The equations of the lateral deflection curve of the short pier shear wall under a lateral concentrated load at any level are derived by employing a continuous approach. Lateral flexibility matrixes for the dynamic an...The equations of the lateral deflection curve of the short pier shear wall under a lateral concentrated load at any level are derived by employing a continuous approach. Lateral flexibility matrixes for the dynamic analysis are also obtained by repeatedly calculating the lateral unit load on the wall at each level where a lumped mass located. Dynamic analyses are implemented for short pier shear walls with different parameters, called the integrative coefficient and the pier strength coefficient related to the dimensions of walls. The influences of two coefficients on the dynamic performances of the structure are studied. Results indicate that with the increase of the integrative coefficient, the periods of top two modes apparently decrease but the other periods of higher frequency modes show little variation when the pier strength coefficient remains constant. Similarly, if the integrative coefficient is constant, the top two periods of the free vibration decrease with the increase of the integrative coefficient but the other periods of higher frequency modes show less variation.展开更多
Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically...Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically evaluate the seismic behavior of flexural and shear fuse beams situated in short-,medium-and high-rise RC buildings that have HCSWs.Three building groups hypothetically located in a high seismic hazard zone were studied.A series of 2D nonlinear time history analyses was accomplished in OpenSees,using the ground motion records scaled at the design basis earthquake level.It was found that the effectiveness of fuses in HCSWs depends on various factors such as size and scale of the building,allowable rotation value,inter-story drift ratio,residual drift quantity,energy dissipation value of the fuses,etc.The results show that shear fuses better meet the requirements of rotations and drifts.In contrast,flexural fuses dissipate more energy,but their sectional stiffness should increase to meet other requirements.It was concluded that adoption of proper fuses depends on the overall scale of the building and on how associated factors are considered.展开更多
This study describes the seismic performance of an existing five storey reinforced concrete building which represents the typical properties of low-rise non-ductile buildings in Turkey. The effectiveness of shear wall...This study describes the seismic performance of an existing five storey reinforced concrete building which represents the typical properties of low-rise non-ductile buildings in Turkey. The effectiveness of shear walls and the steel bracings in retrofitting the building was examined through nonlinear static and dynamic analyses. By using the nonlinear static analysis, retrofitted buildings seismic performances under lateral seismic load were compared with each other. Moreover, the performance points and response levels of the existing and retrofitting cases were determined by way of the capacity-spectrum method described in ATC-40 (1996). For the nonlinear dynamic analysis the records were selected to represent wide ranges of duration and frequency content. Considering the change in the stiffness and the energy dissipation capacities, the performance of the existing and retrofitted buildings were evaluated in terms of story drifts and damage states. It was found that each earthquake record exhibited its own peculiarities, dictated by frequency content, duration, sequence of peaks and their amplitude. The seismic performance of retrofitted buildings resulted in lower displacements and higher energy dissipation capacity depending mainly on the properties of the ground motions and the retrofitting strategies. Moreover, severe structural damage (irreparable or collapse) was observed for the existing building. However, buildings with retrofit alternatives exhibited lower damage levels changing from no damage to irreparable damage states.展开更多
In this study, four 1/5 scaled shaking table tests were conducted to investigate the seismic performance of recycled concrete frame-shear wall structures with different recycled aggregates replacement rates and concea...In this study, four 1/5 scaled shaking table tests were conducted to investigate the seismic performance of recycled concrete frame-shear wall structures with different recycled aggregates replacement rates and concealed bracing detail. The four tested structures included one normal concrete model, one recycled coarse aggregate concrete model, and two recycled coarse and fi ne aggregate concrete models with or without concealed bracings inside the shear walls. The dynamic characteristics, dynamic response and failure mode of each model were compared and analyzed. Finite element models were also developed and nonlinear time-history response analysis was conducted. The test and analysis results show that the seismic performance of the recycled coarse aggregate concrete frame-shear wall structure is slightly worse than the normal concrete structure. The seismic resistance capacity of the recycled concrete frame-shear wall structure can be greatly improved by setting up concealed bracings inside the walls. With appropriate design, the recycled coarse aggregate concrete frame-shear wall structure and recycled concrete structure with concealed bracings inside the walls can be applied in buildings.展开更多
A method is developed to predict the lateral load-carrying capacity of composite shear walls with double steel plates and filled concrete with binding bars(SCBs). Nonlinear finite element models of SCBs were establish...A method is developed to predict the lateral load-carrying capacity of composite shear walls with double steel plates and filled concrete with binding bars(SCBs). Nonlinear finite element models of SCBs were established by using the finite element tool, Abaqus. Tie constraints were used to connect the binding bars and the steel plates. Surface-to-surface contact provided by the Abaqus was used to simulate the interaction between the steel plate and the core concrete. The established models could predict the lateral load-carrying capacity of SCBs with a reasonable degree of accuracy. A calculation method was developed by superposition principle to predict the lateral load-carrying capacity of SCBs for the engineering application. The concrete confined by steel plates and binding bars is under multi-axial compression; therefore, its shear strength was calculated by using the Guo-Wang concrete failure criterion. The shear strength of the steel plates of SCBs was calculated by using the von Mises yielding criterion without considering buckling. Results of the developed method are in good agreement with the testing and finite element results.展开更多
A new type of ductile lowrise shearwall with many short horizontalkeyways is proposed in this paper in order to improve the earthquake resistant behav-ior of ordinary lowrise shearwall.The behavior of this wall is stu...A new type of ductile lowrise shearwall with many short horizontalkeyways is proposed in this paper in order to improve the earthquake resistant behav-ior of ordinary lowrise shearwall.The behavior of this wall is studied through low-frequency cyclic loading test.Based on the test results,the paper puts forward thedifferent restoring force models for different lowrise shearwalls,and a program fortheir nonlinear dynamic analysis is worked out.Thr(?)h directly inputting earth-quake waves,the paper analyses the dynamic response and energy dissipation of 3types of lowrise shearwalls.The calculation results dem(?)strate that the newly de-vised ductile shearwall has good earthquake resistant behavior.展开更多
Through the test of 8 RC shear wall specimens and computer analysis ofstrains of steel bars with keyways in the specimens,the authors have studied the remains oftensile stress of concrete between cracks after concrete...Through the test of 8 RC shear wall specimens and computer analysis ofstrains of steel bars with keyways in the specimens,the authors have studied the remains oftensile stress of concrete between cracks after concrete cracking and put forward a formulato calculate coefficient Ψ,the ununiform distribution factor of steel strain.This coefficientcan be used to modify the calculated steel strain in cracked zone,so as to make the resultsof using finite clement method to analyze shear walls more accurate.展开更多
As a type of nonstructural component, infill walls play a significant role in the seismic behavior of high-rise buildings. However, the stiffness of the infill wall is generally either ignored or considered by simplif...As a type of nonstructural component, infill walls play a significant role in the seismic behavior of high-rise buildings. However, the stiffness of the infill wall is generally either ignored or considered by simplified empirical criteria that lead to a period shortening. The difference can be greatly decreased by using a structural identification methodology. In this study, an ambient vibration test was performed on four on-site reinforced concrete high-rise buildings, and the design results were compared with the PKPM models using corresponding finite element(FE) models. A diagonal strut model was used to simulate the behavior of the infill wall, and the identified modal parameters measured from the on-site test were employed to calibrate the parameters of the diagonal strut in the FE models. The SAP2000 models with calibrated elastic modulus were used to evaluate the seismic response in the elastic state. Based on the load-displacement relationship of the infill wall, nonlinear dynamic analysis models were built in PERFORM-3 D and calibrated using the measured modal periods. The analysis results revealed that the structural performance under small/large earthquake records were both strengthened by infill walls, and the contribution of infill walls should be considered for better accuracy in the design process.展开更多
文摘The equations of the lateral deflection curve of the short pier shear wall under a lateral concentrated load at any level are derived by employing a continuous approach. Lateral flexibility matrixes for the dynamic analysis are also obtained by repeatedly calculating the lateral unit load on the wall at each level where a lumped mass located. Dynamic analyses are implemented for short pier shear walls with different parameters, called the integrative coefficient and the pier strength coefficient related to the dimensions of walls. The influences of two coefficients on the dynamic performances of the structure are studied. Results indicate that with the increase of the integrative coefficient, the periods of top two modes apparently decrease but the other periods of higher frequency modes show little variation when the pier strength coefficient remains constant. Similarly, if the integrative coefficient is constant, the top two periods of the free vibration decrease with the increase of the integrative coefficient but the other periods of higher frequency modes show less variation.
文摘Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically evaluate the seismic behavior of flexural and shear fuse beams situated in short-,medium-and high-rise RC buildings that have HCSWs.Three building groups hypothetically located in a high seismic hazard zone were studied.A series of 2D nonlinear time history analyses was accomplished in OpenSees,using the ground motion records scaled at the design basis earthquake level.It was found that the effectiveness of fuses in HCSWs depends on various factors such as size and scale of the building,allowable rotation value,inter-story drift ratio,residual drift quantity,energy dissipation value of the fuses,etc.The results show that shear fuses better meet the requirements of rotations and drifts.In contrast,flexural fuses dissipate more energy,but their sectional stiffness should increase to meet other requirements.It was concluded that adoption of proper fuses depends on the overall scale of the building and on how associated factors are considered.
文摘This study describes the seismic performance of an existing five storey reinforced concrete building which represents the typical properties of low-rise non-ductile buildings in Turkey. The effectiveness of shear walls and the steel bracings in retrofitting the building was examined through nonlinear static and dynamic analyses. By using the nonlinear static analysis, retrofitted buildings seismic performances under lateral seismic load were compared with each other. Moreover, the performance points and response levels of the existing and retrofitting cases were determined by way of the capacity-spectrum method described in ATC-40 (1996). For the nonlinear dynamic analysis the records were selected to represent wide ranges of duration and frequency content. Considering the change in the stiffness and the energy dissipation capacities, the performance of the existing and retrofitted buildings were evaluated in terms of story drifts and damage states. It was found that each earthquake record exhibited its own peculiarities, dictated by frequency content, duration, sequence of peaks and their amplitude. The seismic performance of retrofitted buildings resulted in lower displacements and higher energy dissipation capacity depending mainly on the properties of the ground motions and the retrofitting strategies. Moreover, severe structural damage (irreparable or collapse) was observed for the existing building. However, buildings with retrofit alternatives exhibited lower damage levels changing from no damage to irreparable damage states.
基金National Science and Technology Support Program of China under Grant No.2011BAJ08B02Natural Science Foundation of Beijing under Grant No.8132016Beijing City University Youth Backbone Talent Training Project under Grant No.PHR201108009
文摘In this study, four 1/5 scaled shaking table tests were conducted to investigate the seismic performance of recycled concrete frame-shear wall structures with different recycled aggregates replacement rates and concealed bracing detail. The four tested structures included one normal concrete model, one recycled coarse aggregate concrete model, and two recycled coarse and fi ne aggregate concrete models with or without concealed bracings inside the shear walls. The dynamic characteristics, dynamic response and failure mode of each model were compared and analyzed. Finite element models were also developed and nonlinear time-history response analysis was conducted. The test and analysis results show that the seismic performance of the recycled coarse aggregate concrete frame-shear wall structure is slightly worse than the normal concrete structure. The seismic resistance capacity of the recycled concrete frame-shear wall structure can be greatly improved by setting up concealed bracings inside the walls. With appropriate design, the recycled coarse aggregate concrete frame-shear wall structure and recycled concrete structure with concealed bracings inside the walls can be applied in buildings.
基金Project(51178333)supported by the National Natural Science Foundation of ChinaProject(SLDRCE09-D-03)supported by the Ministry of Science and Technology of China
文摘A method is developed to predict the lateral load-carrying capacity of composite shear walls with double steel plates and filled concrete with binding bars(SCBs). Nonlinear finite element models of SCBs were established by using the finite element tool, Abaqus. Tie constraints were used to connect the binding bars and the steel plates. Surface-to-surface contact provided by the Abaqus was used to simulate the interaction between the steel plate and the core concrete. The established models could predict the lateral load-carrying capacity of SCBs with a reasonable degree of accuracy. A calculation method was developed by superposition principle to predict the lateral load-carrying capacity of SCBs for the engineering application. The concrete confined by steel plates and binding bars is under multi-axial compression; therefore, its shear strength was calculated by using the Guo-Wang concrete failure criterion. The shear strength of the steel plates of SCBs was calculated by using the von Mises yielding criterion without considering buckling. Results of the developed method are in good agreement with the testing and finite element results.
文摘A new type of ductile lowrise shearwall with many short horizontalkeyways is proposed in this paper in order to improve the earthquake resistant behav-ior of ordinary lowrise shearwall.The behavior of this wall is studied through low-frequency cyclic loading test.Based on the test results,the paper puts forward thedifferent restoring force models for different lowrise shearwalls,and a program fortheir nonlinear dynamic analysis is worked out.Thr(?)h directly inputting earth-quake waves,the paper analyses the dynamic response and energy dissipation of 3types of lowrise shearwalls.The calculation results dem(?)strate that the newly de-vised ductile shearwall has good earthquake resistant behavior.
文摘Through the test of 8 RC shear wall specimens and computer analysis ofstrains of steel bars with keyways in the specimens,the authors have studied the remains oftensile stress of concrete between cracks after concrete cracking and put forward a formulato calculate coefficient Ψ,the ununiform distribution factor of steel strain.This coefficientcan be used to modify the calculated steel strain in cracked zone,so as to make the resultsof using finite clement method to analyze shear walls more accurate.
基金Supported by:National Key Research and Development Program of China under Grant Nos.2016YFC0701400 and 2016YFC0701308the Key Research and Development Program of Hunan Province under Grant No.2017SK2220the National Natural Science Foundation of China(NSFC)under Grant No.51878264
文摘As a type of nonstructural component, infill walls play a significant role in the seismic behavior of high-rise buildings. However, the stiffness of the infill wall is generally either ignored or considered by simplified empirical criteria that lead to a period shortening. The difference can be greatly decreased by using a structural identification methodology. In this study, an ambient vibration test was performed on four on-site reinforced concrete high-rise buildings, and the design results were compared with the PKPM models using corresponding finite element(FE) models. A diagonal strut model was used to simulate the behavior of the infill wall, and the identified modal parameters measured from the on-site test were employed to calibrate the parameters of the diagonal strut in the FE models. The SAP2000 models with calibrated elastic modulus were used to evaluate the seismic response in the elastic state. Based on the load-displacement relationship of the infill wall, nonlinear dynamic analysis models were built in PERFORM-3 D and calibrated using the measured modal periods. The analysis results revealed that the structural performance under small/large earthquake records were both strengthened by infill walls, and the contribution of infill walls should be considered for better accuracy in the design process.