Based on the fact that the shear stress along anchorage segment is neither linearly nor uniformly distributed, the load transfer mechanism of the tension type anchor was studied and the mechanical characteristic of an...Based on the fact that the shear stress along anchorage segment is neither linearly nor uniformly distributed, the load transfer mechanism of the tension type anchor was studied and the mechanical characteristic of anchorage segment was analyzed. Shear stress?strain relationship of soil surrounding anchorage body was simplified into three-folding-lines model consisting of elastic phase, elasto-plastic phase and residual phase considering its softening characteristic. Meanwhile, shear displacement method that has been extensively used in the analysis of pile foundation was introduced. Based on elasto-plastic theory, the distributions of displacement, shear stress and axial force along the anchorage segment of tension type anchor were obtained, and the formula for calculating the elastic limit load was also developed accordingly. Finally, an example was given to discuss the variation of stress and displacement in the anchorage segment with the loads exerted on the anchor, and a program was worked out to calculate the anchor maximum bearing capacity. The influence of some parameters on the anchor bearing capacity was discussed, and effective anchorage length was obtained simultaneously. The results show that the shear stress first increases and then decreases and finally trends to the residual strength with increase of distance from bottom of the anchorage body, the displacement increases all the time with the increase of distance from bottom of the anchorage body, and the increase of velocity gradually becomes greater.展开更多
The mechanism of long-short composite piled raft foundation was discussed. Assuming the relationship between shear stress and shear strain of the surrounding soil was elasto-plastic, shear displacement method was empl...The mechanism of long-short composite piled raft foundation was discussed. Assuming the relationship between shear stress and shear strain of the surrounding soil was elasto-plastic, shear displacement method was employed to establish the different explicit relational equations between the load and the displacement at the top of pile in either elastic or elasto-plastic period. Then Mylonakis & Gazetas model was introduced to simulate the interaction between two piles or between piles and soil. Considering the effect of cushion, the flexible coefficients of interaction were provided, With the addition of a relevant program, the settlement calculation for long-short composite piled raft foundation was developed which could be used to account for the interaction of piles, soil and cushion. Finally, the calculation method was used to analyze an engineering example. The calculated value of settlement is 10.2 ram, which is close to the observed value 8.8 mm.展开更多
This work presents a new analytical method to analyze the influence of reaction piles on the test pile response in a static load test.In our method,the interactive effect between soil and pile is simulated using indep...This work presents a new analytical method to analyze the influence of reaction piles on the test pile response in a static load test.In our method,the interactive effect between soil and pile is simulated using independent springs and the shear displacement method is adopted to analyze the influence of reaction piles on test pile response.Moreover,the influence of the sheltering effect between reaction piles and test pile on the test pile response is taken into account.Two cases are analyzed to verify the rationality and efficiency of the present method.This method can be easily extended to a nonlinear response of an influenced test pile embedded in a multilayered soil,and the validity is also demonstrated using centrifuge model tests and a computer program presented in the literature.The present analyses indicate that the proposed method will lead to an underestimation of the test pile settlement in a static load test if the influence of the presence of reaction piles on the test pile response is neglected.展开更多
基金Project(20050532021) supported by the Research Fund for the Doctoral Program of Higher Education
文摘Based on the fact that the shear stress along anchorage segment is neither linearly nor uniformly distributed, the load transfer mechanism of the tension type anchor was studied and the mechanical characteristic of anchorage segment was analyzed. Shear stress?strain relationship of soil surrounding anchorage body was simplified into three-folding-lines model consisting of elastic phase, elasto-plastic phase and residual phase considering its softening characteristic. Meanwhile, shear displacement method that has been extensively used in the analysis of pile foundation was introduced. Based on elasto-plastic theory, the distributions of displacement, shear stress and axial force along the anchorage segment of tension type anchor were obtained, and the formula for calculating the elastic limit load was also developed accordingly. Finally, an example was given to discuss the variation of stress and displacement in the anchorage segment with the loads exerted on the anchor, and a program was worked out to calculate the anchor maximum bearing capacity. The influence of some parameters on the anchor bearing capacity was discussed, and effective anchorage length was obtained simultaneously. The results show that the shear stress first increases and then decreases and finally trends to the residual strength with increase of distance from bottom of the anchorage body, the displacement increases all the time with the increase of distance from bottom of the anchorage body, and the increase of velocity gradually becomes greater.
基金Project (50378036) supported by the National Natural Science Foundation of China
文摘The mechanism of long-short composite piled raft foundation was discussed. Assuming the relationship between shear stress and shear strain of the surrounding soil was elasto-plastic, shear displacement method was employed to establish the different explicit relational equations between the load and the displacement at the top of pile in either elastic or elasto-plastic period. Then Mylonakis & Gazetas model was introduced to simulate the interaction between two piles or between piles and soil. Considering the effect of cushion, the flexible coefficients of interaction were provided, With the addition of a relevant program, the settlement calculation for long-short composite piled raft foundation was developed which could be used to account for the interaction of piles, soil and cushion. Finally, the calculation method was used to analyze an engineering example. The calculated value of settlement is 10.2 ram, which is close to the observed value 8.8 mm.
基金Project supported by the China Postdoctoral Science Foundation (No. 2012M521339)the Independent Innovation Foundation of Shandong University (No. 2012GN012),China
文摘This work presents a new analytical method to analyze the influence of reaction piles on the test pile response in a static load test.In our method,the interactive effect between soil and pile is simulated using independent springs and the shear displacement method is adopted to analyze the influence of reaction piles on test pile response.Moreover,the influence of the sheltering effect between reaction piles and test pile on the test pile response is taken into account.Two cases are analyzed to verify the rationality and efficiency of the present method.This method can be easily extended to a nonlinear response of an influenced test pile embedded in a multilayered soil,and the validity is also demonstrated using centrifuge model tests and a computer program presented in the literature.The present analyses indicate that the proposed method will lead to an underestimation of the test pile settlement in a static load test if the influence of the presence of reaction piles on the test pile response is neglected.