Due to the limitation of Depth Of Field (DOF) of microscope, the regions which are not within the DOF will be blurring after imaging. Thus for micro-image fusion, the most important step is to identify the blurring re...Due to the limitation of Depth Of Field (DOF) of microscope, the regions which are not within the DOF will be blurring after imaging. Thus for micro-image fusion, the most important step is to identify the blurring regions within each micro-image, so as to remove their undesirable impacts on the fused image. In this paper, a fusion algorithm based on a novel region growing method is proposed for micro-image fusion. The local sharpness of micro-image is judged block by block, then blocks whose sharpness is lower than an adaptive threshold are used as seeds, and the sharpness of neighbors of each seed are evaluated again during the region growing until the blurring regions are identified completely. With the decreasing in block size, the obtained region segmentation becomes more and more accurate. Finally, the micro-images are fused with pixel-wise fusion rules. The experimental results show that the proposed algorithm benefits from the novel region segmentation and it is able to obtain fused micro-image with higher sharpness compared with some popular image fusion method.展开更多
基金Supported by the Natural Science Foundation of Zhejiang Province (Y1101240)Zhejiang Scientific and Technical Key Innovation Team (2010R50009)+1 种基金Natural Science Foundation of Ningbo (2011A610200, 2011A610197)Student Research and Innovation Training Program of Zhejiang Province (New-shoot Talents Project 2011R-405054) (A00162100400)
文摘Due to the limitation of Depth Of Field (DOF) of microscope, the regions which are not within the DOF will be blurring after imaging. Thus for micro-image fusion, the most important step is to identify the blurring regions within each micro-image, so as to remove their undesirable impacts on the fused image. In this paper, a fusion algorithm based on a novel region growing method is proposed for micro-image fusion. The local sharpness of micro-image is judged block by block, then blocks whose sharpness is lower than an adaptive threshold are used as seeds, and the sharpness of neighbors of each seed are evaluated again during the region growing until the blurring regions are identified completely. With the decreasing in block size, the obtained region segmentation becomes more and more accurate. Finally, the micro-images are fused with pixel-wise fusion rules. The experimental results show that the proposed algorithm benefits from the novel region segmentation and it is able to obtain fused micro-image with higher sharpness compared with some popular image fusion method.