The practical engineering applications of powder metallurgy (PM) Ti alloys produced through cold compaction and pressure-less sintering are impeded by poor sintering densification, embrittlement caused by excessive O ...The practical engineering applications of powder metallurgy (PM) Ti alloys produced through cold compaction and pressure-less sintering are impeded by poor sintering densification, embrittlement caused by excessive O impurities, and severe sintering deforma-tion resulting from the use of heterogeneous powder mixtures. This review presents a summary of our previous work on addressing the above challenges. Initially, we proposed a novel strategy using reaction-induced liquid phases to enhance sintering densification. Near- complete density (relative density exceeding 99%) was achieved by applying the above strategy and newly developed sintering aids. By focusing on the O-induced embrittlement issue, we determined the onset dissolution temperature of oxide films in the Ti matrix. On the basis of this finding, we established a design criterion for effective O scavengers that require reaction with oxide films before their dissol-ution. Consequently, a ductile PM Ti alloy was successfully obtained by introducing 0.3wt% NdB6 as the O scavenger. Lastly, a powder- coating strategy was adopted to address the sintering deformation issue. The ultrafine size and shell-like distribution characteristics of coating particles ensured rapid dissolution and homogeneity in the Ti matrix, thereby facilitating linear shrinkage during sintering. As a result, geometrically complex Ti alloy parts with high dimensional accuracy were fabricated by using the coated powder. Our fundament-al findings and related technical achievements enabled the development of an integrated production technology for the high-performance and accurate shaping of low-cost PM Ti alloys. Additionally, the primary engineering applications and progress in the industrialization practice of our developed technology are introduced in this review.展开更多
With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in th...With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in the field of human reliability analysis(HRA)to evaluate human reliability and assess risk in large complex systems.However,the classical SPAR-H method does not consider the dependencies among performance shaping factors(PSFs),whichmay cause overestimation or underestimation of the risk of the actual situation.To address this issue,this paper proposes a new method to deal with the dependencies among PSFs in SPAR-H based on the Pearson correlation coefficient.First,the dependence between every two PSFs is measured by the Pearson correlation coefficient.Second,the weights of the PSFs are obtained by considering the total dependence degree.Finally,PSFs’multipliers are modified based on the weights of corresponding PSFs,and then used in the calculating of human error probability(HEP).A case study is used to illustrate the procedure and effectiveness of the proposed method.展开更多
Tea’s popularity and flavor are influenced by factors like cultivation and processing methods and shaping techniques also have an impact on tea flavor.This study employed targeted metabolomics and chemometrics to inv...Tea’s popularity and flavor are influenced by factors like cultivation and processing methods and shaping techniques also have an impact on tea flavor.This study employed targeted metabolomics and chemometrics to investigate how shaping techniques affect the flavor of milk-flavored white tea(MFWT).The results showed that the tea cake sample with the shortest pressing time(Y90)has the highest amino acid content and milky aroma intensity.There were variations in amino acids,catechins,and soluble sugars among MFWT samples with different shaping techniques.The total contents of amino acids and catechins in tea cake sample(Y90)were significantly lower than those in the loose tea sample(SC)and bundle-like tea sample(SG),while the total sugar content was significantly higher than that in SC(P<0.05).Additionally,the content of volatiles presenting milky aroma(VIP&OAV>1)in Y90 remained lower relative to SC and SG(P<0.05),but the proportion was not different from that in SC and SG,minimally affecting the overall flavor.The short-time pressing method might be suitable for mass production of MFWT.These findings provide insights into improving the tightness of the appearance of MFWT with minimal impact on tea flavor.展开更多
Faster-than-Nyquist(FTN)signaling is a potential scheme for the sixth generation(6G)communication system to improve the spectral efficiency(SE).In this paper,we propose a joint optimization algorithm of precoding and ...Faster-than-Nyquist(FTN)signaling is a potential scheme for the sixth generation(6G)communication system to improve the spectral efficiency(SE).In this paper,we propose a joint optimization algorithm of precoding and constellation shaping for FTN signaling,which is based on simulated optimization via the bare bones particle swarm optimization(BBPSO).The information-theoretical analysis and simulated error performance show that the proposed method is efficient,which can get a significant improvement in terms of average mutual information(AMI)and bit error rate(BER)performance.The simulated BER results verify the theoretical AMI analysis.Compared with the conventional regular 16QAM FTN scheme,when BER is at 10-5,the joint optimized scheme can obtain 0.50 dB and 0.60 dB performance gain with SE at 3.077 bits/s/Hz and 3.282 bits/s/Hz,respectively.Therefore,the proposed scheme is reliable,and thus suitable for the 6G communication.展开更多
As part of the important trends of the current development of the world economy,the reshaping of global industry and supply chains interacts with the intensified changes unprecedented in the past century in an increas...As part of the important trends of the current development of the world economy,the reshaping of global industry and supply chains interacts with the intensified changes unprecedented in the past century in an increasingly close manner.“Benefit-sharing and risk-sharing”,the characteristics of global industry and supply chains,have a profound influence on the distribution of benefits among countries and the effectiveness of global economic governance.展开更多
Background:“Yang Transforming Qi and Yin shaping”comes from“Plain Question Yin and Yang should be like the theory”.Chinese medicine believes that the imbalance of yin and yang is the cause of human diseases.One of...Background:“Yang Transforming Qi and Yin shaping”comes from“Plain Question Yin and Yang should be like the theory”.Chinese medicine believes that the imbalance of yin and yang is the cause of human diseases.One of the strengths of TCM in treating diseases is holistic regulation.The theory of“Yang transforming Qi,and Yin shaping”implies a strong holistic view.Chloasma,one of the common skin diseases,seriously affects the physical and mental health of patients due to its unclear etiology,difficult treatment and easy recurrence.The occurrence and development of chloasma are closely related to internal organs.This paper is based on the theory of internal meridian,“Yang transforming Qi,and Yin shaping”which attaches importance to the concept of“Yang Qi”,from a new understanding of the pathogenesis etiology of chloasma.Methods:The author believes that the incidence of the disease is the deficiency of Yang Qi,which can’t promote the movement of Qi and blood to nourish the face,resulting in tangible material condensation,so proposes that this disease needs to be promoted by Yang transforming Qi and warm to dissipate.Moxibustion belongs to the fire,and its warming effect can dissipate the tangible evil.Results:Combined with clinical practice and the theory of internal meridian,the author elaborated that moxibustion is one of the effective methods for treating chloasma,which provides a new way of thinking for the treatment of chloasma.Conclusion:“Yang Transforming Qi and Yin shaping”can be used to guide the treatment of chloasma.展开更多
To achieve high-precision trajectory following during helicopter maneuver tasks and reduce the disruptive influences of unknown variabilities,this study introduces a cascaded-loop helicopter trajectory tracking contro...To achieve high-precision trajectory following during helicopter maneuver tasks and reduce the disruptive influences of unknown variabilities,this study introduces a cascaded-loop helicopter trajectory tracking controller,whose parameters are set using an Ant Colony OptimizationSlime Mould Algorithm(ACO-SMA).Initially,a nonlinear flight dynamics model of the helicopter is constructed.Observer gain functions and nonlinear feedback from a vibrational suppression function to improve the tracking performance of the controller,addressing issues in disturbance estimation and compensation of the Active Disturbance Rejection Control(ADRC).Simultaneously,a cascaded loop system,comprising an internal attitude loop and an external position loop,is created,and the ant colony-slime mold hybrid algorithm optimizes the system parameters of the trajectory tracking controller.Finally,helicopter trajectory tracking simulation experiments are conducted,including spiral ascending and“8”shape climbing maneuvers.The findings indicate that the ADRC employed for helicopter trajectory tracking exhibits outstanding performance in rejecting disturbances caused by gusts and accurately tracking trajectories.The trajectory tracking controller,whose parameters are optimized by the ACO-SMA,shows higher tracking precision compared to the conventional PID and ADRC,thereby substantially improving the precision of maneuver tasks.展开更多
Changes in river cross-section morphology have decisive influences on the flood discharge and sand transport capacity of rivers;thus,these changes strongly reflect the vitality of a river.In this paper,based on the ri...Changes in river cross-section morphology have decisive influences on the flood discharge and sand transport capacity of rivers;thus,these changes strongly reflect the vitality of a river.In this paper,based on the river cross-section and water and sediment data of two different periods(1974−1987 and 2007−2021),the trend analysis,change-point analysis and sediment rating curve method were used to analyze the change process of river cross-section morphology and its response to streamflow and sediment changes in the main river stream of the Yellow River at the Longmen hydrological station.From 1974 to 1987(except in 1977),the riverbed experi-enced siltation,and the riverbed elevation rose.Conversely,from 2007 to 2021,the riverbed experienced scouring,and the riverbed el-evation gradually decreased.The cross-section shape changed from rectangular to U-shaped(deeper on the right side)at the Longmen cross-section.The changes in streamflow and sediment processes significantly impacted the evolution of river cross-section.Stream-flow(P<0.05),sediment discharge(P<0.01),and the sediment load coefficients(P<0.01)decreased significantly.The relationship between the water depth and sediment load coefficients followed a power function.The decreasing trend in sediment discharge was sig-nificantly stronger than that in streamflow.Suspended sediment particles tended to become finer.The sediment rating curve indicates that the sediment supply from upstream decreased while the erosive power in the river channel increased,leading to a gradual decline in riverbed elevation at the Longmen cross-section from 2007 to 2021.These findings help us better understand the impacts of ecological restoration on changes in river streamflow and sediment during river evolution.展开更多
Understanding the dynamic responses of hard rocks is crucial during deep mining and tunneling activities and when constructing nuclear waste repositories. However, the response of deep massive rocks with openings of d...Understanding the dynamic responses of hard rocks is crucial during deep mining and tunneling activities and when constructing nuclear waste repositories. However, the response of deep massive rocks with openings of different shapes and orientations to dynamic loading is not well understood. Therefore, this study investigates the dynamic responses of hard rocks of deep underground excavation activities. Split Hopkins Pressure Bar (SHPB) tests on granite with holes of different shapes (rectangle, circle, vertical ellipse (elliptical short (ES) axis parallel to the impact load direction), and horizontal ellipse (elliptical long (EL) axis parallel to the impact load direction)) were carried out. The influence of hole shape and location on the dynamic responses was analyzed to reveal the rocks' dynamic strengths and cracking characteristics. We used the ResNet18 (convolutional neural network-based) network to recognize crack types using high-speed photographs. Moreover, a prediction model for the stress-strain response of rocks with different openings was established using Deep Neural Network (DNN). The results show that the dynamic strengths of the granite with EL and ES holes are the highest and lowest, respectively. The strength-weakening coefficient decreases first and then increases with an increase of thickness-span ratio (h/L). The weakening of the granite with ES holes is the most obvious. The ResNet18 network can improve the analyzing efficiency of the cracking mechanism, and the trained model's recognition accuracy reaches 99%. Finally, the dynamic stress-strain prediction model can predict the complete stress-strain curve well, with an accuracy above 85%.展开更多
To improve the mechanical properties of the parts fabricated by Laser Direct Metal Shaping(LDMS),it is of great significance to understand the distribution regularities of transient temperature field during LDMS proce...To improve the mechanical properties of the parts fabricated by Laser Direct Metal Shaping(LDMS),it is of great significance to understand the distribution regularities of transient temperature field during LDMS process.Based on the“el- ement birth and death”technique of finite element method,a three-dimensional multi-track and multi-layer model for the transient temperature field analysis of LDMS is developed by ANSYS Parametric Design Language(APDL)for the first time.In the fab- ricated modal,X-direction parallel reciprocating scanning paths is introduced.Using the same process parameters,the simulation results show good agreement with the microstructure features of samples which fabricated by LDMS.展开更多
Ceramic is an important material with outstanding physical properties whereas impurities and porosities generated by traditional manufacturing methods limits its further industrial applications. In order to solve this...Ceramic is an important material with outstanding physical properties whereas impurities and porosities generated by traditional manufacturing methods limits its further industrial applications. In order to solve this problem, direct fabrication of Al2O3 ceramic structures is conducted by laser engineered net shaping system and pure ceramic powders. Grain refinement strengthening method by doping Zr O2 and dispersion strengthening method by doping Si C are proposed to suppress cracks in fabricating Al2O3 structure. Phase compositions, microstructures as well as mechanical properties of fabricated specimens are then analyzed. The results show that the proposed two methods are effective in suppressing cracks and structures of single-bead wall, arc and cylinder ring are successfully deposited. Stable phase of α-Al2O3 and t-Zr O2 are obtained in the fabricated specimens. Micro-hardness higher than 1700 HV are also achieved for both Al2O3 and Al2O3/Zr O2, which are resulted from fine directional crystals generated by the melting-solidification process. Results presented indicate that additive manufacturing is a very attractive technique for the production of high-performance ceramic structures in a single step.展开更多
The solid acid SO_4^(2-)/TiO_2 was prepared by immersion method and applied for synthesis of propylene glycol methyl ether acetate(PMA) through esterification reaction of propylene glycol monomethyl ether(PM)and aceti...The solid acid SO_4^(2-)/TiO_2 was prepared by immersion method and applied for synthesis of propylene glycol methyl ether acetate(PMA) through esterification reaction of propylene glycol monomethyl ether(PM)and acetic acid(HAc). The optimal catalyst preparation condition was determined by orthogonal analysis of parameters in a five-factor and four-level test. The obtained solid acid catalysts were characterized in detail by means of X-ray powder diffraction, thermogravimetry, pyridine adsorbed IR analysis, scanning electron microscopy, and BET surface area method. Synthesis of PMA was studied in this paper through experimental investigation of reaction conditions such as temperature, molar ratio of reactants, catalyst dosage and agitation speed. Based on its possible reaction mechanism, a pseudo-homogeneous kinetic model was established and its activation energies E_a^+ and E_a^-,65.68 × 10~3J·mol^(-1) and 57.78 × 10~3J·mol^(-1), were estimated. To prepare shaped solid acid catalyst SO_4^(2-)/TiO_2, the shaping method of impregnation–shaping–impregnation was applied. The optimal molding formulation of solid acid catalyst, obtained from the orthogonal test, was found to be binder 7 wt%, reinforcing agent 20 wt%, pore forming material 2.5 wt%, and lubricant 4 wt%.The results of performance test of catalyst demonstrated that the shaped solid acid catalyst exhibited high activity and stability.展开更多
In the design of filter shaping circuits for nuclear pulse signals,inverting filter shaping circuits perform better than non-inverting filter shaping circuits.Because these circuits facilitate changing the phase of a ...In the design of filter shaping circuits for nuclear pulse signals,inverting filter shaping circuits perform better than non-inverting filter shaping circuits.Because these circuits facilitate changing the phase of a pulse signal,they are widely used in processing nuclear pulse signals.In this study,the transfer functions of four types of inverting filter shaping circuits,namely the common inverting filter shaping,improved inverting filter shaping,multiple feedback low-pass filter shaping,and third-order multiple feedback low-pass filter shaping,in the Laplacian domain,are derived.We establish the numerical recursive function models and digitalize the four circuits,obtain the transfer functions in the Z domain,and analyze the filter performance and amplitude-frequency response characteristics in the frequency domain.Based on the actual nuclear pulse signal of the Si-PIN detector,we realize four types of inverting digital shaping.The results show that under the same shaping parameters,the common inverting digital shaping has better amplitude extraction characteristics,the third-order multiple feedback low-pass digital shaping has better noise suppression performance,and the multiple feedback digital shaping takes into account both pulse amplitude extraction and noise suppression performance.展开更多
In radiation measurement and digital nuclear spectrum systems,traditional nuclear signal processing circuits in nuclear electronics have been gradually replaced by digital algorithm modules with the application of hig...In radiation measurement and digital nuclear spectrum systems,traditional nuclear signal processing circuits in nuclear electronics have been gradually replaced by digital algorithm modules with the application of highperformance programmable hardware logic devices(such as FPGA or DSP).Referring to the digital realization method of inverse RC integral circuit systems,the function of the pole-zero cancellation(PZC)circuit was analyzed,a new modified cascade equivalent model of PZC was established,and the time-domain digital PZC(DPZC)recursive algorithm was derived in detail in this study.Two parameters kIand k_(D)are included in the new algorithm,where kIshould match the exponential decay time constant of the input signal to realize the pole-zero compensation,while the decay time constant of the output signal can be changed with the adjustable parameter k_(D)(which is larger than the decay time constant of the input signal).Based on the new DPZC algorithm module,two trapezoidal(triangular)shaping filters were designed and implemented.The amplitude–frequency characteristics of the output signal of the proposed trapezoidal shaping algorithm and the convolution trapezoidal shaping algorithm were compared,with fixed peaking time.The results show that the trapezoidal shaping algorithm based on DPZC can better suppress high-frequency noise.Finally,based on the Na I(Tl)scintillator(u75 mm×75 mm)detector and^(137)Cs source,the effect of the k_(D)value on the energy resolution of the DPZC trapezoidal(triangular)shaping algorithm was studied.The experimental results show that,with an increase in k_(D),the energy resolution of the system improved and reached the maximum when k_(D)was greater than 10,and the optimal energy resolution of the system was 7.72%.展开更多
The separation of ethylene and ethane is a crucial,challenging and cost-intensive process in chemical engineering.Metal-organic frameworks(MOFs)are a class of novel porous adsorbents used for the separation of ethylen...The separation of ethylene and ethane is a crucial,challenging and cost-intensive process in chemical engineering.Metal-organic frameworks(MOFs)are a class of novel porous adsorbents used for the separation of ethylene/ethane mixtures.However,MOFs are normally crystalline powders that cause multiple problems,such as dust,abrasion and heat/mass loss,as well as significant pressure drops on the adsorption bed resulting in a sudden stop in production.To solve these issues,we have prepared four different sphere-shaped adsorbents,including Mg-gallate,Co-gallate,MUV-10(Mn)and MIL-53(Al)using a calcium alginate method to achieve excellent ethylene/ethane separation performance.The performance of the sphere-shaped adsorbents has been validated using mechanical strength measurements,powder X-ray diffraction,scanning electron microscopy,thermogravimetric analysis,gas adsorption isotherms and dynamic breakthrough experiments.The excellent mechanical strength of these sphere-shaped adsorbents meets the criteria for industrial application in gas separation.Thus,the energy consumption and operating cost will be further reduced in the ethylene production process.We believe that this shaping method will open a prosperous route to the development of MOFs toward higher technology levels and their commercial application.展开更多
We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and geneti...We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and genetic algorithm(GA) is numerically simulated. Then, using a high speed digital micromirror device, we carry out light focusing experiments with the modified PSO algorithm and GA. The experimental results show that the modified PSO algorithm has greater robustness and faster convergence speed than GA. This modified PSO algorithm has great application prospects in optical focusing and imaging inside in vivo biological tissue, which possesses a complicated background.展开更多
By manipulating the phase map of a wavefront of light using a spatial light modulator,the scattered light can be sharply focused on a specific target.Several iterative optimization algo-rithrns for obtaining the optim...By manipulating the phase map of a wavefront of light using a spatial light modulator,the scattered light can be sharply focused on a specific target.Several iterative optimization algo-rithrns for obtaining the optimumn phase map have been explored.However,there has not been a comparative study on the performance of these algorithms.In this paper,six optimization algorithms for wavefront shaping inchuding continuous sequential,partitioning algorithm,transmission matrix estimation method,particle swarm optimization,genetic algorithm(GA),and simulated annealing(SA)are discussed and compared based on their efficiency when introduced with various measurement noise levels.展开更多
Because of their elastic links and joints,high-speed parallel robots for pick-and-place operations inevitably suffer from residual vibrations that significantly degrade their positioning accuracy.An effective approach...Because of their elastic links and joints,high-speed parallel robots for pick-and-place operations inevitably suffer from residual vibrations that significantly degrade their positioning accuracy.An effective approach based on the input shaping technique is presented in this paper for suppressing the residual vibration in these parallel robots.After addressing the design principle of an input shaper for a parallel robot with flexible actuated joints,a robust optimal input shaper is developed by considering the configuration-dependent flexible modes and minimizing the maximum percentage of residual vibration at the end-effector.The input shaper allows a good overall performance to be achieved throughout the entire workspace.Experimental results on a 4-DOF SCARA-type parallel robot show that the residual vibration of the end-effector is dramatically reduced and the dynamic positioning accuracy of the robot significantly improved.展开更多
In this paper, a trajectory shaping guidance law,which considers constraints of field-of-view(FOV) angle, impact angle, and terminal lateral acceleration, is proposed for a constant speed missile against a stationary ...In this paper, a trajectory shaping guidance law,which considers constraints of field-of-view(FOV) angle, impact angle, and terminal lateral acceleration, is proposed for a constant speed missile against a stationary target. First, to decouple constraints of the FOV angle and the terminal lateral acceleration, the third-order polynomial with respect to the line-ofsight(LOS) angle is introduced. Based on an analysis of the relationship between the looking angle and the guidance coefficient,the boundary of the coefficient that satisfies the FOV constraint is obtained. The terminal guidance law coefficient is used to guarantee the convergence of the terminal conditions. Furthermore, the proposed law can be implemented under bearingsonly information, as the guidance command does not involve the relative range and the LOS angle rate. Finally, numerical simulations are performed based on a kinematic vehicle model to verify the effectiveness of the guidance law. Overall, the work offers an easily implementable guidance law with closed-form guidance gains, which is suitable for engineering applications.展开更多
This paper describes the generation of shaped femtosecond multiple pulses by using the phase-only Dammann filters in 4f femtosecond shaper and gives the experimental result of femtosecond pulse characterization by the...This paper describes the generation of shaped femtosecond multiple pulses by using the phase-only Dammann filters in 4f femtosecond shaper and gives the experimental result of femtosecond pulse characterization by the frequency- resolved optical gating (FROG) technique. With the theoretical simulation, it concludes that the quality of the generated output array is relevant to the number of pixels and the spacing between the components.展开更多
基金supported by the National Natural Science Foundation of China (Nos.52074254 and 52174349)the CAS Project for Young Scientists in Basic Research,China (No.YSBR-025)+3 种基金the Shandong Provincial Science and Technology Innovation Project,China (No.2019JZZY010363)the Key Projects of International Cooperation,China (No.122111KYSB20200034)the Project of Key Laboratory of Science and Technology on Particle Materials,China (No.CXJJ-22S043)Chinese Academy of Sciences.This work was also financially supported by the Selection of Best Candidates to Undertake Key Research Projects,China (No.211110230200).
文摘The practical engineering applications of powder metallurgy (PM) Ti alloys produced through cold compaction and pressure-less sintering are impeded by poor sintering densification, embrittlement caused by excessive O impurities, and severe sintering deforma-tion resulting from the use of heterogeneous powder mixtures. This review presents a summary of our previous work on addressing the above challenges. Initially, we proposed a novel strategy using reaction-induced liquid phases to enhance sintering densification. Near- complete density (relative density exceeding 99%) was achieved by applying the above strategy and newly developed sintering aids. By focusing on the O-induced embrittlement issue, we determined the onset dissolution temperature of oxide films in the Ti matrix. On the basis of this finding, we established a design criterion for effective O scavengers that require reaction with oxide films before their dissol-ution. Consequently, a ductile PM Ti alloy was successfully obtained by introducing 0.3wt% NdB6 as the O scavenger. Lastly, a powder- coating strategy was adopted to address the sintering deformation issue. The ultrafine size and shell-like distribution characteristics of coating particles ensured rapid dissolution and homogeneity in the Ti matrix, thereby facilitating linear shrinkage during sintering. As a result, geometrically complex Ti alloy parts with high dimensional accuracy were fabricated by using the coated powder. Our fundament-al findings and related technical achievements enabled the development of an integrated production technology for the high-performance and accurate shaping of low-cost PM Ti alloys. Additionally, the primary engineering applications and progress in the industrialization practice of our developed technology are introduced in this review.
基金Shanghai Rising-Star Program(Grant No.21QA1403400)Shanghai Sailing Program(Grant No.20YF1414800)Shanghai Key Laboratory of Power Station Automation Technology(Grant No.13DZ2273800).
文摘With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in the field of human reliability analysis(HRA)to evaluate human reliability and assess risk in large complex systems.However,the classical SPAR-H method does not consider the dependencies among performance shaping factors(PSFs),whichmay cause overestimation or underestimation of the risk of the actual situation.To address this issue,this paper proposes a new method to deal with the dependencies among PSFs in SPAR-H based on the Pearson correlation coefficient.First,the dependence between every two PSFs is measured by the Pearson correlation coefficient.Second,the weights of the PSFs are obtained by considering the total dependence degree.Finally,PSFs’multipliers are modified based on the weights of corresponding PSFs,and then used in the calculating of human error probability(HEP).A case study is used to illustrate the procedure and effectiveness of the proposed method.
基金support from the National Key Research and Development Program of China(2022YFD2101101)the Modern Agricultural(Tea)Industry Technology System of Fujian Province,China([2021]No.90)+2 种基金the Guiding Project of Science and Technology Department in Fujian Province,China(2022N0031)the Special Fund Program for Science and Technology Innovation of Fujian Agriculture and Forestry University,China(KFB23203)the Special Fund for Science and Technology Innovation of Fujian Zhang Tianfu Tea Development Foundation,China(FJZTF01)。
文摘Tea’s popularity and flavor are influenced by factors like cultivation and processing methods and shaping techniques also have an impact on tea flavor.This study employed targeted metabolomics and chemometrics to investigate how shaping techniques affect the flavor of milk-flavored white tea(MFWT).The results showed that the tea cake sample with the shortest pressing time(Y90)has the highest amino acid content and milky aroma intensity.There were variations in amino acids,catechins,and soluble sugars among MFWT samples with different shaping techniques.The total contents of amino acids and catechins in tea cake sample(Y90)were significantly lower than those in the loose tea sample(SC)and bundle-like tea sample(SG),while the total sugar content was significantly higher than that in SC(P<0.05).Additionally,the content of volatiles presenting milky aroma(VIP&OAV>1)in Y90 remained lower relative to SC and SG(P<0.05),but the proportion was not different from that in SC and SG,minimally affecting the overall flavor.The short-time pressing method might be suitable for mass production of MFWT.These findings provide insights into improving the tightness of the appearance of MFWT with minimal impact on tea flavor.
基金supported by Fundamental Research Program of Shanxi Province(202203021212159)。
文摘Faster-than-Nyquist(FTN)signaling is a potential scheme for the sixth generation(6G)communication system to improve the spectral efficiency(SE).In this paper,we propose a joint optimization algorithm of precoding and constellation shaping for FTN signaling,which is based on simulated optimization via the bare bones particle swarm optimization(BBPSO).The information-theoretical analysis and simulated error performance show that the proposed method is efficient,which can get a significant improvement in terms of average mutual information(AMI)and bit error rate(BER)performance.The simulated BER results verify the theoretical AMI analysis.Compared with the conventional regular 16QAM FTN scheme,when BER is at 10-5,the joint optimized scheme can obtain 0.50 dB and 0.60 dB performance gain with SE at 3.077 bits/s/Hz and 3.282 bits/s/Hz,respectively.Therefore,the proposed scheme is reliable,and thus suitable for the 6G communication.
文摘As part of the important trends of the current development of the world economy,the reshaping of global industry and supply chains interacts with the intensified changes unprecedented in the past century in an increasingly close manner.“Benefit-sharing and risk-sharing”,the characteristics of global industry and supply chains,have a profound influence on the distribution of benefits among countries and the effectiveness of global economic governance.
基金Project of TCM&Combination of Traditional Chinese and Western Medicine of Tianjin Health(Commission:2021003,2021004).
文摘Background:“Yang Transforming Qi and Yin shaping”comes from“Plain Question Yin and Yang should be like the theory”.Chinese medicine believes that the imbalance of yin and yang is the cause of human diseases.One of the strengths of TCM in treating diseases is holistic regulation.The theory of“Yang transforming Qi,and Yin shaping”implies a strong holistic view.Chloasma,one of the common skin diseases,seriously affects the physical and mental health of patients due to its unclear etiology,difficult treatment and easy recurrence.The occurrence and development of chloasma are closely related to internal organs.This paper is based on the theory of internal meridian,“Yang transforming Qi,and Yin shaping”which attaches importance to the concept of“Yang Qi”,from a new understanding of the pathogenesis etiology of chloasma.Methods:The author believes that the incidence of the disease is the deficiency of Yang Qi,which can’t promote the movement of Qi and blood to nourish the face,resulting in tangible material condensation,so proposes that this disease needs to be promoted by Yang transforming Qi and warm to dissipate.Moxibustion belongs to the fire,and its warming effect can dissipate the tangible evil.Results:Combined with clinical practice and the theory of internal meridian,the author elaborated that moxibustion is one of the effective methods for treating chloasma,which provides a new way of thinking for the treatment of chloasma.Conclusion:“Yang Transforming Qi and Yin shaping”can be used to guide the treatment of chloasma.
基金support of the National Natural Science Foundation of China(No.12032012)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China。
文摘To achieve high-precision trajectory following during helicopter maneuver tasks and reduce the disruptive influences of unknown variabilities,this study introduces a cascaded-loop helicopter trajectory tracking controller,whose parameters are set using an Ant Colony OptimizationSlime Mould Algorithm(ACO-SMA).Initially,a nonlinear flight dynamics model of the helicopter is constructed.Observer gain functions and nonlinear feedback from a vibrational suppression function to improve the tracking performance of the controller,addressing issues in disturbance estimation and compensation of the Active Disturbance Rejection Control(ADRC).Simultaneously,a cascaded loop system,comprising an internal attitude loop and an external position loop,is created,and the ant colony-slime mold hybrid algorithm optimizes the system parameters of the trajectory tracking controller.Finally,helicopter trajectory tracking simulation experiments are conducted,including spiral ascending and“8”shape climbing maneuvers.The findings indicate that the ADRC employed for helicopter trajectory tracking exhibits outstanding performance in rejecting disturbances caused by gusts and accurately tracking trajectories.The trajectory tracking controller,whose parameters are optimized by the ACO-SMA,shows higher tracking precision compared to the conventional PID and ADRC,thereby substantially improving the precision of maneuver tasks.
基金Under the auspices of the National Natural Science Foundation of China(No.42277354,U2243211)Fundamental Research Funds for the Hebei University of Water Resources and Electric Engineering(No.SYKY2113)Science Research Project of Hebei Education Department(No.QN2025293)。
文摘Changes in river cross-section morphology have decisive influences on the flood discharge and sand transport capacity of rivers;thus,these changes strongly reflect the vitality of a river.In this paper,based on the river cross-section and water and sediment data of two different periods(1974−1987 and 2007−2021),the trend analysis,change-point analysis and sediment rating curve method were used to analyze the change process of river cross-section morphology and its response to streamflow and sediment changes in the main river stream of the Yellow River at the Longmen hydrological station.From 1974 to 1987(except in 1977),the riverbed experi-enced siltation,and the riverbed elevation rose.Conversely,from 2007 to 2021,the riverbed experienced scouring,and the riverbed el-evation gradually decreased.The cross-section shape changed from rectangular to U-shaped(deeper on the right side)at the Longmen cross-section.The changes in streamflow and sediment processes significantly impacted the evolution of river cross-section.Stream-flow(P<0.05),sediment discharge(P<0.01),and the sediment load coefficients(P<0.01)decreased significantly.The relationship between the water depth and sediment load coefficients followed a power function.The decreasing trend in sediment discharge was sig-nificantly stronger than that in streamflow.Suspended sediment particles tended to become finer.The sediment rating curve indicates that the sediment supply from upstream decreased while the erosive power in the river channel increased,leading to a gradual decline in riverbed elevation at the Longmen cross-section from 2007 to 2021.These findings help us better understand the impacts of ecological restoration on changes in river streamflow and sediment during river evolution.
基金funding support from the National Natural Science Foundation of China(Grant No.52374119)the opening fund of State Key Laboratory of Coal Mine Disaster Dynamics and Control(Grant No.2011DA105827-FW202209)the opening fund of State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure,East China Jiaotong University(Grant No.HJGZ2023103).
文摘Understanding the dynamic responses of hard rocks is crucial during deep mining and tunneling activities and when constructing nuclear waste repositories. However, the response of deep massive rocks with openings of different shapes and orientations to dynamic loading is not well understood. Therefore, this study investigates the dynamic responses of hard rocks of deep underground excavation activities. Split Hopkins Pressure Bar (SHPB) tests on granite with holes of different shapes (rectangle, circle, vertical ellipse (elliptical short (ES) axis parallel to the impact load direction), and horizontal ellipse (elliptical long (EL) axis parallel to the impact load direction)) were carried out. The influence of hole shape and location on the dynamic responses was analyzed to reveal the rocks' dynamic strengths and cracking characteristics. We used the ResNet18 (convolutional neural network-based) network to recognize crack types using high-speed photographs. Moreover, a prediction model for the stress-strain response of rocks with different openings was established using Deep Neural Network (DNN). The results show that the dynamic strengths of the granite with EL and ES holes are the highest and lowest, respectively. The strength-weakening coefficient decreases first and then increases with an increase of thickness-span ratio (h/L). The weakening of the granite with ES holes is the most obvious. The ResNet18 network can improve the analyzing efficiency of the cracking mechanism, and the trained model's recognition accuracy reaches 99%. Finally, the dynamic stress-strain prediction model can predict the complete stress-strain curve well, with an accuracy above 85%.
文摘To improve the mechanical properties of the parts fabricated by Laser Direct Metal Shaping(LDMS),it is of great significance to understand the distribution regularities of transient temperature field during LDMS process.Based on the“el- ement birth and death”technique of finite element method,a three-dimensional multi-track and multi-layer model for the transient temperature field analysis of LDMS is developed by ANSYS Parametric Design Language(APDL)for the first time.In the fab- ricated modal,X-direction parallel reciprocating scanning paths is introduced.Using the same process parameters,the simulation results show good agreement with the microstructure features of samples which fabricated by LDMS.
基金Supported by National Natural Science Foundation of China(Grant Nos.51175061,51402037)Science Fund for Creative Research Groups(Grant No.51321004)+1 种基金National Basic Research Program of China(973 Program,Grant No.2015CB057305)China Postdoctoral Science Foundation Funded Project(Grant No.2014M551072)
文摘Ceramic is an important material with outstanding physical properties whereas impurities and porosities generated by traditional manufacturing methods limits its further industrial applications. In order to solve this problem, direct fabrication of Al2O3 ceramic structures is conducted by laser engineered net shaping system and pure ceramic powders. Grain refinement strengthening method by doping Zr O2 and dispersion strengthening method by doping Si C are proposed to suppress cracks in fabricating Al2O3 structure. Phase compositions, microstructures as well as mechanical properties of fabricated specimens are then analyzed. The results show that the proposed two methods are effective in suppressing cracks and structures of single-bead wall, arc and cylinder ring are successfully deposited. Stable phase of α-Al2O3 and t-Zr O2 are obtained in the fabricated specimens. Micro-hardness higher than 1700 HV are also achieved for both Al2O3 and Al2O3/Zr O2, which are resulted from fine directional crystals generated by the melting-solidification process. Results presented indicate that additive manufacturing is a very attractive technique for the production of high-performance ceramic structures in a single step.
基金Supported by the National Natural Science Foundation of China(21306025,21576053)the International Science&Technology Cooperation Program of China(2013DFR90540)
文摘The solid acid SO_4^(2-)/TiO_2 was prepared by immersion method and applied for synthesis of propylene glycol methyl ether acetate(PMA) through esterification reaction of propylene glycol monomethyl ether(PM)and acetic acid(HAc). The optimal catalyst preparation condition was determined by orthogonal analysis of parameters in a five-factor and four-level test. The obtained solid acid catalysts were characterized in detail by means of X-ray powder diffraction, thermogravimetry, pyridine adsorbed IR analysis, scanning electron microscopy, and BET surface area method. Synthesis of PMA was studied in this paper through experimental investigation of reaction conditions such as temperature, molar ratio of reactants, catalyst dosage and agitation speed. Based on its possible reaction mechanism, a pseudo-homogeneous kinetic model was established and its activation energies E_a^+ and E_a^-,65.68 × 10~3J·mol^(-1) and 57.78 × 10~3J·mol^(-1), were estimated. To prepare shaped solid acid catalyst SO_4^(2-)/TiO_2, the shaping method of impregnation–shaping–impregnation was applied. The optimal molding formulation of solid acid catalyst, obtained from the orthogonal test, was found to be binder 7 wt%, reinforcing agent 20 wt%, pore forming material 2.5 wt%, and lubricant 4 wt%.The results of performance test of catalyst demonstrated that the shaped solid acid catalyst exhibited high activity and stability.
基金supported by the National Key R&D Project(No.2017YFF0106503)National Natural Science Foundation of China(Nos.11665001 and 41864007)。
文摘In the design of filter shaping circuits for nuclear pulse signals,inverting filter shaping circuits perform better than non-inverting filter shaping circuits.Because these circuits facilitate changing the phase of a pulse signal,they are widely used in processing nuclear pulse signals.In this study,the transfer functions of four types of inverting filter shaping circuits,namely the common inverting filter shaping,improved inverting filter shaping,multiple feedback low-pass filter shaping,and third-order multiple feedback low-pass filter shaping,in the Laplacian domain,are derived.We establish the numerical recursive function models and digitalize the four circuits,obtain the transfer functions in the Z domain,and analyze the filter performance and amplitude-frequency response characteristics in the frequency domain.Based on the actual nuclear pulse signal of the Si-PIN detector,we realize four types of inverting digital shaping.The results show that under the same shaping parameters,the common inverting digital shaping has better amplitude extraction characteristics,the third-order multiple feedback low-pass digital shaping has better noise suppression performance,and the multiple feedback digital shaping takes into account both pulse amplitude extraction and noise suppression performance.
基金supported by the National Natural Science Foundation of China(Nos.11975060,12005026,and 12075038)the Fund of Robot Technology Used for Special Environment Key Laboratory of Sichuan Province(No.19kftk02)。
文摘In radiation measurement and digital nuclear spectrum systems,traditional nuclear signal processing circuits in nuclear electronics have been gradually replaced by digital algorithm modules with the application of highperformance programmable hardware logic devices(such as FPGA or DSP).Referring to the digital realization method of inverse RC integral circuit systems,the function of the pole-zero cancellation(PZC)circuit was analyzed,a new modified cascade equivalent model of PZC was established,and the time-domain digital PZC(DPZC)recursive algorithm was derived in detail in this study.Two parameters kIand k_(D)are included in the new algorithm,where kIshould match the exponential decay time constant of the input signal to realize the pole-zero compensation,while the decay time constant of the output signal can be changed with the adjustable parameter k_(D)(which is larger than the decay time constant of the input signal).Based on the new DPZC algorithm module,two trapezoidal(triangular)shaping filters were designed and implemented.The amplitude–frequency characteristics of the output signal of the proposed trapezoidal shaping algorithm and the convolution trapezoidal shaping algorithm were compared,with fixed peaking time.The results show that the trapezoidal shaping algorithm based on DPZC can better suppress high-frequency noise.Finally,based on the Na I(Tl)scintillator(u75 mm×75 mm)detector and^(137)Cs source,the effect of the k_(D)value on the energy resolution of the DPZC trapezoidal(triangular)shaping algorithm was studied.The experimental results show that,with an increase in k_(D),the energy resolution of the system improved and reached the maximum when k_(D)was greater than 10,and the optimal energy resolution of the system was 7.72%.
基金support from the National Natu-ral Science Foundation of China(Nos.21908153,21922810 and 21878205).
文摘The separation of ethylene and ethane is a crucial,challenging and cost-intensive process in chemical engineering.Metal-organic frameworks(MOFs)are a class of novel porous adsorbents used for the separation of ethylene/ethane mixtures.However,MOFs are normally crystalline powders that cause multiple problems,such as dust,abrasion and heat/mass loss,as well as significant pressure drops on the adsorption bed resulting in a sudden stop in production.To solve these issues,we have prepared four different sphere-shaped adsorbents,including Mg-gallate,Co-gallate,MUV-10(Mn)and MIL-53(Al)using a calcium alginate method to achieve excellent ethylene/ethane separation performance.The performance of the sphere-shaped adsorbents has been validated using mechanical strength measurements,powder X-ray diffraction,scanning electron microscopy,thermogravimetric analysis,gas adsorption isotherms and dynamic breakthrough experiments.The excellent mechanical strength of these sphere-shaped adsorbents meets the criteria for industrial application in gas separation.Thus,the energy consumption and operating cost will be further reduced in the ethylene production process.We believe that this shaping method will open a prosperous route to the development of MOFs toward higher technology levels and their commercial application.
基金Supported by the National Key Research and Development Program of China under Grant No 2017YFB1104500the Natural Science Foundation of Beijing under Grant No 7182091,the National Natural Science Foundation of China under Grant No 21627813the Fundamental Research Funds for the Central Universities under Grant No PYBZ1801
文摘We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and genetic algorithm(GA) is numerically simulated. Then, using a high speed digital micromirror device, we carry out light focusing experiments with the modified PSO algorithm and GA. The experimental results show that the modified PSO algorithm has greater robustness and faster convergence speed than GA. This modified PSO algorithm has great application prospects in optical focusing and imaging inside in vivo biological tissue, which possesses a complicated background.
文摘By manipulating the phase map of a wavefront of light using a spatial light modulator,the scattered light can be sharply focused on a specific target.Several iterative optimization algo-rithrns for obtaining the optimumn phase map have been explored.However,there has not been a comparative study on the performance of these algorithms.In this paper,six optimization algorithms for wavefront shaping inchuding continuous sequential,partitioning algorithm,transmission matrix estimation method,particle swarm optimization,genetic algorithm(GA),and simulated annealing(SA)are discussed and compared based on their efficiency when introduced with various measurement noise levels.
基金Supported by National Natural Science Foundation of China(Grant No.51721003)State Key Laboratory of Robotics and System(HIT)(Grant No.SKLRS–2018–KF-09)。
文摘Because of their elastic links and joints,high-speed parallel robots for pick-and-place operations inevitably suffer from residual vibrations that significantly degrade their positioning accuracy.An effective approach based on the input shaping technique is presented in this paper for suppressing the residual vibration in these parallel robots.After addressing the design principle of an input shaper for a parallel robot with flexible actuated joints,a robust optimal input shaper is developed by considering the configuration-dependent flexible modes and minimizing the maximum percentage of residual vibration at the end-effector.The input shaper allows a good overall performance to be achieved throughout the entire workspace.Experimental results on a 4-DOF SCARA-type parallel robot show that the residual vibration of the end-effector is dramatically reduced and the dynamic positioning accuracy of the robot significantly improved.
基金supported by the Defense Science and Technology Key Laboratory Fund of Luoyang Electro-Optical Equipment Institute,Aviation Industry Corporation of China (6142504200108)。
文摘In this paper, a trajectory shaping guidance law,which considers constraints of field-of-view(FOV) angle, impact angle, and terminal lateral acceleration, is proposed for a constant speed missile against a stationary target. First, to decouple constraints of the FOV angle and the terminal lateral acceleration, the third-order polynomial with respect to the line-ofsight(LOS) angle is introduced. Based on an analysis of the relationship between the looking angle and the guidance coefficient,the boundary of the coefficient that satisfies the FOV constraint is obtained. The terminal guidance law coefficient is used to guarantee the convergence of the terminal conditions. Furthermore, the proposed law can be implemented under bearingsonly information, as the guidance command does not involve the relative range and the LOS angle rate. Finally, numerical simulations are performed based on a kinematic vehicle model to verify the effectiveness of the guidance law. Overall, the work offers an easily implementable guidance law with closed-form guidance gains, which is suitable for engineering applications.
文摘This paper describes the generation of shaped femtosecond multiple pulses by using the phase-only Dammann filters in 4f femtosecond shaper and gives the experimental result of femtosecond pulse characterization by the frequency- resolved optical gating (FROG) technique. With the theoretical simulation, it concludes that the quality of the generated output array is relevant to the number of pixels and the spacing between the components.