期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Numerical Investigation of Connection Performance of Timber-Concrete Composite Slabs with Inclined Self-Tapping Screws under High Temperature
1
作者 Zhentao Chen Weidong Lu +3 位作者 Yingwei Bao Jun Zhang Lu Wang Kong Yue 《Journal of Renewable Materials》 SCIE EI 2022年第1期89-104,共16页
The timber-concrete composite(TCC)slabs have become a preferred choice of floor systems in modern multi story timber buildings.This TCC slab consisted of timber and a concrete slab which were commonly connected togeth... The timber-concrete composite(TCC)slabs have become a preferred choice of floor systems in modern multi story timber buildings.This TCC slab consisted of timber and a concrete slab which were commonly connected together with inclined self-tapping screws(STSs).To more accurately predict the fire performance of TCC slabs,the mechanical behavior of TCC connections under high temperature was investigated by numerical simulation in this study.The interface slip of TCC connections was simulated by a proposed Finite Element(FE)model at room temperature,and different diameter and penetration length screws were considered.The effectiveness of this FE model was validated by comparing with the existing experimental results.Furthermore,the sequentially coupling thermal stress analyses of this model were conducted,and the relationship between the reduction coefficient of connection performance and the effective penetration length of screws was summarized.This study gave the fit-ting expressions for the reduction coefficient of slip modulus and joint strength.Finally,the numerical investiga-tions of the fire performance of TCC slabs considering the char fall-off of Cross Laminated Timber(CLT)were performed to verify the effectiveness of the proposed reduction law.Comparing the fire-resistance time with experimental results showed deviation of the proposed model was−14.02%. 展开更多
关键词 Cross laminated timber finite element fire resistance shear connection timber-concrete composite
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部