The synergistic use of partially encased concrete and composite girders with corrugated steel webs (CGCSWs) has been proposed to avoid the buckling of corrugated steel webs and compression steel flanges under large ...The synergistic use of partially encased concrete and composite girders with corrugated steel webs (CGCSWs) has been proposed to avoid the buckling of corrugated steel webs and compression steel flanges under large combined shear force and bending moment in the hogging area. First, model tests were carried out on two specimens with different shear spans to investigate the mechanical behavior, including the load-carrying capacity, failure modes, flexural and shear stress distribution, and development of concrete cracking. Experimental results show that the interaction of shear force and bending moment causes the failure of specimens. The bending-to-shear ratio does not affect the shear stiffness of a composite girder in the elastic stage when concrete cracking does not exist, but significantly influ- ences the shear stiffness after concrete cracking. In addition, composite sections in the elastic stage sat- isfy the assumption of the plane section under combined shear force and bending moment. However, after concrete cracking in the tension field, the normal stresses of a corrugated web in the tension area become small due to the "accordion effect," with almost zero stress at the flat panels but recognizable stress at the inclined panels. Second, three-dimensional finite-element (FE) models considering material and geometric nonlinearity were built and validated by experiments, and parametric analyses were conducted on composite girders with different lengths and heights to determine their load-carrying capacity when subjected to combined loads. Finally, an interaction formula with respect to shear and flexural strength is offered on the basis of experimental and numerical results in order to evaluate the load- carrying capacity of such composite structures, thereby providing a reference for the design of partially encased composite girders with corrugated steel webs (PECGCSWs) under combined flexural and shear loads.展开更多
An analytical solution of the governing equations of the interacting shear flows for unsteady oblique stagnation point flow is obtained. It has the same form as that of the exact solution obtained from the complete NS...An analytical solution of the governing equations of the interacting shear flows for unsteady oblique stagnation point flow is obtained. It has the same form as that of the exact solution obtained from the complete NS equations and physical analysis and relevant discussions are then presented.展开更多
Gao's viscous/in-viscid interacting shear flows (ISF) theory, proposed by professor Gao Zhi in Institute of Mechanics, China Academy of Science, and its inferences and their applications in computational fluid dyna...Gao's viscous/in-viscid interacting shear flows (ISF) theory, proposed by professor Gao Zhi in Institute of Mechanics, China Academy of Science, and its inferences and their applications in computational fluid dynamics (CFD) are reviewed and some subjects worthy to be studied are pro- posed in this paper. The flow-field and motion law of ISF, mathematics definition of strong viscous shear layer flow in ISF, ISF equations, wall-surface compatibility criteria (Gao's criteria ), space scale variety law of strong viscous shear layer reveals flow mechanism and local space small scale triggered by strong interaction that cause some abnormal severe local pneumatic heating phenomenon in hypersonic flow. Gao's ISF theory was used in near wall flow, free ISF flow simulation and design of computing grids, Gao's wall-surface criteria were used to verify calculation reliability and accuracy of near wall flows, ISF theory approximate analytical result of shock waves-boundary layer interac- tion and ISF equations were used to obtain the numerical exact solution of local area flow ( such as stationary point flow). Some new subjects, such as, improving near-wall turbulent models according to the turbulent flow simulation satisfying the wall-criteria and illustrating relation between grid-con- vergence based on the wall criteria and other convergence tactics, are suggested. The necessity of applying Gao's ISF theory and wall criteria is revealed. Difficulties and importance of hypersonic vis- cous/in-viscid interaction phenomenon were also emphasized.展开更多
Studies of interactions between wind and saltating particles (i.e., the wind-saltation interaction) are usually conducted without consideration of the downwind air pressure gradient. However, in a wind tunnel with l...Studies of interactions between wind and saltating particles (i.e., the wind-saltation interaction) are usually conducted without consideration of the downwind air pressure gradient. However, in a wind tunnel with limited size, this gradient is required to maintain the movement of the saltation cloud. Attempts are made to investigate the effects of the downwind air pressure gradient on the wind-saltation interaction in a saltation boundary layer based on the experimental results from a wind tunnel with a relatively small cross-sectional area. The wind-saltation interaction is characterized by airborne stress, grain-borne stress, and the force exerted on the wind by the saltation cloud. Basic equations were developed for wind-saltation interactions without and with a downwind air pressure gradient. The results reveal that unacceptable values of negative grain-borne stress and negative force exerted on the wind by the saltation cloud are obtained if the downwind air pressure gradient is ignored. When this air pressure gradient is defined using the measured wind velocity profiles in the presence of saltation and the downwind air pressure gradient is taken into account, reasonable values for grain-borne stress and the force exerted on the wind by the saltation cloud are obtained. These results suggest that attention must be paid to the effects of downwind air pressure gradients when studying the wind-saltation interaction in a wind tunnel. Consideration of the downwind air pressure gradient, inertial forces, and other unidentified variables will provide a more thorough understanding of the interactions within a saltation boundary layer.展开更多
Shear bands play a key role in the plastic deformation of metallic glasses(MGs).Even though there are extensive studies on the initiation and propagation of shear bands,the interactions among them have not been syst...Shear bands play a key role in the plastic deformation of metallic glasses(MGs).Even though there are extensive studies on the initiation and propagation of shear bands,the interactions among them have not been systematically studied yet.The interactions between the primary shear bands(PSBs)and secondary shear bands(SSBs)in a ductile Zr-based MG were studied.The residual stress near PSBs can deflect the propagation direction and reduce the propagation velocity of SSBs,which contributes to the plasticity and toughness of the MG.It was demonstrated that the probability and strength of the interactions between PSBs and SSBs would become stronger for MGs with larger Young′s modulus and smaller shear modulus,i.e.,larger Poisson′s ratio.These results are valuable in understanding the plastic deformation of MGs and may be helpful in designing new MGs with desirable mechanical properties.展开更多
Under the direction of the principle of interaction between plastic volumetric and shear strains, the general expression of constitutive relation for geotechnical materials has been derived within the framework of irr...Under the direction of the principle of interaction between plastic volumetric and shear strains, the general expression of constitutive relation for geotechnical materials has been derived within the framework of irreversible thermo- dynamics. The constitutive modeling, in fact, is an inverse problem that belongs to the medium inverse problems of model identification, which is expressed as a reversion of coefficient of differential equation. Thus the constitutive modeling of geotechnical materials will become the reversion of coefficient functions of the general expression of constitutive relation, which is carried out in the stress field (p,q) by means Of numerical techniques, so that is called numerical modeling. Applying the numerical modeling, a number of plasticity-based models for clay and sand have been obtained, which are able to characterize the fundamental features of deformation for geotechnieal materials. In addition, the approach of numerical modeling also can be applied to the situation of unsaturated soils by means of the Bishop's effective stress formula and Khalili's expression of effective stress parameter.展开更多
基金The authors gratefully thank the National Natural Science Foundation of China (51308070, 51408070, and 51378080), the National Basic Research Program of China (2015CB057702), the Key Discipline Fund of Creative Project of Bridge and Tunnel Engineering (13ZDXK04) from the Changsha University of Science and Technology, the Open Fund of the Hunan Province University Key Laboratory of Bridge Engineering (13KA04), and the Applied Basic Research Program of Shanxi Province for their support,
文摘The synergistic use of partially encased concrete and composite girders with corrugated steel webs (CGCSWs) has been proposed to avoid the buckling of corrugated steel webs and compression steel flanges under large combined shear force and bending moment in the hogging area. First, model tests were carried out on two specimens with different shear spans to investigate the mechanical behavior, including the load-carrying capacity, failure modes, flexural and shear stress distribution, and development of concrete cracking. Experimental results show that the interaction of shear force and bending moment causes the failure of specimens. The bending-to-shear ratio does not affect the shear stiffness of a composite girder in the elastic stage when concrete cracking does not exist, but significantly influ- ences the shear stiffness after concrete cracking. In addition, composite sections in the elastic stage sat- isfy the assumption of the plane section under combined shear force and bending moment. However, after concrete cracking in the tension field, the normal stresses of a corrugated web in the tension area become small due to the "accordion effect," with almost zero stress at the flat panels but recognizable stress at the inclined panels. Second, three-dimensional finite-element (FE) models considering material and geometric nonlinearity were built and validated by experiments, and parametric analyses were conducted on composite girders with different lengths and heights to determine their load-carrying capacity when subjected to combined loads. Finally, an interaction formula with respect to shear and flexural strength is offered on the basis of experimental and numerical results in order to evaluate the load- carrying capacity of such composite structures, thereby providing a reference for the design of partially encased composite girders with corrugated steel webs (PECGCSWs) under combined flexural and shear loads.
文摘An analytical solution of the governing equations of the interacting shear flows for unsteady oblique stagnation point flow is obtained. It has the same form as that of the exact solution obtained from the complete NS equations and physical analysis and relevant discussions are then presented.
基金Supported by the National Natural Science Foundation(10702009)
文摘Gao's viscous/in-viscid interacting shear flows (ISF) theory, proposed by professor Gao Zhi in Institute of Mechanics, China Academy of Science, and its inferences and their applications in computational fluid dynamics (CFD) are reviewed and some subjects worthy to be studied are pro- posed in this paper. The flow-field and motion law of ISF, mathematics definition of strong viscous shear layer flow in ISF, ISF equations, wall-surface compatibility criteria (Gao's criteria ), space scale variety law of strong viscous shear layer reveals flow mechanism and local space small scale triggered by strong interaction that cause some abnormal severe local pneumatic heating phenomenon in hypersonic flow. Gao's ISF theory was used in near wall flow, free ISF flow simulation and design of computing grids, Gao's wall-surface criteria were used to verify calculation reliability and accuracy of near wall flows, ISF theory approximate analytical result of shock waves-boundary layer interac- tion and ISF equations were used to obtain the numerical exact solution of local area flow ( such as stationary point flow). Some new subjects, such as, improving near-wall turbulent models according to the turbulent flow simulation satisfying the wall-criteria and illustrating relation between grid-con- vergence based on the wall criteria and other convergence tactics, are suggested. The necessity of applying Gao's ISF theory and wall criteria is revealed. Difficulties and importance of hypersonic vis- cous/in-viscid interaction phenomenon were also emphasized.
基金the funding received from the Natural Science Foundation of China (40638038)
文摘Studies of interactions between wind and saltating particles (i.e., the wind-saltation interaction) are usually conducted without consideration of the downwind air pressure gradient. However, in a wind tunnel with limited size, this gradient is required to maintain the movement of the saltation cloud. Attempts are made to investigate the effects of the downwind air pressure gradient on the wind-saltation interaction in a saltation boundary layer based on the experimental results from a wind tunnel with a relatively small cross-sectional area. The wind-saltation interaction is characterized by airborne stress, grain-borne stress, and the force exerted on the wind by the saltation cloud. Basic equations were developed for wind-saltation interactions without and with a downwind air pressure gradient. The results reveal that unacceptable values of negative grain-borne stress and negative force exerted on the wind by the saltation cloud are obtained if the downwind air pressure gradient is ignored. When this air pressure gradient is defined using the measured wind velocity profiles in the presence of saltation and the downwind air pressure gradient is taken into account, reasonable values for grain-borne stress and the force exerted on the wind by the saltation cloud are obtained. These results suggest that attention must be paid to the effects of downwind air pressure gradients when studying the wind-saltation interaction in a wind tunnel. Consideration of the downwind air pressure gradient, inertial forces, and other unidentified variables will provide a more thorough understanding of the interactions within a saltation boundary layer.
基金Item Sponsored by China Postdoctoral Science Foundation(2014M551779)Ningbo Municipal Natural Science Foundation of China(2015A610005,2015A610064)One Hundred Talents Program of Chinese Academy of Sciences
文摘Shear bands play a key role in the plastic deformation of metallic glasses(MGs).Even though there are extensive studies on the initiation and propagation of shear bands,the interactions among them have not been systematically studied yet.The interactions between the primary shear bands(PSBs)and secondary shear bands(SSBs)in a ductile Zr-based MG were studied.The residual stress near PSBs can deflect the propagation direction and reduce the propagation velocity of SSBs,which contributes to the plasticity and toughness of the MG.It was demonstrated that the probability and strength of the interactions between PSBs and SSBs would become stronger for MGs with larger Young′s modulus and smaller shear modulus,i.e.,larger Poisson′s ratio.These results are valuable in understanding the plastic deformation of MGs and may be helpful in designing new MGs with desirable mechanical properties.
文摘Under the direction of the principle of interaction between plastic volumetric and shear strains, the general expression of constitutive relation for geotechnical materials has been derived within the framework of irreversible thermo- dynamics. The constitutive modeling, in fact, is an inverse problem that belongs to the medium inverse problems of model identification, which is expressed as a reversion of coefficient of differential equation. Thus the constitutive modeling of geotechnical materials will become the reversion of coefficient functions of the general expression of constitutive relation, which is carried out in the stress field (p,q) by means Of numerical techniques, so that is called numerical modeling. Applying the numerical modeling, a number of plasticity-based models for clay and sand have been obtained, which are able to characterize the fundamental features of deformation for geotechnieal materials. In addition, the approach of numerical modeling also can be applied to the situation of unsaturated soils by means of the Bishop's effective stress formula and Khalili's expression of effective stress parameter.