The current velocity observation of LADCP(Lowered Acoustic Doppler Current Profiler)has the advantages of a large vertical range of observation and high operability compared with traditional current measurement method...The current velocity observation of LADCP(Lowered Acoustic Doppler Current Profiler)has the advantages of a large vertical range of observation and high operability compared with traditional current measurement methods,and is being widely used in the field of ocean observation.Shear and inverse methods are now commonly used by the international marine community to process LADCP data and calculate ocean current profiles.The two methods have their advantages and shortcomings.The shear method calculates the value of current shear more accurately,while the accuracy in an absolute value of the current is lower.The inverse method calculates the absolute value of the current velocity more accurately,but the current shear is less accurate.Based on the shear method,this paper proposes a layering shear method to calculate the current velocity profile by“layering averaging”,and proposes corresponding current calculation methods according to the different types of problems in several field observation data from the western Pacific,forming an independent LADCP data processing system.The comparison results have shown that the layering shear method can achieve the same effect as the inverse method in the calculation of the absolute value of current velocity,while retaining the advantages of the shear method in the calculation of a value of the current shear.展开更多
High-order accurate schemes are employed to numerically simulate the interaction of a supersonic jet and a co-directional supersonic inflow. A double backward-facing step model is proposed to investigate the interacti...High-order accurate schemes are employed to numerically simulate the interaction of a supersonic jet and a co-directional supersonic inflow. A double backward-facing step model is proposed to investigate the interaction between the jet shear layer and the supersonic inflow shear layer. It is found that due to the interaction of the shear layer, a secondary jet is injected into the recirculation zone at the intersection of the two shear layers. The secondary jet produced by the interaction of the two shear layers has a periodicity because of shear layers interaction. The distinction in the shape of double backward-facing steps will induce changes in the period of the secondary jet. The analysis and discussion of the periodicity of the secondary jet are mainly focused in this letter.展开更多
The diffusion bonding of AZ31B Mg alloy and Q235 steel was investigated with a Zn-5Al alloy as interlayer and under different holding time ranging from 3 to 1 200 s. The microstructure and phase compositions of bonded...The diffusion bonding of AZ31B Mg alloy and Q235 steel was investigated with a Zn-5Al alloy as interlayer and under different holding time ranging from 3 to 1 200 s. The microstructure and phase compositions of bonded joints were characterized by scanning electron microscopy( SEM),energy dispersive spectrometer( EDS) and X-ray diffraction( XRD)methods. The shear strength of Mg alloy/steel joints was measured by tensile tester. It was found that the microstructure of bonded joints evolved dramatically along with the prolongation of holding time. Under the holding time of 3 s,the main part of joint was composed of MgZn_2 phase and dispersed Al-rich solid solution particles. When increased the holding time more than 60 s,the excessive solution of AZ31B into the interfacial reaction area led to the formation of coarse phase and eutectic microstructure,and also the complex Fe-Al and Mg-Al-Zn IMCs at transition layer closed to Q235 steel side. According to the tensile testing characterizations,the joints obtained under holding time of 3 s exhibited the best shear strength of 84 MPa,and the fracture occurred at the intermediary part of joint where the flexible Al-rich solid solution particles could help to impede the microcrack propagations. With prolonging the holding time to 600 s,the shear strength of joints was deteriorated enormously and the fracture position was shifted to the transition layer part closed to Q235 steel.展开更多
The lateral velocity distribution of flow in the shear layer of open channel is required to many problems in river and eco-environment engineering, e.g. distribution of pollutant dispersion, sediment transport and ban...The lateral velocity distribution of flow in the shear layer of open channel is required to many problems in river and eco-environment engineering, e.g. distribution of pollutant dispersion, sediment transport and bank erosion, and aquatic habitat. It is not well understood about how the velocity varies laterally in the wall boundary layer. This paper gives an analytical solution of lateral velocity distribution in a rectangular open channel based on the depth-averaged momentum equation proposed by Shiono & Knight. The obtained lateral velocity distributions in the wall shear layer are related to the two hydraulic parameters of lateral eddy viscosity (λ) and depth-averaged secondary flow (Γ) for given roughened channels. Preliminary relationships between the above two parameters and the aspect ratio of channel, B/H, are obtained from two sets of experimental data. The lateral width (δ) of the shear layer was investigated and found to relate to the λ and the bed friction factor (f), as described by Equation (26). This study indicates that the lateral shear layer near the wall can be very wide (δ/H = 14.6) for the extreme case (λ = 0.6 and f = 0.01).展开更多
Separated shear layer of blunt circular cylinder has been experimentally investigated for the Reynolds numbers (based on the diameter) ranging from 2.8 x 10(3) to 1.0 x 10(5), with emphasis on evolution of separated s...Separated shear layer of blunt circular cylinder has been experimentally investigated for the Reynolds numbers (based on the diameter) ranging from 2.8 x 10(3) to 1.0 x 10(5), with emphasis on evolution of separated shear layer, its structure and distribution of Reynolds shear stress and turbulence kinetic energy. The results demonstrate that laminar separated shear layer experiences 2 similar to 3 times vortex merging before it reattaches, and turbulence separated shear layer takes 5 similar to 6 times vortex merging. In addition, relationship between dimensionless initial frequencies of K-H instability and Reynolds numbers is identified, and reasons for the decay of turbulence kinetic energy and Reynolds shear stress in reattachment region are discussed.展开更多
Large eddy simulation (LES) is used to investigate contrasting dynamic characteristics of shear turbulence (ST) and Langmuir circulation (LC) in the surface mixed layer (SML). ST is usually induced by wind for...Large eddy simulation (LES) is used to investigate contrasting dynamic characteristics of shear turbulence (ST) and Langmuir circulation (LC) in the surface mixed layer (SML). ST is usually induced by wind forcing in SML. LC can be driven by wave-current interaction that includes the roles of wind, wave and vortex forcing. The LES results show that LC suppresses the horizontal velocity and greatly modifies the downwind velocity profile, but increases the vertical velocity. The strong downweUing jets of LC accelerate and increase the downward transport of energy as compared to ST. The vertical eddy viscosity Km of LC is much larger than that of ST. Strong mixing induced by LC has two locations. They are located in the 26s-36s (Stokes depth scale) and the lower layer of the SML, respectively. Its value and position change periodically with time. In contrast, maximum Km induced by ST is located in the middle depth of the SML. The turbulent kinetic energy (TKE) generated by LC is larger than that by ST. The differences in vertical distributions of TKE and Krn are evident. Therefore, the parameterization of LC cannot be solely based on TKE. For deep SML, the convection of large-scale eddies in LC plays a main role in downward transport of energy and LC can induce stronger velocity shear (S2) near the SML base. In addition, the large-scale eddies and Sz induced by LC is changing all the time, which needs to be fully considered in the parameterization of LC.展开更多
A concept of phase synchronization point is proposed, and then a model is built using this concept to explain secondary instabilities. This model has been used to determine the conditions of K- and H-type secondary in...A concept of phase synchronization point is proposed, and then a model is built using this concept to explain secondary instabilities. This model has been used to determine the conditions of K- and H-type secondary instabilities, which are coincident with the conditions published in literatures. It also can be used to analyze other secondary instability phenomena. For example, the numerical results validate the analysis results in the case of 1/3rd subharmonic mode secondary instability. Furthermore, the numerical results indicate that the spanwise wave number of 3D disturbance has significant effect on the secondary instability.展开更多
By applying the dynamic schlieren-photon correlation technique to a two dimensional separated supersonic shear layer, the convection velocity of large eddies inside the shear layer and the frequency of the self-sustai...By applying the dynamic schlieren-photon correlation technique to a two dimensional separated supersonic shear layer, the convection velocity of large eddies inside the shear layer and the frequency of the self-sustaining oscillation of the shear layer induced by the shedding of large eddies have been obtained. The distribution of the turbulence intensity inside the shear layer can also be estimated. It is shown that the method has its promising potentials in the measurement of high speed complex flows.展开更多
The velocity ratio of a free shear layer has an important influence on the spatial development of the large scale coherent structures in the layer. In this study, numerical simulations are performed to get an insight ...The velocity ratio of a free shear layer has an important influence on the spatial development of the large scale coherent structures in the layer. In this study, numerical simulations are performed to get an insight into this problem. The obtained numerical results agree quite well with those of a linear inviscid stability theory and the available experimental data.展开更多
A spectrum method is used to simulate the time-developing free mixing layerwith cross shear which is introduced in different stages. The results show that the properties of flow are nearly the same for situations whet...A spectrum method is used to simulate the time-developing free mixing layerwith cross shear which is introduced in different stages. The results show that the properties of flow are nearly the same for situations whether the cross shear is introduced in theinitial time or in early stage. If cross shear is introduced in the stage that the roll-up ofmixing layer occurs, the turbulent intensities of now will increase and mixture of now willbe enhanced.展开更多
Hypersingular integral equations are derived for the problem of determining the antiplane shear stress around periodic arrays of planar cracks in a periodically-layered anisotropic elastic space. The unknown functions...Hypersingular integral equations are derived for the problem of determining the antiplane shear stress around periodic arrays of planar cracks in a periodically-layered anisotropic elastic space. The unknown functions are directly related to the jump in the displacements across opposite crack faces. Once the integral equations are solved, crack parameters of interest, such as the clack tip stress intensity factors, may be readily computed.For some specific examples of the problem, the integral equations are solved numerically by using a collocation technique, in order to compute the relevant stress intensity factors.展开更多
This paper investigates the design formula for the shear strength at the concrete-to-concrete interface proposed in Eurocode with regard to concrete layers with different strengths. Based upon the results of the study...This paper investigates the design formula for the shear strength at the concrete-to-concrete interface proposed in Eurocode with regard to concrete layers with different strengths. Based upon the results of the study on the applicability of the design formula, push-off test is conducted on specimens with various indented interfaces to evaluate the actual behavior with respect to the surface roughness. The experimental results reveal that the interfacial shear strength increases with higher compressive strength of the concrete layers presenting different strengths and that the shear strength at the indented interface differs by 20% to 50% compared to the value predicted by the design formula. Especially, the shear strength developed between the concrete layers with different strengths appears to be different from the prediction of the design formula as much as the layers present larger difference in their compressive strengths.展开更多
基金The National Natural Science Foundation of China under contract No.42206033the Marine Geological Survey Program of China Geological Survey under contract No.DD20221706+1 种基金the Research Foundation of National Engineering Research Center for Gas Hydrate Exploration and Development,Innovation Team Project,under contract No.2022GMGSCXYF41003the Scientific Research Fund of the Second Institute of Oceanography,Ministry of Natural Resources,under contract No.JG2006.
文摘The current velocity observation of LADCP(Lowered Acoustic Doppler Current Profiler)has the advantages of a large vertical range of observation and high operability compared with traditional current measurement methods,and is being widely used in the field of ocean observation.Shear and inverse methods are now commonly used by the international marine community to process LADCP data and calculate ocean current profiles.The two methods have their advantages and shortcomings.The shear method calculates the value of current shear more accurately,while the accuracy in an absolute value of the current is lower.The inverse method calculates the absolute value of the current velocity more accurately,but the current shear is less accurate.Based on the shear method,this paper proposes a layering shear method to calculate the current velocity profile by“layering averaging”,and proposes corresponding current calculation methods according to the different types of problems in several field observation data from the western Pacific,forming an independent LADCP data processing system.The comparison results have shown that the layering shear method can achieve the same effect as the inverse method in the calculation of the absolute value of current velocity,while retaining the advantages of the shear method in the calculation of a value of the current shear.
基金supported by the National Key Research and Development Program of China(Grant 2016YFA0401201)the National Natural Science Foundation of China(Grants 11872066,11472281,11727901,and 11532014)。
文摘High-order accurate schemes are employed to numerically simulate the interaction of a supersonic jet and a co-directional supersonic inflow. A double backward-facing step model is proposed to investigate the interaction between the jet shear layer and the supersonic inflow shear layer. It is found that due to the interaction of the shear layer, a secondary jet is injected into the recirculation zone at the intersection of the two shear layers. The secondary jet produced by the interaction of the two shear layers has a periodicity because of shear layers interaction. The distinction in the shape of double backward-facing steps will induce changes in the period of the secondary jet. The analysis and discussion of the periodicity of the secondary jet are mainly focused in this letter.
基金financially supported by National Natural Science Foundation of China(Grant No.51104027)the Doctoral Fund of Ministry of Education of China(20112124120004)
文摘The diffusion bonding of AZ31B Mg alloy and Q235 steel was investigated with a Zn-5Al alloy as interlayer and under different holding time ranging from 3 to 1 200 s. The microstructure and phase compositions of bonded joints were characterized by scanning electron microscopy( SEM),energy dispersive spectrometer( EDS) and X-ray diffraction( XRD)methods. The shear strength of Mg alloy/steel joints was measured by tensile tester. It was found that the microstructure of bonded joints evolved dramatically along with the prolongation of holding time. Under the holding time of 3 s,the main part of joint was composed of MgZn_2 phase and dispersed Al-rich solid solution particles. When increased the holding time more than 60 s,the excessive solution of AZ31B into the interfacial reaction area led to the formation of coarse phase and eutectic microstructure,and also the complex Fe-Al and Mg-Al-Zn IMCs at transition layer closed to Q235 steel side. According to the tensile testing characterizations,the joints obtained under holding time of 3 s exhibited the best shear strength of 84 MPa,and the fracture occurred at the intermediary part of joint where the flexible Al-rich solid solution particles could help to impede the microcrack propagations. With prolonging the holding time to 600 s,the shear strength of joints was deteriorated enormously and the fracture position was shifted to the transition layer part closed to Q235 steel.
文摘The lateral velocity distribution of flow in the shear layer of open channel is required to many problems in river and eco-environment engineering, e.g. distribution of pollutant dispersion, sediment transport and bank erosion, and aquatic habitat. It is not well understood about how the velocity varies laterally in the wall boundary layer. This paper gives an analytical solution of lateral velocity distribution in a rectangular open channel based on the depth-averaged momentum equation proposed by Shiono & Knight. The obtained lateral velocity distributions in the wall shear layer are related to the two hydraulic parameters of lateral eddy viscosity (λ) and depth-averaged secondary flow (Γ) for given roughened channels. Preliminary relationships between the above two parameters and the aspect ratio of channel, B/H, are obtained from two sets of experimental data. The lateral width (δ) of the shear layer was investigated and found to relate to the λ and the bed friction factor (f), as described by Equation (26). This study indicates that the lateral shear layer near the wall can be very wide (δ/H = 14.6) for the extreme case (λ = 0.6 and f = 0.01).
基金The proJect supported by the National Natural Science Foundation of Chinathe Key Laboratory for Hydrodynamics of NDCST
文摘Separated shear layer of blunt circular cylinder has been experimentally investigated for the Reynolds numbers (based on the diameter) ranging from 2.8 x 10(3) to 1.0 x 10(5), with emphasis on evolution of separated shear layer, its structure and distribution of Reynolds shear stress and turbulence kinetic energy. The results demonstrate that laminar separated shear layer experiences 2 similar to 3 times vortex merging before it reattaches, and turbulence separated shear layer takes 5 similar to 6 times vortex merging. In addition, relationship between dimensionless initial frequencies of K-H instability and Reynolds numbers is identified, and reasons for the decay of turbulence kinetic energy and Reynolds shear stress in reattachment region are discussed.
基金The National Basic Research Program of China(973 Program)under contract No.2011CB403504the China Postdoctoral Science Foundation under contract No.2013M542216the National Natural Science Foundation of China under contract No.41206011
文摘Large eddy simulation (LES) is used to investigate contrasting dynamic characteristics of shear turbulence (ST) and Langmuir circulation (LC) in the surface mixed layer (SML). ST is usually induced by wind forcing in SML. LC can be driven by wave-current interaction that includes the roles of wind, wave and vortex forcing. The LES results show that LC suppresses the horizontal velocity and greatly modifies the downwind velocity profile, but increases the vertical velocity. The strong downweUing jets of LC accelerate and increase the downward transport of energy as compared to ST. The vertical eddy viscosity Km of LC is much larger than that of ST. Strong mixing induced by LC has two locations. They are located in the 26s-36s (Stokes depth scale) and the lower layer of the SML, respectively. Its value and position change periodically with time. In contrast, maximum Km induced by ST is located in the middle depth of the SML. The turbulent kinetic energy (TKE) generated by LC is larger than that by ST. The differences in vertical distributions of TKE and Krn are evident. Therefore, the parameterization of LC cannot be solely based on TKE. For deep SML, the convection of large-scale eddies in LC plays a main role in downward transport of energy and LC can induce stronger velocity shear (S2) near the SML base. In addition, the large-scale eddies and Sz induced by LC is changing all the time, which needs to be fully considered in the parameterization of LC.
文摘A concept of phase synchronization point is proposed, and then a model is built using this concept to explain secondary instabilities. This model has been used to determine the conditions of K- and H-type secondary instabilities, which are coincident with the conditions published in literatures. It also can be used to analyze other secondary instability phenomena. For example, the numerical results validate the analysis results in the case of 1/3rd subharmonic mode secondary instability. Furthermore, the numerical results indicate that the spanwise wave number of 3D disturbance has significant effect on the secondary instability.
文摘By applying the dynamic schlieren-photon correlation technique to a two dimensional separated supersonic shear layer, the convection velocity of large eddies inside the shear layer and the frequency of the self-sustaining oscillation of the shear layer induced by the shedding of large eddies have been obtained. The distribution of the turbulence intensity inside the shear layer can also be estimated. It is shown that the method has its promising potentials in the measurement of high speed complex flows.
基金Project supported by the National Natural Science Foundation of china
文摘The velocity ratio of a free shear layer has an important influence on the spatial development of the large scale coherent structures in the layer. In this study, numerical simulations are performed to get an insight into this problem. The obtained numerical results agree quite well with those of a linear inviscid stability theory and the available experimental data.
文摘A spectrum method is used to simulate the time-developing free mixing layerwith cross shear which is introduced in different stages. The results show that the properties of flow are nearly the same for situations whether the cross shear is introduced in theinitial time or in early stage. If cross shear is introduced in the stage that the roll-up ofmixing layer occurs, the turbulent intensities of now will increase and mixture of now willbe enhanced.
文摘Hypersingular integral equations are derived for the problem of determining the antiplane shear stress around periodic arrays of planar cracks in a periodically-layered anisotropic elastic space. The unknown functions are directly related to the jump in the displacements across opposite crack faces. Once the integral equations are solved, crack parameters of interest, such as the clack tip stress intensity factors, may be readily computed.For some specific examples of the problem, the integral equations are solved numerically by using a collocation technique, in order to compute the relevant stress intensity factors.
文摘This paper investigates the design formula for the shear strength at the concrete-to-concrete interface proposed in Eurocode with regard to concrete layers with different strengths. Based upon the results of the study on the applicability of the design formula, push-off test is conducted on specimens with various indented interfaces to evaluate the actual behavior with respect to the surface roughness. The experimental results reveal that the interfacial shear strength increases with higher compressive strength of the concrete layers presenting different strengths and that the shear strength at the indented interface differs by 20% to 50% compared to the value predicted by the design formula. Especially, the shear strength developed between the concrete layers with different strengths appears to be different from the prediction of the design formula as much as the layers present larger difference in their compressive strengths.