To address the problem of building linear barrier coverage with the location restriction, an optimization method for deploying multistatic radars is proposed, where the location restriction splits the deployment line ...To address the problem of building linear barrier coverage with the location restriction, an optimization method for deploying multistatic radars is proposed, where the location restriction splits the deployment line into two segments. By proving the characteristics of deployment patterns, an optimal deployment sequence consisting of multiple deployment patterns is proposed and exploited to cover each segment. The types and numbers of deployment patterns are determined by an algorithm that combines the integer linear programming(ILP)and exhaustive method(EM). In addition, to reduce the computation amount, a formula is introduced to calculate the upper threshold of receivers’ number in a deployment pattern. Furthermore, since the objective function is non-convex and non-analytic, the overall model is divided into two layers concerning two suboptimization problems. Subsequently, another algorithm that integrates the segments and layers is proposed to determine the deployment parameters, such as the minimum cost, parameters of the optimal deployment sequence, and the location of the split point. Simulation results demonstrate that the proposed method can effectively determine the optimal deployment parameters under the location restriction.展开更多
This paper proposes an optimal deployment method of heterogeneous multistatic radars to construct arc barrier coverage with location restrictions.This method analyzes and proves the properties of different deployment ...This paper proposes an optimal deployment method of heterogeneous multistatic radars to construct arc barrier coverage with location restrictions.This method analyzes and proves the properties of different deployment patterns in the optimal deployment sequence.Based on these properties and considering location restrictions,it introduces an optimization model of arc barrier coverage and aims to minimize the total deployment cost of heterogeneous multistatic radars.To overcome the non-convexity of the model and the non-analytical nature of the objective function,an algorithm combining integer line programming and the cuckoo search algorithm(CSA)is proposed.The proposed algorithm can determine the number of receivers and transmitters in each optimal deployment squence to minimize the total placement cost.Simulations are conducted in different conditions to verify the effectiveness of the proposed method.展开更多
A television based multistatic radar system is described. The commercial television transmitter is used as the illuminator in the multistatic radar system. The reflected commercial television signals are measured by ...A television based multistatic radar system is described. The commercial television transmitter is used as the illuminator in the multistatic radar system. The reflected commercial television signals are measured by an array of sensors. A data processing scheme is developed that adapts to the poor signal processing ability. The innovation is focused on the construction of the observation space, which could reduce the non linearity error. The new method leads to better system stability than the traditional one. Monte Carlo simulation is utilized and compared with the traditional method.展开更多
This paper proposes a suppression method of the deceptive false target(FT) produced by digital radio frequency memory(DRFM) in a multistatic radar system. The simulated deceptive false targets from DRFM cannot be easi...This paper proposes a suppression method of the deceptive false target(FT) produced by digital radio frequency memory(DRFM) in a multistatic radar system. The simulated deceptive false targets from DRFM cannot be easily discriminated and suppressed with traditional radar systems. Therefore, multistatic radar has attracted considerable interest as it provides improved performance against deception jamming due to several separated receivers. This paper first investigates the received signal model in the presence of multiple false targets in all receivers of the multistatic radar. Then, obtain the propagation time delays of the false targets based on the cross-correlation test of the received signals in different receivers. In doing so, local-density-based spatial clustering of applications with noise(LDBSCAN) is proposed to discriminate the FTs from the physical targets(PTs) after compensating the FTs time delays, where the FTs are approximately coincident with one position, while PTs possess small dispersion.Numerical simulations are carried out to demonstrate the feasibility and validness of the proposed method.展开更多
Time delay and Doppler shift between the echo signal and the reference signal are two most commonly used measurements in target localization for the passive radar. Doppler rate, which can be obtained from the extended...Time delay and Doppler shift between the echo signal and the reference signal are two most commonly used measurements in target localization for the passive radar. Doppler rate, which can be obtained from the extended cross ambiguity function, offers an opportunity to further enhance the localization accuracy. This paper considers using the measurement Doppler rate in addition to measurements of time delay and Doppler shift to locate a moving target. A closed-form solution is developed to accurately and efficiently estimate the target position and velocity.The proposed solution establishes a pseudolinear set of equations by introducing some additional variables, imposes weighted least squares formulation to yield a rough estimate, and utilizes the function relation among the target location parameters and additional variables to improve the estimation accuracy. Theoretical covariance and Cramer-Rao lower bound(CRLB) are derived and compared, analytically indicating that the proposed solution attains the CRLB. Numerical simulations corroborate this analysis and demonstrate that the proposed solution outperforms existing methods.展开更多
Radar cross section(RCS)is an important attribute of radar targets and has been widely used in automatic target recognition(ATR).In a passive radar,only the RCS multiplied by a coefficient is available due to the unkn...Radar cross section(RCS)is an important attribute of radar targets and has been widely used in automatic target recognition(ATR).In a passive radar,only the RCS multiplied by a coefficient is available due to the unknown transmitting parameters.For different transmitter-receiver(bistatic)pairs,the coefficients are different.Thus,the recovered RCS in different transmitter-receiver(bistatic)pairs cannot be fused for further use.In this paper,we propose a quantity named quasi-echo-power(QEP)as well as a method for eliminating differences of this quantity among different transmitter-receiver(bistatic)pairs.The QEP is defined as the target echo power after being compensated for distance and pattern propagation factor.The proposed method estimates the station difference coefficients(SDCs)of transmitter-receiver(bistatic)pairs relative to the reference transmitter-receiver(bistatic)pair first.Then,it compensates the QEP and gets the compensated QEP.The compensated QEP possesses a linear relationship with the target RCS.Statistical analyses on the simulated and real-life QEP data show that the proposed method can effectively estimate the SDC between different stations,and the compensated QEP from different receiving stations has the same distribution characteristics for the same target.展开更多
An analysis is presented for target tracking with short range multistatic radar system in this paper. The velocity vector is introduced into the model to depict target motion more precisely. The system measurement equ...An analysis is presented for target tracking with short range multistatic radar system in this paper. The velocity vector is introduced into the model to depict target motion more precisely. The system measurement equation is such constructed on the basis of range difference that make the tracking model independent of the transmitter position. Therefore the algorithm is very much suitable for the case that the transmitter is not fixed. Simulation results show that the algorithm has the advantages of fast tracking and small steady tracking errors, and can be used for tracking target in short range with multistatic radar system.展开更多
This paper describes a short range target location system based on the range difference information of a T-R4 multistatic radar system with FMCW signal. A new method is proposed to determine the location and length of...This paper describes a short range target location system based on the range difference information of a T-R4 multistatic radar system with FMCW signal. A new method is proposed to determine the location and length of a thin cylindrical target making use of the high resolution of wide band FMCW signal and the spectrum characteristics of the target echo. Formulae are derived for target location and its length estimation being independent of the transmitter position. System performances are simulated with the proposed algorithm and the results are given for various situations.展开更多
Bistatic/multistatic radar has great potential advantages over its monostatic counterpart. However, the separation of a transmitter and a receiver leads to difficulties in locating the target position accurately and g...Bistatic/multistatic radar has great potential advantages over its monostatic counterpart. However, the separation of a transmitter and a receiver leads to difficulties in locating the target position accurately and guaranteeing space-timefrequency synchronization of the transmitter and the receiver.The error model of space-time-frequency synchronization in a motion platform of bistatic/multistatic radar is studied. The relationship between the space synchronization error and the transmitter platform position, receiver platform position, moving state, and beam pointing error, is analyzed. The effect of space synchronization error on target echo power is studied. The target scattering characteristics are restructured by many separate scattering centers of the target in high frequency regions. Based on the scattering centers model of the radar target, this radar target echo model and the simulation method are discussed. The algorithm of bistatic/multistatic radar target echo accurately reflects the scattering characteristics of the radar target, pulse modulation speciality of radar transmitting signals, and spacetime-frequency synchronization error characteristics between the transmitter station and the receiver station. The simulation of bistatic radar is completed in computer, and the results of the simulation validate the feasibility of the method.展开更多
Multistatic radar systems can be used in many applications such as homeland security, anti-air defense, anti-missile defense, ship’s navigation and traffic control systems. Multistatic radars, which are capable of de...Multistatic radar systems can be used in many applications such as homeland security, anti-air defense, anti-missile defense, ship’s navigation and traffic control systems. Multistatic radars, which are capable of detecting and tracking flying objects in three-dimension coordinate systems, are simulated in this paper. The location and velocity of flying objects as well as their radar cross sections are computed. The object’s path is also estimated by tracking the object.展开更多
The primary goal of this work is to characterize the impact of weighting selection strategy and multistatic geometry on the multistatic radar performance. With the relationship between the multistatic ambiguity functi...The primary goal of this work is to characterize the impact of weighting selection strategy and multistatic geometry on the multistatic radar performance. With the relationship between the multistatic ambiguity function (AF) and the multistatie Cram6r-Rao lower bound (CRLB), the problem of calculating the multistatic AF and the multistatic CRLB as a performance metric for multistatic radar system is studied. Exactly, based on the proper selection of the system parameters, the multistatic radar performance can be significantly improved. The simulation results illustrate that the multistatic AF and the multistatic CRLB can serve as guidelines for future multistatic fusion rule development and multistatic radars deployment.展开更多
Angular glint is a significant electromagnetic (EM) scattering signature of extended radar targets. Based on the adaptive cross approximation (ACA) algorithm accelerated method of moments (MoM) and the plane inc...Angular glint is a significant electromagnetic (EM) scattering signature of extended radar targets. Based on the adaptive cross approximation (ACA) algorithm accelerated method of moments (MoM) and the plane incident wave assumption, the narrowband, wideband and newly developed high-resolution range profile (HRRP) based angular glint calculation formulations are derived and applied to arbitrarily shaped three-dimensional (3D) perfectly electrical y conducting (PEC) objects. In addition, the near-field angular glint is emphasized, which is of great importance for radarseeker applications. Furthermore, with the HRRP based angular glint, an approach to rigorously determine range resolution cel s which own relatively smal er angular glint is provided. Numerical results are presented with new findings to demonstrate the usefulness of the developed formulations.展开更多
Taking the relativistic effect of high velocity moving target into account, the Doppler shift, polarization deflection, reflection coefficient and phase delay of reflected electric field are analyzed rigorously under...Taking the relativistic effect of high velocity moving target into account, the Doppler shift, polarization deflection, reflection coefficient and phase delay of reflected electric field are analyzed rigorously under the assumptions that incident signal to the target is a plane wave and the target is a perfect conductor plane; and their analytic expressions are obtained. The present results are of practical significance to some extent for the accurate expression of the wideband returned signal of a high velocity moving target in the bistatic radar system and for the understanding of wideband ambiguity functions.展开更多
The resolution of the multistatic passive radar imaging system(MPRIS)is poor due to the narrow bandwidth of the signal transmitted by illuminators of opportunity.Moreover,the inaccuracies caused by the inaccurate trac...The resolution of the multistatic passive radar imaging system(MPRIS)is poor due to the narrow bandwidth of the signal transmitted by illuminators of opportunity.Moreover,the inaccuracies caused by the inaccurate tracking system or the error position measurement of illuminators or receivers can deteriorate the quality of an image.To improve the performance of an MPRIS,an imaging method based on the tomographic imaging principle is presented.Then the compressed sensing technique is extended to the MPRIS to realize high-resolution imaging.Furthermore,a phase correction technique is developed for compensating for phase errors in an MPRIS.Phase errors can be estimated by iteratively solving an equation that is derived by minimizing the mean recovery error of the reconstructed image based on the principle of fixed-point iteration technique.The technique is nonparametric and can be used to estimate phase errors of any form.The effectiveness and convergence of the technique are confirmed by numerical simulations.展开更多
基金supported by the National Natural Science Foundation of China (61971470)。
文摘To address the problem of building linear barrier coverage with the location restriction, an optimization method for deploying multistatic radars is proposed, where the location restriction splits the deployment line into two segments. By proving the characteristics of deployment patterns, an optimal deployment sequence consisting of multiple deployment patterns is proposed and exploited to cover each segment. The types and numbers of deployment patterns are determined by an algorithm that combines the integer linear programming(ILP)and exhaustive method(EM). In addition, to reduce the computation amount, a formula is introduced to calculate the upper threshold of receivers’ number in a deployment pattern. Furthermore, since the objective function is non-convex and non-analytic, the overall model is divided into two layers concerning two suboptimization problems. Subsequently, another algorithm that integrates the segments and layers is proposed to determine the deployment parameters, such as the minimum cost, parameters of the optimal deployment sequence, and the location of the split point. Simulation results demonstrate that the proposed method can effectively determine the optimal deployment parameters under the location restriction.
基金supported by the National Natural Science Foundation of China(61971470).
文摘This paper proposes an optimal deployment method of heterogeneous multistatic radars to construct arc barrier coverage with location restrictions.This method analyzes and proves the properties of different deployment patterns in the optimal deployment sequence.Based on these properties and considering location restrictions,it introduces an optimization model of arc barrier coverage and aims to minimize the total deployment cost of heterogeneous multistatic radars.To overcome the non-convexity of the model and the non-analytical nature of the objective function,an algorithm combining integer line programming and the cuckoo search algorithm(CSA)is proposed.The proposed algorithm can determine the number of receivers and transmitters in each optimal deployment squence to minimize the total placement cost.Simulations are conducted in different conditions to verify the effectiveness of the proposed method.
文摘A television based multistatic radar system is described. The commercial television transmitter is used as the illuminator in the multistatic radar system. The reflected commercial television signals are measured by an array of sensors. A data processing scheme is developed that adapts to the poor signal processing ability. The innovation is focused on the construction of the observation space, which could reduce the non linearity error. The new method leads to better system stability than the traditional one. Monte Carlo simulation is utilized and compared with the traditional method.
文摘This paper proposes a suppression method of the deceptive false target(FT) produced by digital radio frequency memory(DRFM) in a multistatic radar system. The simulated deceptive false targets from DRFM cannot be easily discriminated and suppressed with traditional radar systems. Therefore, multistatic radar has attracted considerable interest as it provides improved performance against deception jamming due to several separated receivers. This paper first investigates the received signal model in the presence of multiple false targets in all receivers of the multistatic radar. Then, obtain the propagation time delays of the false targets based on the cross-correlation test of the received signals in different receivers. In doing so, local-density-based spatial clustering of applications with noise(LDBSCAN) is proposed to discriminate the FTs from the physical targets(PTs) after compensating the FTs time delays, where the FTs are approximately coincident with one position, while PTs possess small dispersion.Numerical simulations are carried out to demonstrate the feasibility and validness of the proposed method.
基金supported by the National Natural Science Foundation of China (61703433)。
文摘Time delay and Doppler shift between the echo signal and the reference signal are two most commonly used measurements in target localization for the passive radar. Doppler rate, which can be obtained from the extended cross ambiguity function, offers an opportunity to further enhance the localization accuracy. This paper considers using the measurement Doppler rate in addition to measurements of time delay and Doppler shift to locate a moving target. A closed-form solution is developed to accurately and efficiently estimate the target position and velocity.The proposed solution establishes a pseudolinear set of equations by introducing some additional variables, imposes weighted least squares formulation to yield a rough estimate, and utilizes the function relation among the target location parameters and additional variables to improve the estimation accuracy. Theoretical covariance and Cramer-Rao lower bound(CRLB) are derived and compared, analytically indicating that the proposed solution attains the CRLB. Numerical simulations corroborate this analysis and demonstrate that the proposed solution outperforms existing methods.
基金supported by the National Natural Science Foundation of China(61931015,62071335)the Science and Technology Program of Shenzhen(JCYJ20170818112037398)the Technological Innovation Project of Hubei Province of China(2019AAA061).
文摘Radar cross section(RCS)is an important attribute of radar targets and has been widely used in automatic target recognition(ATR).In a passive radar,only the RCS multiplied by a coefficient is available due to the unknown transmitting parameters.For different transmitter-receiver(bistatic)pairs,the coefficients are different.Thus,the recovered RCS in different transmitter-receiver(bistatic)pairs cannot be fused for further use.In this paper,we propose a quantity named quasi-echo-power(QEP)as well as a method for eliminating differences of this quantity among different transmitter-receiver(bistatic)pairs.The QEP is defined as the target echo power after being compensated for distance and pattern propagation factor.The proposed method estimates the station difference coefficients(SDCs)of transmitter-receiver(bistatic)pairs relative to the reference transmitter-receiver(bistatic)pair first.Then,it compensates the QEP and gets the compensated QEP.The compensated QEP possesses a linear relationship with the target RCS.Statistical analyses on the simulated and real-life QEP data show that the proposed method can effectively estimate the SDC between different stations,and the compensated QEP from different receiving stations has the same distribution characteristics for the same target.
文摘An analysis is presented for target tracking with short range multistatic radar system in this paper. The velocity vector is introduced into the model to depict target motion more precisely. The system measurement equation is such constructed on the basis of range difference that make the tracking model independent of the transmitter position. Therefore the algorithm is very much suitable for the case that the transmitter is not fixed. Simulation results show that the algorithm has the advantages of fast tracking and small steady tracking errors, and can be used for tracking target in short range with multistatic radar system.
文摘This paper describes a short range target location system based on the range difference information of a T-R4 multistatic radar system with FMCW signal. A new method is proposed to determine the location and length of a thin cylindrical target making use of the high resolution of wide band FMCW signal and the spectrum characteristics of the target echo. Formulae are derived for target location and its length estimation being independent of the transmitter position. System performances are simulated with the proposed algorithm and the results are given for various situations.
基金supported by the National Natural Science Foundation of China(61271327)
文摘Bistatic/multistatic radar has great potential advantages over its monostatic counterpart. However, the separation of a transmitter and a receiver leads to difficulties in locating the target position accurately and guaranteeing space-timefrequency synchronization of the transmitter and the receiver.The error model of space-time-frequency synchronization in a motion platform of bistatic/multistatic radar is studied. The relationship between the space synchronization error and the transmitter platform position, receiver platform position, moving state, and beam pointing error, is analyzed. The effect of space synchronization error on target echo power is studied. The target scattering characteristics are restructured by many separate scattering centers of the target in high frequency regions. Based on the scattering centers model of the radar target, this radar target echo model and the simulation method are discussed. The algorithm of bistatic/multistatic radar target echo accurately reflects the scattering characteristics of the radar target, pulse modulation speciality of radar transmitting signals, and spacetime-frequency synchronization error characteristics between the transmitter station and the receiver station. The simulation of bistatic radar is completed in computer, and the results of the simulation validate the feasibility of the method.
文摘Multistatic radar systems can be used in many applications such as homeland security, anti-air defense, anti-missile defense, ship’s navigation and traffic control systems. Multistatic radars, which are capable of detecting and tracking flying objects in three-dimension coordinate systems, are simulated in this paper. The location and velocity of flying objects as well as their radar cross sections are computed. The object’s path is also estimated by tracking the object.
基金Project(61271441)supported by the National Natural Science Foundation of ChinaProject(NCET-10-0895)supported by the Program for New Century Excellent Talents in Universities of China
文摘The primary goal of this work is to characterize the impact of weighting selection strategy and multistatic geometry on the multistatic radar performance. With the relationship between the multistatic ambiguity function (AF) and the multistatie Cram6r-Rao lower bound (CRLB), the problem of calculating the multistatic AF and the multistatic CRLB as a performance metric for multistatic radar system is studied. Exactly, based on the proper selection of the system parameters, the multistatic radar performance can be significantly improved. The simulation results illustrate that the multistatic AF and the multistatic CRLB can serve as guidelines for future multistatic fusion rule development and multistatic radars deployment.
文摘Angular glint is a significant electromagnetic (EM) scattering signature of extended radar targets. Based on the adaptive cross approximation (ACA) algorithm accelerated method of moments (MoM) and the plane incident wave assumption, the narrowband, wideband and newly developed high-resolution range profile (HRRP) based angular glint calculation formulations are derived and applied to arbitrarily shaped three-dimensional (3D) perfectly electrical y conducting (PEC) objects. In addition, the near-field angular glint is emphasized, which is of great importance for radarseeker applications. Furthermore, with the HRRP based angular glint, an approach to rigorously determine range resolution cel s which own relatively smal er angular glint is provided. Numerical results are presented with new findings to demonstrate the usefulness of the developed formulations.
文摘Taking the relativistic effect of high velocity moving target into account, the Doppler shift, polarization deflection, reflection coefficient and phase delay of reflected electric field are analyzed rigorously under the assumptions that incident signal to the target is a plane wave and the target is a perfect conductor plane; and their analytic expressions are obtained. The present results are of practical significance to some extent for the accurate expression of the wideband returned signal of a high velocity moving target in the bistatic radar system and for the understanding of wideband ambiguity functions.
文摘研究了协同雷达通信系统的布站优化问题,通信系统搭载在无人机(Unmanned Aerial Vehicle,UAV)上,采用非正交多址接入(Non-Orthogonal Multiple Access,NOMA)技术服务多个地面用户,雷达系统为多基地雷达,其多个接收机和发射机分置,雷达系统和通信系统存在部分频谱重叠共享。建立了UAV通信系统发射机和雷达接收机的联合布站优化模型,目标是在通信传输速率约束下,实现通信系统平均传输能耗最小化、通信发射机-雷达接收机信道的信噪比最大化以及雷达定位几何精度因子(Geometric Dilution of Precision,GDOP)最小化。引入流向算法(Flow Direction Algorithm,FDA)进行最优化求解,仿真结果表明,相对于通信系统未采用NOMA技术时,所提出的布站优化方案平均传输能耗更低,且FDA较其他常用智能优化算法的精度和寻优效率更高。
基金Project supported by the National Natural Science Foundation of China(No.61401526)the Innovative Research Team in University,China(No.IRT0954)the Foundation of National Ministries,China(No.9140A07020614DZ01)
文摘The resolution of the multistatic passive radar imaging system(MPRIS)is poor due to the narrow bandwidth of the signal transmitted by illuminators of opportunity.Moreover,the inaccuracies caused by the inaccurate tracking system or the error position measurement of illuminators or receivers can deteriorate the quality of an image.To improve the performance of an MPRIS,an imaging method based on the tomographic imaging principle is presented.Then the compressed sensing technique is extended to the MPRIS to realize high-resolution imaging.Furthermore,a phase correction technique is developed for compensating for phase errors in an MPRIS.Phase errors can be estimated by iteratively solving an equation that is derived by minimizing the mean recovery error of the reconstructed image based on the principle of fixed-point iteration technique.The technique is nonparametric and can be used to estimate phase errors of any form.The effectiveness and convergence of the technique are confirmed by numerical simulations.