaped femtosecond laser pulses. The optimal laser pulses are found using closed-loop learning method based on a genetic algorithm. Compared with the mass spectra of the two isomers that are obtained with the transform limited pulse, those obtained under the irradiation of the optimal laser pulse show large differences and the various reaction pathways of the two molecules are selectively controlled. The experimental results demonstrate that the scheme is quite effective and useful in studies of two molecules having common mass peaks, which makes a traditional single mass spectrometer unfeasible.
基金This work was supported by the National Natural Science Foundation of China(12074123,11804227,91950112)the Ministry of Science and Technology of China(Grant No.2021YFA1401100)the Foundation of‘Manufacturing beyond limits’of Shanghai.
文摘Over the past two decades,femtosecond laser-induced periodic structures(femtosecond-LIPSs)have become ubiquitous in a variety of materials,including metals,semiconductors,dielectrics,and polymers.Femtosecond-LIPSs have become a useful laser processing method,with broad prospects in adjusting material properties such as structural color,data storage,light absorption,and luminescence.This review discusses the formation mechanism of LIPSs,specifically the LIPS formation processes based on the pump-probe imaging method.The pulse shaping of a femtosecond laser in terms of the time/frequency,polarization,and spatial distribution is an efficient method for fabricating high-quality LIPSs.Various LIPS applications are also briefly introduced.The last part of this paper discusses the LIPS formation mechanism,as well as the high-efficiency and high-quality processing of LIPSs using shaped ultrafast lasers and their applications.
文摘An X-ray radiation source with approximately constant radiation temperature is realized by irradiating golden hohlraum with a shaped laser pulse. A simple theoretical model based on power balance is used to design the shape of the drive laser pulse. Experiments are carried out on the Shenguang III prototype laser facility, and the experimentM results are presented for radiation sources with the flat-top lasting about 2.5 ns at two different peak temperatures of about 150 eV and 170 eV, respectively, including the the drive laser pulses and the time integrated possible improvements are discussed. time histories of the temperatures, the shapes of radiation spectra. The validity of the model and
文摘The use of a broadband, frequency shaped femtosecond laser on translationally cold cesium molecules has recently demonstrated to be a very efficient method of cooling also the vibrational degree of freedom. A sample of cold molecules, initially distributed over several vibrational levels, has thus been transfered into a single selected vibrational level of the singlet X^1∑g ground electronic state. Our method is based on repeated optical pumping by laser light with a spectrum broad enough to excite all populated vibrational levels but limited in its frequency bandwidth with a spatial light modulator. In such a way we are able to eliminate transitions from the selected level, in which molecules accumulate. In this paper we briefly report the main experimental results and then address, in a detailed way by computer simulations, the perspectives for a "complete" cooling of the molecules, including also the rotational degree of freedom. Since the pumping process strongly depends on the relative shape of the ground and excited potential curves, ro-vibrational cooling through different excited states is theoretically compared.
文摘Mobile WiMAX(worldwide interoperability for microwave access) air interface adopts orthogonal frequency division multiple access(OFDMA) as multiple access technique for its uplink(UL) and downlink(DL) to improve the multipath performance.All OFDMA based networks,like mobile WiMAX,experience the problem of high peak-to-average power ratio(PAPR).The high PAPR increases the complexity of analog-to-digital(A/D) and digital-to-analog(D/A) convertors,and also reduces the efficiency of RF high-power-amplifier(HPA).In this work,a new zadoff-chu matrix transform(ZCMT) precoding based random interleaved orthogonal frequency division multiple access(OFDMA) system was proposed for PAPR reduction in mobile WiMAX system.The system is based on precoding the constellation symbols with the ZCMT precoder before subcarrier mapping.The PAPR of proposed system is analyzed with the root-raised-cosine(RRC) pulse shaping to keep out of band radiation low and meet the transmission spectrum mask requirement.Simulation results show that the proposed system has better PAPR gain than the hadamard transform(WHT) precoded random interleaved OFDMA systems and the conventional random interleaved OFDMA systems.Symbol-error-rate(SER) performance of the system is also better than the conventional random interleaved OFDMA systems and the random interleaved OFDMA systems with WHT.The good improvement in PAPR significantly reduces the cost and the complexity of the transmitter.
基金supported in part by the Natural Sciences and En-gineering Research Council of Canada(NSERC),and le Fonds Qué-bécois de la Recherche sur la Nature et les Technologies(FQRNT).
文摘A novel time-domain ultra-fast pulse shaping approach for multi-TBaud serial optical communication signal (e.g. QPSK and 16-QAM) generation based on the first-order Born approximation in feasible all-fiber long-period gratings is proposed and numerically demonstrated.
基金supported by State Key Laboratory of Particle Detection & Electronics and ITER Plan National Major Project of China (No.2008GB109000)
文摘The neutron flux monitor (NFM), as a significant diagnostic system in the International Thermonuclear Experimental Reactor (ITER), will play an important role in the readings of a series of key parameters in the fusion reaction process. As the core of the main electronic system of the NFM, the neutron-gamma pulse shape discrimination (n-γ PSD) can distinguish the neutron pulse from the gamma pulse and other disturbing pulses according to the thresholds of the rising time and the amplitude pre-installed on the board, the double timing point CFD method is used to get the rising time of the pulse. The n-γ PSD can provide an accurate neutron count.
基金supported by the National Basic Research Program of China(Grant No.2011CB301704)the Program for New Century Excellent Talents in Ministryof Education of China(Grant No.NCET-11-0168)+1 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.201139)the National Natural Science Foundation of China(Grant Nos.60901006 and 11174096)
文摘We propose and demonstrate a silicon-on-insulator (SOI) on-chip optical pulse shaper based on four-tap finite impulse response. Due to different width designs in phase region of each tap, the phase differences for all taps are controlled by an external thermal source, resulting in an optical pulse shaper. We further demonstrate optical arbitrary waveform generation based on the optical pulse shaper assisted by an optical frequency comb injection. Four different optical waveforms are generated when setting the central wavelengths at 1533.78 nm and 1547.1 nm and setting the thermal source temperatures at 23 ℃ and 33 ℃, respectively. Our scheme has distinct advantages of compactness, capability for integrating with electronics since the integrated silicon waveguide is employed.
基金Project supported by the National Natural Science Foundation of China(Grant No.11474096)the Science and Technology Commission of Shanghai Municipality,China(Grant Nos.14JC1401500,17ZR146900,and 16520721200)the Higher Education Key Program of He'nan Province of China(Grant No.17A140025)
文摘Improving the up-conversion luminescence efficiency crucial in several related application areas. In this work, of rare-earth ions via the multi-photon absorption process is we theoretically propose a feasible scheme to enhance the resonance-mediated two-photon absorption in Er3+ ions by shaping the femtosecond laser field with a rectangle phase modulation. Our theoretical results show that the resonance-mediated two-photon absorption can be decomposed into the on-resonant and near-resonant parts, and the on-resonant part mainly comes from the contribution of laser central frequency components, while the near-resonant part mainly results from the excitation of low and high laser frequency components. So, the rectangle phase modulation can induce a constructive interference between the two parts by properly designing the modulation depth and width, and finally realizes the resonance-mediated two-photon absorption enhancement. More- over, our results also show that the enhancement efficiency of resonance-mediated two-photon absorption depends on the laser pulse width (or laser spectral bandwidth), final state transition frequency, and intermediate and final state absorption bandwidths. The enhancement efficiency modulation can be attributed to the relative weight manipulation of on-resonant and near-resonant two-photon absorption in the whole excitation process. This study presents a clear physical insight for the quantum control of resonance-mediated two-photon absorption in the rare-earth ions, and there will be an important significance for improving the up-conversion luminescence efficiency of rare-earth ions.
基金supported by the National Natural Science Foundation of China(Grant Nos.12004238 and 11764036)the Natural Science Foundation of Henan Province,China(Grant No.222102230068)the Open Subject of the Key Laboratory of Weak Light Nonlinear Photonics of Nankai University(Grant No.OS 21-3)。
文摘Enhancing the upconversion luminescence of rare earth ions is crucial for their applications in the laser sources,fiber optic communications,color displays,biolabeling,and biomedical sensors.In this paper,we theoretically study the resonance-mediated(1+2)-three-photon absorption in Pr^(3+) ions by a rectangle phase modulation.The results show that the resonance-mediated(1+2)-three-photon absorption can be effectively enhanced by properly designing the depth and width of the rectangle phase modulation,which can be attributed to the constructive interference between on-resonant and near-resonant three-photon excitation pathways.Further,the enhancement efficiency of resonance-mediated(1+2)-threephoton absorption can be affected by the pulse width(or spectral bandwidth)of femtosecond laser field,final state transition frequency,and absorption bandwidths.This research can provide a clear physical picture for understanding and controlling the multi-photon absorption in rare-earth ions,and also can provide theoretical guidance for improving the up-conversion luminescence.