<div style="text-align:justify;"> Due to the poor anti-clogging performance of the common drip irrigation emitters, this paper designed a new bionic flow channel in the emitter based on the shape of sh...<div style="text-align:justify;"> Due to the poor anti-clogging performance of the common drip irrigation emitters, this paper designed a new bionic flow channel in the emitter based on the shape of shark dorsal fin. After preliminary structural design, the computational fluid dynamics (CFD) simulation showed that the bionic emitter exhibited superior anti-clogging performance and reasonable hydraulic performance. The passage rate of particles of the bionic emitter in simulation reached 96.3% which was 37.6% higher than 70% of traditional emitter, and the discharge exponent reached 0.4995 which was close to traditional emitter. Physical experiments were consistent with the CFD results, which confirmed the correctness of simulation. After a short cycle anti-clogging performance experiment, the bionic emitter still maintained 96.09% of the initial flow rate. </div>展开更多
Ingredients: 250g semi-finished shark's fin (removed of bone, skin and dipped in water), 100g ham, 100g chicken, 50g pork shoulder, 50g dried scallops, 100g bean sprouts, salt and MSG (optional). Method: 1. Scald ...Ingredients: 250g semi-finished shark's fin (removed of bone, skin and dipped in water), 100g ham, 100g chicken, 50g pork shoulder, 50g dried scallops, 100g bean sprouts, salt and MSG (optional). Method: 1. Scald the shark's fin in boiling water. 2. Fill a pot with water and add the chicken, pork and most of展开更多
文摘<div style="text-align:justify;"> Due to the poor anti-clogging performance of the common drip irrigation emitters, this paper designed a new bionic flow channel in the emitter based on the shape of shark dorsal fin. After preliminary structural design, the computational fluid dynamics (CFD) simulation showed that the bionic emitter exhibited superior anti-clogging performance and reasonable hydraulic performance. The passage rate of particles of the bionic emitter in simulation reached 96.3% which was 37.6% higher than 70% of traditional emitter, and the discharge exponent reached 0.4995 which was close to traditional emitter. Physical experiments were consistent with the CFD results, which confirmed the correctness of simulation. After a short cycle anti-clogging performance experiment, the bionic emitter still maintained 96.09% of the initial flow rate. </div>
文摘Ingredients: 250g semi-finished shark's fin (removed of bone, skin and dipped in water), 100g ham, 100g chicken, 50g pork shoulder, 50g dried scallops, 100g bean sprouts, salt and MSG (optional). Method: 1. Scald the shark's fin in boiling water. 2. Fill a pot with water and add the chicken, pork and most of