Tie-columns improve significantly the lateral resistance of masonry bearing walls against persistent, transient and accidental loads. The research work described herein has been carried out to assess the lateral resis...Tie-columns improve significantly the lateral resistance of masonry bearing walls against persistent, transient and accidental loads. The research work described herein has been carried out to assess the lateral resistance of confined masonry walls, where contribution of the masonry panel is evaluated according to material mechanics and tie-columns effect is estimated by a proposed analytical formulation based on a model reported on previously. This approach takes into account the effect of dowel support on the reaction of its adjacent shear reinforcement: the conditions for the various contributions of transverse reinforcements are better defined following a clear evaluation of the participation ratio of these reinforcements. Lateral resistances of confined masonry walls measured in full-scale tests and gleaned from the literature are compared and checked with resistances calculated using the present approach.展开更多
The work presents the results of tests on the shear parameters of walls made of AAC (autoclaved aerated concrete, fb = 4.0 N/mm2) on the system mortar for thin M5 and M10 joints (fm = 6.1 N/mm2 and fro = 11.9 N/mm2...The work presents the results of tests on the shear parameters of walls made of AAC (autoclaved aerated concrete, fb = 4.0 N/mm2) on the system mortar for thin M5 and M10 joints (fm = 6.1 N/mm2 and fro = 11.9 N/mm2) and on polyurethane glue and also walls without mortar (dry masonry). The wall compression strength (on mortar M5 class) (per EN 1052-1:2000) amounted tofc,mv= 2.97 N/mm2 (fk = 2.48 N/mm2), elastic modulus was Ecru = 2,040 N/mm2. Various structure of bed joints and head joints were applied and the following were used as reinforcement: steel trusses of EFZ 140/Z 140 type (Z1 type) and meshes made of plastics (Z2 type). Based on the tests carried out with regard to unreinforced elements, it was shown that the filling in of head joints with mortar had an advantageous effect on the values of cracking and destruction stresses. While, with the use of reinforcement, advantageous increase of stress was obtained only when the mortar was laid twice on both bed surfaces of masonry units. The application of reinforcement in the bed joints when the mortar was laid only on one bed joints surface of the masonry units reduced the values of cracking and destruction stresses in relation to the values obtained in the unreinforced walls.展开更多
This study presents a numerical multi-scale simulation framework which is extended to accommodate hybrid simulation (numerical-experimental integration). The framework is enhanced with a standardized data exchange f...This study presents a numerical multi-scale simulation framework which is extended to accommodate hybrid simulation (numerical-experimental integration). The framework is enhanced with a standardized data exchange format and connected to a generalized controller interface program which facilitates communication with various types of laboratory equipment and testing configurations. A small-scale experimental program was conducted using a six degree-of-freedom hydraulic testing equipment to verify the proposed framework and provide additional data for small-scale testing of shear- critical reinforced concrete structures. The specimens were tested in a multi-axial hybrid simulation manner under a reversed cyclic loading condition simulating earthquake forces. The physical models were 1/3.23-scale representations of a beam and two columns. A mixed-type modelling technique was employed to analyze the remainder of the structures. The hybrid simulation results were compared against those obtained from a large-scale test and finite element analyses. The study found that if precautions are taken in preparing model materials and if the shear-related mechanisms are accurately considered in the numerical model, small-scale hybrid simulations can adequately simulate the behaviour of shear-critical structures. Although the findings of the study are promising, to draw general conclusions additional test data are required.展开更多
Purpose of present work is to develop a reliable and simple method for structural analysis of RC Shear Walls. The shear wall is simulated by a truss model as the bar of a truss is the simplest finite element. An itera...Purpose of present work is to develop a reliable and simple method for structural analysis of RC Shear Walls. The shear wall is simulated by a truss model as the bar of a truss is the simplest finite element. An iterative method is used. Initially, there are only concrete bars. Repeated structural analyses are performed. After each structural analysis, every concrete bar exceeding tensile strength is replaced by a steel bar. For every concrete bar exceeding compressive strength, first its section area is increased. If this is not enough, a steel bar is placed at the side of it. For every steel bar exceeding tensile or compressive strength, its section area is increased. After the end of every structural analysis, if all concrete and steel bars fall within tensile and compressive strengths, the output data are written and the analysis is terminated. Otherwise, the structural analysis is repeated. As all the necessary conditions (static, elastic, linearized geometric) are satisfied and the stresses of ALL concrete and steel bars fall within the tensile and compressive strengths, the results are acceptable. Usually, the proposed method exhibits a fast convergence in 4 - 5 repeats of structural analysis of the RC Shear Wall.展开更多
Traditional retrofit methods often focus on increasing the structure’s strength,stiffness,or both.This may in-crease seismic demand on the structure and could lead to irreparable damage during a seismic event.This pa...Traditional retrofit methods often focus on increasing the structure’s strength,stiffness,or both.This may in-crease seismic demand on the structure and could lead to irreparable damage during a seismic event.This paper presents a retrofit method,integrating concepts of selective weakening and self-centering(rocking)to achieve low seismic damage for non-code compliant reinforced concrete shear walls.The proposed method involves con-verting traditional cast-in-place concrete shear walls into rocking walls,which helps to lower the shear demand,while allowing re-centering.Two large-scale lateral load tests were performed to validate the retrofit concept on a concrete shear wall designed according to pre-1970s standards.The design parameters investigated were amount of energy dissipating reinforcements and confinement enhancement.Two different methods using Ultra High Performance Concrete(UHPC)were investigated to provide additional confinement to boundary elements of older shear walls.Observations from the tests showed minimized damage and enhanced recentering in the retrofitted wall specimens.Use of UHPC in the boundary elements of the retrofitted walls provided additional confinement and reduced damage in the rocking corners.展开更多
Illyria hotel (formerly Bozhur) was built during the sixties in the heart of the actual Kosovo's capital Prishtina, according to former old Yugoslav standards in a Modernist architectural style. It represents a mas...Illyria hotel (formerly Bozhur) was built during the sixties in the heart of the actual Kosovo's capital Prishtina, according to former old Yugoslav standards in a Modernist architectural style. It represents a massive structural system with brick walls up to 54 cm thick and "avramenko" type reinforced concrete floors. The investor's aim was to add another two floors on the top of the existing ones and to build two level underground parking floors, a health spa centre, whilst at the vicinity of the existing building (the northern side) to erect a new 17 story-high brand new hotel and administration building. The retrofitting of the structure as well as construction of the new structure has been done in full accordance with the new structural Eurocodes' recommendations. 3D FEM (finite element method) modeling was used for the analysis and design, using ETABS v 9.5 nonlinear and ARSAP 2010 (Autodesk Robot Structural Analysis Professional 2010). Response spectrum design according to EC 8,3.2.2.4 has been used for seismic analysis and design with a reference peak ground acceleration on type A ground Of AgR = 0.25 g.展开更多
Based on the traditional Nielsen model,a unified failure model on the uniformly reinforced concrete box section members under combined forces was introduced by Luo and Liu.One of their contributions is adjustment of t...Based on the traditional Nielsen model,a unified failure model on the uniformly reinforced concrete box section members under combined forces was introduced by Luo and Liu.One of their contributions is adjustment of the shear carrying capacity of concrete at the member failure surface.In the unified failure model,the comparison with the experimental results verified this adjustment.Nevertheless,it should be pointed out that the adjustment factor of shear carrying capacity at member failure surface for the reinforced concrete members in the unified failure model is a fixed adjustment constant for all experiment data,which is basically determined by curve fitting.However,the adjustment factor should vary with the normal stress at the member failure surface.In this paper,an advanced theoretical model is introduced,in which the adjustment factor of shear carrying capacity at failure surface is a variable related to the normal stress at failure surface.Furthermore,the advanced unified failure model on the uniformly reinforced concrete box section member can still be expressed in a simple form.Finally,the comparison with several groups of test data has verified that this advanced model is more accurate and feasible to be used in design.展开更多
文摘Tie-columns improve significantly the lateral resistance of masonry bearing walls against persistent, transient and accidental loads. The research work described herein has been carried out to assess the lateral resistance of confined masonry walls, where contribution of the masonry panel is evaluated according to material mechanics and tie-columns effect is estimated by a proposed analytical formulation based on a model reported on previously. This approach takes into account the effect of dowel support on the reaction of its adjacent shear reinforcement: the conditions for the various contributions of transverse reinforcements are better defined following a clear evaluation of the participation ratio of these reinforcements. Lateral resistances of confined masonry walls measured in full-scale tests and gleaned from the literature are compared and checked with resistances calculated using the present approach.
文摘The work presents the results of tests on the shear parameters of walls made of AAC (autoclaved aerated concrete, fb = 4.0 N/mm2) on the system mortar for thin M5 and M10 joints (fm = 6.1 N/mm2 and fro = 11.9 N/mm2) and on polyurethane glue and also walls without mortar (dry masonry). The wall compression strength (on mortar M5 class) (per EN 1052-1:2000) amounted tofc,mv= 2.97 N/mm2 (fk = 2.48 N/mm2), elastic modulus was Ecru = 2,040 N/mm2. Various structure of bed joints and head joints were applied and the following were used as reinforcement: steel trusses of EFZ 140/Z 140 type (Z1 type) and meshes made of plastics (Z2 type). Based on the tests carried out with regard to unreinforced elements, it was shown that the filling in of head joints with mortar had an advantageous effect on the values of cracking and destruction stresses. While, with the use of reinforcement, advantageous increase of stress was obtained only when the mortar was laid twice on both bed surfaces of masonry units. The application of reinforcement in the bed joints when the mortar was laid only on one bed joints surface of the masonry units reduced the values of cracking and destruction stresses in relation to the values obtained in the unreinforced walls.
文摘This study presents a numerical multi-scale simulation framework which is extended to accommodate hybrid simulation (numerical-experimental integration). The framework is enhanced with a standardized data exchange format and connected to a generalized controller interface program which facilitates communication with various types of laboratory equipment and testing configurations. A small-scale experimental program was conducted using a six degree-of-freedom hydraulic testing equipment to verify the proposed framework and provide additional data for small-scale testing of shear- critical reinforced concrete structures. The specimens were tested in a multi-axial hybrid simulation manner under a reversed cyclic loading condition simulating earthquake forces. The physical models were 1/3.23-scale representations of a beam and two columns. A mixed-type modelling technique was employed to analyze the remainder of the structures. The hybrid simulation results were compared against those obtained from a large-scale test and finite element analyses. The study found that if precautions are taken in preparing model materials and if the shear-related mechanisms are accurately considered in the numerical model, small-scale hybrid simulations can adequately simulate the behaviour of shear-critical structures. Although the findings of the study are promising, to draw general conclusions additional test data are required.
文摘Purpose of present work is to develop a reliable and simple method for structural analysis of RC Shear Walls. The shear wall is simulated by a truss model as the bar of a truss is the simplest finite element. An iterative method is used. Initially, there are only concrete bars. Repeated structural analyses are performed. After each structural analysis, every concrete bar exceeding tensile strength is replaced by a steel bar. For every concrete bar exceeding compressive strength, first its section area is increased. If this is not enough, a steel bar is placed at the side of it. For every steel bar exceeding tensile or compressive strength, its section area is increased. After the end of every structural analysis, if all concrete and steel bars fall within tensile and compressive strengths, the output data are written and the analysis is terminated. Otherwise, the structural analysis is repeated. As all the necessary conditions (static, elastic, linearized geometric) are satisfied and the stresses of ALL concrete and steel bars fall within the tensile and compressive strengths, the results are acceptable. Usually, the proposed method exhibits a fast convergence in 4 - 5 repeats of structural analysis of the RC Shear Wall.
基金study described in this paper was made possible by a grant from the National Science Foundation’s Engineering for Natural Hazards(ENH)program,Grant#1662963.
文摘Traditional retrofit methods often focus on increasing the structure’s strength,stiffness,or both.This may in-crease seismic demand on the structure and could lead to irreparable damage during a seismic event.This paper presents a retrofit method,integrating concepts of selective weakening and self-centering(rocking)to achieve low seismic damage for non-code compliant reinforced concrete shear walls.The proposed method involves con-verting traditional cast-in-place concrete shear walls into rocking walls,which helps to lower the shear demand,while allowing re-centering.Two large-scale lateral load tests were performed to validate the retrofit concept on a concrete shear wall designed according to pre-1970s standards.The design parameters investigated were amount of energy dissipating reinforcements and confinement enhancement.Two different methods using Ultra High Performance Concrete(UHPC)were investigated to provide additional confinement to boundary elements of older shear walls.Observations from the tests showed minimized damage and enhanced recentering in the retrofitted wall specimens.Use of UHPC in the boundary elements of the retrofitted walls provided additional confinement and reduced damage in the rocking corners.
文摘Illyria hotel (formerly Bozhur) was built during the sixties in the heart of the actual Kosovo's capital Prishtina, according to former old Yugoslav standards in a Modernist architectural style. It represents a massive structural system with brick walls up to 54 cm thick and "avramenko" type reinforced concrete floors. The investor's aim was to add another two floors on the top of the existing ones and to build two level underground parking floors, a health spa centre, whilst at the vicinity of the existing building (the northern side) to erect a new 17 story-high brand new hotel and administration building. The retrofitting of the structure as well as construction of the new structure has been done in full accordance with the new structural Eurocodes' recommendations. 3D FEM (finite element method) modeling was used for the analysis and design, using ETABS v 9.5 nonlinear and ARSAP 2010 (Autodesk Robot Structural Analysis Professional 2010). Response spectrum design according to EC 8,3.2.2.4 has been used for seismic analysis and design with a reference peak ground acceleration on type A ground Of AgR = 0.25 g.
基金the National Natural Science Foundation of China(No.50378054)the National Basic Research Program(973)of China(No.2002CB412709)
文摘Based on the traditional Nielsen model,a unified failure model on the uniformly reinforced concrete box section members under combined forces was introduced by Luo and Liu.One of their contributions is adjustment of the shear carrying capacity of concrete at the member failure surface.In the unified failure model,the comparison with the experimental results verified this adjustment.Nevertheless,it should be pointed out that the adjustment factor of shear carrying capacity at member failure surface for the reinforced concrete members in the unified failure model is a fixed adjustment constant for all experiment data,which is basically determined by curve fitting.However,the adjustment factor should vary with the normal stress at the member failure surface.In this paper,an advanced theoretical model is introduced,in which the adjustment factor of shear carrying capacity at failure surface is a variable related to the normal stress at failure surface.Furthermore,the advanced unified failure model on the uniformly reinforced concrete box section member can still be expressed in a simple form.Finally,the comparison with several groups of test data has verified that this advanced model is more accurate and feasible to be used in design.