A new method of numerical seismic stability safety evaluation for a rock slope is proposed based on the analysis of a gravity dam foundation subjected to earthquake loading. The shear strengths of the weak discontinui...A new method of numerical seismic stability safety evaluation for a rock slope is proposed based on the analysis of a gravity dam foundation subjected to earthquake loading. The shear strengths of the weak discontinuities are divided by different shear strength reduction ratios (K) and numerical seismic analysis is carried out after the static analysis is completed. With different K values, the curves of the permanent horizontal displacement of key points of the dam foundation (K-displacement curves) are studied. According to the curve change, the distribution of plastic zones in the foundation, and the slow convergence of the finite element method (FEM), the seismic stability safety factor is defined as Kwhen the gravity dam is in the limit equilibrium state subjected to earthquake loading. These concepts were applied to the evaluation of seismic stability safety of a gravity dam for a hydropower project. The analysis of the example shows that the proposed method is feasible and is an effective method of seismic stability safety evaluation.展开更多
At room temperature, the rolling treatment of steel-mushy Al-7graphite bonding plate was carried out under different relative reduction. The influence of rolling on interfacial mechanical property of this bonding plat...At room temperature, the rolling treatment of steel-mushy Al-7graphite bonding plate was carried out under different relative reduction. The influence of rolling on interfacial mechanical property of this bonding plate was studied. The results show that, for steel-mushy Al-7graphite bonding plate which is made up of 1.2 mm in thickness 08AI steel plate and 2.0 mm in thickness Al-7graphite layer, there is a nonlinear relationship between interfacial shear strength of bonding plate and relative reduction of rolling. When relative reduction of rolling is smaller than 2.59%, with the increasing of relative reduction, interfacial shear strength of bonding plate increases gradually. When relative reduction of rolling is bigger than 2.59%, with the increasing of relative reduction, interfacial shear strength of bonding plate decreases continuously. When relative reduction of rolling is 2.59%, the largest interfacial shear strength 77.0 MPa can be obtained.展开更多
The rolling treatment of steel-mushy QTi3.5-3.5 graphite composite was conducted under different relative reduction at room temperature. The effect of room-temperature rolling on interracial mechanical property of ste...The rolling treatment of steel-mushy QTi3.5-3.5 graphite composite was conducted under different relative reduction at room temperature. The effect of room-temperature rolling on interracial mechanical property of steel-mushy QTi3.5-3.5 graphite composite was studied and the relationship between interracial shear strength and relative reduction was established. The results show that, for steel-mushy QTi3.5-3.5 graphite composite, which consists of 1.2 mm-thick 08AI steel plate and 2.8 mm-thick QTi3.5-3.5 graphite layer, there is a nonlinear relationship between interracial shear strength and relative reduction in graphite layer. When relative reduction is smaller than 1.1%,interracial shear strength increases with increasing the relative reduction. When relative reduction is larger than 1.1%, interracial shear strength decreases with increasing the relative reduction. When relative reduction is 1.1%,the largest interracial shear strength of 145.2 MPa can be obtained.展开更多
The tension cracks and joints in rock or soil slopes affect their failure stability.Prediction of rock or soil slope failure is one of the most challenging tasks in the earth sciences.The actual slopes consist of inho...The tension cracks and joints in rock or soil slopes affect their failure stability.Prediction of rock or soil slope failure is one of the most challenging tasks in the earth sciences.The actual slopes consist of inhomogeneous materials,complex morphology,and erratic joints.Most studies concerning the failure of rock slopes primarily focused on determining Factor of Safety(FoS)and Critical Slip Surface(CSS).In this article,the effect of inclined tension crack on a rock slope failure is studied numerically with Shear Strength Reduction Factor(SRF)method.An inclined Tension Crack(TC)influences the magnitude and location of the rock slope’s Critical Shear Strength Reduction Factor(CSRF).Certainly,inclined cracks are more prone to cause the failure of the slope than the vertical TC.Yet,all tension cracks do not lead to failure of the slope mass.The effect of the crest distance of the tension crack is also investigated.The numerical results do not show any significant change in the magnitude of CSRF unless the tip of the TC is very near to the crest of the slope.ATC is also replaced with a joint,and the results differ from the corresponding TC.These results are discussed regarding shear stress and Critical Slip Surface(CSS).展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 90510017)
文摘A new method of numerical seismic stability safety evaluation for a rock slope is proposed based on the analysis of a gravity dam foundation subjected to earthquake loading. The shear strengths of the weak discontinuities are divided by different shear strength reduction ratios (K) and numerical seismic analysis is carried out after the static analysis is completed. With different K values, the curves of the permanent horizontal displacement of key points of the dam foundation (K-displacement curves) are studied. According to the curve change, the distribution of plastic zones in the foundation, and the slow convergence of the finite element method (FEM), the seismic stability safety factor is defined as Kwhen the gravity dam is in the limit equilibrium state subjected to earthquake loading. These concepts were applied to the evaluation of seismic stability safety of a gravity dam for a hydropower project. The analysis of the example shows that the proposed method is feasible and is an effective method of seismic stability safety evaluation.
文摘At room temperature, the rolling treatment of steel-mushy Al-7graphite bonding plate was carried out under different relative reduction. The influence of rolling on interfacial mechanical property of this bonding plate was studied. The results show that, for steel-mushy Al-7graphite bonding plate which is made up of 1.2 mm in thickness 08AI steel plate and 2.0 mm in thickness Al-7graphite layer, there is a nonlinear relationship between interfacial shear strength of bonding plate and relative reduction of rolling. When relative reduction of rolling is smaller than 2.59%, with the increasing of relative reduction, interfacial shear strength of bonding plate increases gradually. When relative reduction of rolling is bigger than 2.59%, with the increasing of relative reduction, interfacial shear strength of bonding plate decreases continuously. When relative reduction of rolling is 2.59%, the largest interfacial shear strength 77.0 MPa can be obtained.
基金supported by the National Natural Science Foundation of China(Nos.50274047 and 50304001)the Ministry of Education of PRC FoundationBeijing Jiaotong University Foundation
文摘The rolling treatment of steel-mushy QTi3.5-3.5 graphite composite was conducted under different relative reduction at room temperature. The effect of room-temperature rolling on interracial mechanical property of steel-mushy QTi3.5-3.5 graphite composite was studied and the relationship between interracial shear strength and relative reduction was established. The results show that, for steel-mushy QTi3.5-3.5 graphite composite, which consists of 1.2 mm-thick 08AI steel plate and 2.8 mm-thick QTi3.5-3.5 graphite layer, there is a nonlinear relationship between interracial shear strength and relative reduction in graphite layer. When relative reduction is smaller than 1.1%,interracial shear strength increases with increasing the relative reduction. When relative reduction is larger than 1.1%, interracial shear strength decreases with increasing the relative reduction. When relative reduction is 1.1%,the largest interracial shear strength of 145.2 MPa can be obtained.
文摘The tension cracks and joints in rock or soil slopes affect their failure stability.Prediction of rock or soil slope failure is one of the most challenging tasks in the earth sciences.The actual slopes consist of inhomogeneous materials,complex morphology,and erratic joints.Most studies concerning the failure of rock slopes primarily focused on determining Factor of Safety(FoS)and Critical Slip Surface(CSS).In this article,the effect of inclined tension crack on a rock slope failure is studied numerically with Shear Strength Reduction Factor(SRF)method.An inclined Tension Crack(TC)influences the magnitude and location of the rock slope’s Critical Shear Strength Reduction Factor(CSRF).Certainly,inclined cracks are more prone to cause the failure of the slope than the vertical TC.Yet,all tension cracks do not lead to failure of the slope mass.The effect of the crest distance of the tension crack is also investigated.The numerical results do not show any significant change in the magnitude of CSRF unless the tip of the TC is very near to the crest of the slope.ATC is also replaced with a joint,and the results differ from the corresponding TC.These results are discussed regarding shear stress and Critical Slip Surface(CSS).