In renewable energy systems,energy storage systems can reduce the power fluctuation of renewable energy sources and compensate for the prediction deviation.However,if the renewable energy prediction deviation is small...In renewable energy systems,energy storage systems can reduce the power fluctuation of renewable energy sources and compensate for the prediction deviation.However,if the renewable energy prediction deviation is small,the energy storage system may work in an underutilized state.To efficiently utilize a renewable-energy-sided energy storage system(RES),this study proposed an optimization dispatching strategy for an energy storage system considering its unused capacity sharing.First,this study proposed an unused capacity-sharing strategy for the RES to fully utilize the storage’s unused capacity and elevate the storage’s service efficiency.Second,RES was divided into“deviation-compensating energy storage(DES)”and“sharing energy storage(SES)”to clarify the function of RES in the operation process.Third,this study established an optimized dispatching model to achieve the lowest system operating cost wherein the unused capacity-sharing strategy could be integrated.Finally,a case study was investigated,and the results indicated that the proposed model and algorithm effectively improved the utilization of renewable-energy-side energy storage systems,thereby reducing the total operation cost and pressure on peak shaving.展开更多
In the electrical energy transformation process,the grid-level energy storage system plays an essential role in balancing power generation and utilization.Batteries have considerable potential for application to grid-...In the electrical energy transformation process,the grid-level energy storage system plays an essential role in balancing power generation and utilization.Batteries have considerable potential for application to grid-level energy storage systems because of their rapid response,modularization,and flexible installation.Among several battery technologies,lithium-ion batteries(LIBs)exhibit high energy efficiency,long cycle life,and relatively high energy density.In this perspective,the properties of LIBs,including their operation mechanism,battery design and construction,and advantages and disadvantages,have been analyzed in detail.Moreover,the performance of LIBs applied to grid-level energy storage systems is analyzed in terms of the following grid services:(1)frequency regulation;(2)peak shifting;(3)integration with renewable energy sources;and(4)power management.In addition,the challenges encountered in the application of LIBs are discussed and possible research directions aimed at overcoming these challenges are proposed to provide insight into the development of grid-level energy storage systems.展开更多
Increasing railway traffic and energy utilization issues prompt electrified railway systems to be more economical,efficient and sustainable.As regenerative braking energy in railway systems has huge potential for opti...Increasing railway traffic and energy utilization issues prompt electrified railway systems to be more economical,efficient and sustainable.As regenerative braking energy in railway systems has huge potential for optimized utilization,a lot of research has been focusing on how to use the energy efficiently and gain sustainable benefits.The energy storage system is an alternative because it not only deals with regenerative braking energy but also smooths drastic fluctuation of load power profile and optimizes energy management.In this work,we propose a co-phase traction power supply system with super capacitor(CSS_SC)for the purpose of realizing the function of energy management and power quality management in electrified railways.Besides,the coordinated control strategy is presented to match four working modes,including traction,regenerative braking,peak shaving and valley filling.A corresponding simulation model is built in MATLAB/Simulink to verify the feasibility of the proposed system under dynamic working conditions.The results demonstrate that CSS_SC is flexible to deal with four different working conditions and can realize energy saving within the allowable voltage unbalance of 0.008%in simulation in contrast to 1.3%of the standard limit.With such a control strategy,the performance of super capacitor is controlled to comply with efficiency and safety constraints.Finally,a case study demonstrates the improvement in power fluctuation with the valley-to-peak ratio reduced by 20.3%and the daily load factor increased by 17.9%.展开更多
This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure o...This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure of power systems under the integration of renewable energy. First, a linear model for the optimal operation of the HESS is established, which considers the different power-efficiency characteristics of the pumped storage system, electrochemical storage system, and a new type of liquid compressed air energy storage. Second, a TSOS simulation model for peak shaving is built to maximize the power entering the grid from the wind farms and HESS. Based on the proposed model, this study considers the transmission capacity of a TG. By adding the power-flow constraints of the TG, a TSOS-based HESS and TG combination model for peak shaving is established. Finally, the improved IEEE-39 and IEEE-118 bus systems were considered as examples to verify the effectiveness and feasibility of the proposed model.展开更多
In recent years, high annual increasing load demand in Saudi Arabia has led to large investments in the construction of conventional power plants, which use oil or gas as the main fuel. The government is considering a...In recent years, high annual increasing load demand in Saudi Arabia has led to large investments in the construction of conventional power plants, which use oil or gas as the main fuel. The government is considering a large deployment of renewable energy for its 2030 vision plan. The Kingdom of Saudi Arabia is one of the best potential candidates for harvesting solar energy because of the country’s geographical location, clear sky, and vast land area. A recent energy policy announced by the government involves harvesting solar photovoltaic (PV) energy to reduce the country’s reliance on fossil fuel and greenhouse gas emissions. Using rooftop PV systems can help to shave the peak load and lead to a significant savings in the power sector through the reduction of annual installation of conventional power plants and standby generators. Employing solar PV at the end user level helps to reduce the overloading of transmission and distribution lines as well as decreases power losses. This paper will provide ratings for different rooftop PV systems that are being considered for installation for customers with various needs. The distribution of PV installation among the customers is as follows: 5% residential, 10% commercial, and 20% government. The effect of PV output power on weekly peak demand has been evaluated. The paper has also investigated the impact of the temperature on PV output power, especially during the summer. The PV power contribution is analyzed based on the assumption that weekly peak power production of solar PV coincides with weekly peak load demand. The PV model is implemented in Matlab to simulate and analyze the PV power.展开更多
5G通信基站通常配备光储,数量庞大、功耗可调,是一种优质的电力灵活性调节资源。提出了多类型光储式5G基站集群灵活性资源聚合方法以及参与电网调峰的协同调度策略。首先,分析休眠机制下多类型基站功耗可调特性与计及基站备用电量的储...5G通信基站通常配备光储,数量庞大、功耗可调,是一种优质的电力灵活性调节资源。提出了多类型光储式5G基站集群灵活性资源聚合方法以及参与电网调峰的协同调度策略。首先,分析休眠机制下多类型基站功耗可调特性与计及基站备用电量的储能调节能力。基于极限场景思想,构建了光储式5G基站的灵活性空间量化模型。在此基础上,利用闵可夫斯基和法刻画异构基站柔性资源的时空耦合能量轨迹,得到海量基站集群的灵活性资源聚合可调域。其次,建立了基站集群聚合资源参与电能量市场和辅助服务市场的协同调度优化模型,提出了基于交替方向乘子法(alternating direction method of multipliers, ADMM)的分层分布式基站集群协同优化调度策略,将大规模基站集群调度问题降维分解为统一协同调峰功率响应、聚合功率自治调度和基站集群功率分配3个子问题进行求解。通过算例对比分析可知,所提策略可降低通信基站69.86%的用能成本,为提升通信资源利用率和电力系统灵活调节能力提供了有效手段。展开更多
According to the multi-time-scale characteristics of power generation and demand-side response(DR)resources,as well as the improvement of prediction accuracy along with the approaching operating point,a rolling peak s...According to the multi-time-scale characteristics of power generation and demand-side response(DR)resources,as well as the improvement of prediction accuracy along with the approaching operating point,a rolling peak shaving optimization model consisting of three different time scales has been proposed.The proposed peak shaving optimization model considers not only the generation resources of two different response speeds but also the two different DR resources and determines each unit combination,generation power,and demand response strategy on different time scales so as to participate in the peaking of the power system by taking full advantage of the fast response characteristics of the concentrating solar power(CSP).At the same time,in order to improve the accuracy of the scheduling results,the combination of the day-ahead peak shaving phase with scenario-based stochastic programming can further reduce the influence of wind power prediction errors on scheduling results.The testing results have shown that by optimizing the allocation of scheduling resources in each phase,it can effectively reduce the number of starts and stops of thermal power units and improve the economic efficiency of system operation.The spinning reserve capacity is reduced,and the effectiveness of the peak shaving strategy is verified.展开更多
In this paper,the combustion conditions in the boiler furnace of a 660 MWtangential fired pulverized coal boiler are numerically simulated at 15%and 20%rated loads,to study the flexibility of coal-fired power units on...In this paper,the combustion conditions in the boiler furnace of a 660 MWtangential fired pulverized coal boiler are numerically simulated at 15%and 20%rated loads,to study the flexibility of coal-fired power units on ultra-low load operation.The numerical results show that the boiler can operate safely at 15%and 20%ultra-low loads,and the combustion condition in the furnace is better at 20%load,and the tangent circles formed by each characteristic section in the furnace are better,and when the boiler load is decreased to 15%,the tangent circles in the furnace begin to deteriorate.The average flue gas temperature of different areas of the furnace shows that when the boiler furnace operates under ultra-low load conditions,the average smoke temperature of the cold ash hopper at 20%load is basically the same as the average smoke temperature at 15%load;in the burner area,the average smoke temperature of the cold ash hopper at 20%load is about 50 K higher than that at 15%load;in the burned out area,the average smoke temperature of the cold ash hopper at 20%load is slightly higher than that at 15%load.The average temperature of flue gas in the furnace showed a tendency to increase rapidly with the height of the furnace,then slow down and fluctuate the temperature in the burner area,and finally increase slightly in the burnout area due to the further combustion of combustible components to release heat,and then began to decrease.展开更多
文摘In renewable energy systems,energy storage systems can reduce the power fluctuation of renewable energy sources and compensate for the prediction deviation.However,if the renewable energy prediction deviation is small,the energy storage system may work in an underutilized state.To efficiently utilize a renewable-energy-sided energy storage system(RES),this study proposed an optimization dispatching strategy for an energy storage system considering its unused capacity sharing.First,this study proposed an unused capacity-sharing strategy for the RES to fully utilize the storage’s unused capacity and elevate the storage’s service efficiency.Second,RES was divided into“deviation-compensating energy storage(DES)”and“sharing energy storage(SES)”to clarify the function of RES in the operation process.Third,this study established an optimized dispatching model to achieve the lowest system operating cost wherein the unused capacity-sharing strategy could be integrated.Finally,a case study was investigated,and the results indicated that the proposed model and algorithm effectively improved the utilization of renewable-energy-side energy storage systems,thereby reducing the total operation cost and pressure on peak shaving.
文摘In the electrical energy transformation process,the grid-level energy storage system plays an essential role in balancing power generation and utilization.Batteries have considerable potential for application to grid-level energy storage systems because of their rapid response,modularization,and flexible installation.Among several battery technologies,lithium-ion batteries(LIBs)exhibit high energy efficiency,long cycle life,and relatively high energy density.In this perspective,the properties of LIBs,including their operation mechanism,battery design and construction,and advantages and disadvantages,have been analyzed in detail.Moreover,the performance of LIBs applied to grid-level energy storage systems is analyzed in terms of the following grid services:(1)frequency regulation;(2)peak shifting;(3)integration with renewable energy sources;and(4)power management.In addition,the challenges encountered in the application of LIBs are discussed and possible research directions aimed at overcoming these challenges are proposed to provide insight into the development of grid-level energy storage systems.
文摘Increasing railway traffic and energy utilization issues prompt electrified railway systems to be more economical,efficient and sustainable.As regenerative braking energy in railway systems has huge potential for optimized utilization,a lot of research has been focusing on how to use the energy efficiently and gain sustainable benefits.The energy storage system is an alternative because it not only deals with regenerative braking energy but also smooths drastic fluctuation of load power profile and optimizes energy management.In this work,we propose a co-phase traction power supply system with super capacitor(CSS_SC)for the purpose of realizing the function of energy management and power quality management in electrified railways.Besides,the coordinated control strategy is presented to match four working modes,including traction,regenerative braking,peak shaving and valley filling.A corresponding simulation model is built in MATLAB/Simulink to verify the feasibility of the proposed system under dynamic working conditions.The results demonstrate that CSS_SC is flexible to deal with four different working conditions and can realize energy saving within the allowable voltage unbalance of 0.008%in simulation in contrast to 1.3%of the standard limit.With such a control strategy,the performance of super capacitor is controlled to comply with efficiency and safety constraints.Finally,a case study demonstrates the improvement in power fluctuation with the valley-to-peak ratio reduced by 20.3%and the daily load factor increased by 17.9%.
基金supported by the State Grid Science and Technology Project (No.52999821N004)。
文摘This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure of power systems under the integration of renewable energy. First, a linear model for the optimal operation of the HESS is established, which considers the different power-efficiency characteristics of the pumped storage system, electrochemical storage system, and a new type of liquid compressed air energy storage. Second, a TSOS simulation model for peak shaving is built to maximize the power entering the grid from the wind farms and HESS. Based on the proposed model, this study considers the transmission capacity of a TG. By adding the power-flow constraints of the TG, a TSOS-based HESS and TG combination model for peak shaving is established. Finally, the improved IEEE-39 and IEEE-118 bus systems were considered as examples to verify the effectiveness and feasibility of the proposed model.
文摘In recent years, high annual increasing load demand in Saudi Arabia has led to large investments in the construction of conventional power plants, which use oil or gas as the main fuel. The government is considering a large deployment of renewable energy for its 2030 vision plan. The Kingdom of Saudi Arabia is one of the best potential candidates for harvesting solar energy because of the country’s geographical location, clear sky, and vast land area. A recent energy policy announced by the government involves harvesting solar photovoltaic (PV) energy to reduce the country’s reliance on fossil fuel and greenhouse gas emissions. Using rooftop PV systems can help to shave the peak load and lead to a significant savings in the power sector through the reduction of annual installation of conventional power plants and standby generators. Employing solar PV at the end user level helps to reduce the overloading of transmission and distribution lines as well as decreases power losses. This paper will provide ratings for different rooftop PV systems that are being considered for installation for customers with various needs. The distribution of PV installation among the customers is as follows: 5% residential, 10% commercial, and 20% government. The effect of PV output power on weekly peak demand has been evaluated. The paper has also investigated the impact of the temperature on PV output power, especially during the summer. The PV power contribution is analyzed based on the assumption that weekly peak power production of solar PV coincides with weekly peak load demand. The PV model is implemented in Matlab to simulate and analyze the PV power.
文摘5G通信基站通常配备光储,数量庞大、功耗可调,是一种优质的电力灵活性调节资源。提出了多类型光储式5G基站集群灵活性资源聚合方法以及参与电网调峰的协同调度策略。首先,分析休眠机制下多类型基站功耗可调特性与计及基站备用电量的储能调节能力。基于极限场景思想,构建了光储式5G基站的灵活性空间量化模型。在此基础上,利用闵可夫斯基和法刻画异构基站柔性资源的时空耦合能量轨迹,得到海量基站集群的灵活性资源聚合可调域。其次,建立了基站集群聚合资源参与电能量市场和辅助服务市场的协同调度优化模型,提出了基于交替方向乘子法(alternating direction method of multipliers, ADMM)的分层分布式基站集群协同优化调度策略,将大规模基站集群调度问题降维分解为统一协同调峰功率响应、聚合功率自治调度和基站集群功率分配3个子问题进行求解。通过算例对比分析可知,所提策略可降低通信基站69.86%的用能成本,为提升通信资源利用率和电力系统灵活调节能力提供了有效手段。
基金support of the projects Youth Science Foundation of Gansu Province(Source-Grid-Load Multi-Time Interval Optimization Scheduling Method Considering Wind-PV-CSP Combined DC Transmission,No.22JR11RA148)Youth Science Foundation of Lanzhou Jiaotong University(Research on Coordinated Dispatching Control Strategy of High Proportion New Energy Transmission Power System with CSP Power Generation,No.2020011).
文摘According to the multi-time-scale characteristics of power generation and demand-side response(DR)resources,as well as the improvement of prediction accuracy along with the approaching operating point,a rolling peak shaving optimization model consisting of three different time scales has been proposed.The proposed peak shaving optimization model considers not only the generation resources of two different response speeds but also the two different DR resources and determines each unit combination,generation power,and demand response strategy on different time scales so as to participate in the peaking of the power system by taking full advantage of the fast response characteristics of the concentrating solar power(CSP).At the same time,in order to improve the accuracy of the scheduling results,the combination of the day-ahead peak shaving phase with scenario-based stochastic programming can further reduce the influence of wind power prediction errors on scheduling results.The testing results have shown that by optimizing the allocation of scheduling resources in each phase,it can effectively reduce the number of starts and stops of thermal power units and improve the economic efficiency of system operation.The spinning reserve capacity is reduced,and the effectiveness of the peak shaving strategy is verified.
文摘In this paper,the combustion conditions in the boiler furnace of a 660 MWtangential fired pulverized coal boiler are numerically simulated at 15%and 20%rated loads,to study the flexibility of coal-fired power units on ultra-low load operation.The numerical results show that the boiler can operate safely at 15%and 20%ultra-low loads,and the combustion condition in the furnace is better at 20%load,and the tangent circles formed by each characteristic section in the furnace are better,and when the boiler load is decreased to 15%,the tangent circles in the furnace begin to deteriorate.The average flue gas temperature of different areas of the furnace shows that when the boiler furnace operates under ultra-low load conditions,the average smoke temperature of the cold ash hopper at 20%load is basically the same as the average smoke temperature at 15%load;in the burner area,the average smoke temperature of the cold ash hopper at 20%load is about 50 K higher than that at 15%load;in the burned out area,the average smoke temperature of the cold ash hopper at 20%load is slightly higher than that at 15%load.The average temperature of flue gas in the furnace showed a tendency to increase rapidly with the height of the furnace,then slow down and fluctuate the temperature in the burner area,and finally increase slightly in the burnout area due to the further combustion of combustible components to release heat,and then began to decrease.