A code named LARWM with non-ideal magnetohydrodynamic equations in cylindrical model is used to describe the instability in Tokamak plasma surrounded by a conducting wall with finite resistivity. We mainly take three ...A code named LARWM with non-ideal magnetohydrodynamic equations in cylindrical model is used to describe the instability in Tokamak plasma surrounded by a conducting wall with finite resistivity. We mainly take three factors related to the shear equilibrium plasma flow into consideration to study the stabilizing effect of the shear flow on the resistive wall modes (RWMs). The three factors are the velocity amplitude of flow, the shear rate of flow on plasma surface, and the inertial energy of equilibrium plasma flow. In addition, a local shear plasma flow is also calculated by the LARWM code. Consequently, it is found that the inertial energy of the shear equilibrium plasma flow has an important role in the stabilization of the RWMs.展开更多
Problem of the axisymmetric toroidal equilibrium with pure sheared toroidal flow isinvolved. For standard tokamak equilibrium, general approximate solutions are analytically pur-sued for arbitrary current profile and ...Problem of the axisymmetric toroidal equilibrium with pure sheared toroidal flow isinvolved. For standard tokamak equilibrium, general approximate solutions are analytically pur-sued for arbitrary current profile and non-circular cross-section. Equilibrium properties includingthe fiow-induced density asymmetry are analyzed.展开更多
The multipolar velocity field structures are investigated by 2D momentum conservation equation with 3D equilibrium sheared flows in the full toroidal system. Numerical results show that the non-existence of radial vel...The multipolar velocity field structures are investigated by 2D momentum conservation equation with 3D equilibrium sheared flows in the full toroidal system. Numerical results show that the non-existence of radial velocity field in equilibrium surfaces is suitable only for the zero-order term of our 2D simulation. The non-zero-order radial velocity field is still preserved, even when converted to conventional magnetic surface coordinates. The distribution of velocity field vectors of the order of 1, 2, and 3 are presented respectively in 2, 4, and 6 polar fields with the local vortex structure. The excitation mechanisms of these velocity vortices are the coupling effects of the magneto-fluid structure patterns and the toroidal effects. These results can help us understand the complexity of core physics, the transverse transport across magnetic field by the radial plasma flow and the formation of velocity vortices.展开更多
基金the National Natural Science Foundation of China(Grant Nos.11105065 and 11275041)the National Basic Research Program of China(Grant Nos.2008CB717801,2008CB787103,2009GB105004,and 2010GB106002)
文摘A code named LARWM with non-ideal magnetohydrodynamic equations in cylindrical model is used to describe the instability in Tokamak plasma surrounded by a conducting wall with finite resistivity. We mainly take three factors related to the shear equilibrium plasma flow into consideration to study the stabilizing effect of the shear flow on the resistive wall modes (RWMs). The three factors are the velocity amplitude of flow, the shear rate of flow on plasma surface, and the inertial energy of equilibrium plasma flow. In addition, a local shear plasma flow is also calculated by the LARWM code. Consequently, it is found that the inertial energy of the shear equilibrium plasma flow has an important role in the stabilization of the RWMs.
基金National Science Foundation (19975015) and the China Nuclear Science Foundation(Y7l00C030l).
文摘Problem of the axisymmetric toroidal equilibrium with pure sheared toroidal flow isinvolved. For standard tokamak equilibrium, general approximate solutions are analytically pur-sued for arbitrary current profile and non-circular cross-section. Equilibrium properties includingthe fiow-induced density asymmetry are analyzed.
基金Supported by National Natural Science Foundation of China under Grant No.11575066Domestic ITER under Grant No.2009GB105003
文摘The multipolar velocity field structures are investigated by 2D momentum conservation equation with 3D equilibrium sheared flows in the full toroidal system. Numerical results show that the non-existence of radial velocity field in equilibrium surfaces is suitable only for the zero-order term of our 2D simulation. The non-zero-order radial velocity field is still preserved, even when converted to conventional magnetic surface coordinates. The distribution of velocity field vectors of the order of 1, 2, and 3 are presented respectively in 2, 4, and 6 polar fields with the local vortex structure. The excitation mechanisms of these velocity vortices are the coupling effects of the magneto-fluid structure patterns and the toroidal effects. These results can help us understand the complexity of core physics, the transverse transport across magnetic field by the radial plasma flow and the formation of velocity vortices.