The rock mass consists of rock blocks and structural planes,which can reduce its integrity and strength.Therefore,accurately obtaining the characteristics of the rock mass structural plane is a prerequisite for evalua...The rock mass consists of rock blocks and structural planes,which can reduce its integrity and strength.Therefore,accurately obtaining the characteristics of the rock mass structural plane is a prerequisite for evaluating stability and designing supports in underground engineering.Currently,there are no effective testing methods for the characteristic parameters of the rock mass structural plane in underground engineering.The paper presents the digital drilling technology as a new testing method of rock mass structural planes.Flawed rock specimens with cracks of varying widths and angles were used to simulate the rock mass structural planes,and the multifunctional rock mass digital drilling test system was employed to carry out the digital drilling tests.The analysis focuses on the variation laws of drilling parameters,such as drilling pressure and drilling torque,affected by the characteristics of prefabricated cracks,and clarifies the degradation mechanism of rock equivalent compressive strength.Additionally,an identification model for the characteristic parameters of rock mass structural planes during drilling is established.The test results indicate that the average difference of the characteristics of prefabricated cracks identified by the equivalent compressive strength is 2.45°and 0.82 mm,respectively.The identification model while drilling is verified to be correct due to the high identification accuracy.Based on this,a method for testing the characteristic parameters of the surrounding rock structural plane while drilling is proposed.The research offers a theoretical and methodological foundation for precise in situ identification of structural planes of the surrounding rock in underground engineering.展开更多
In th is study, a n e w m odel w as p re se n te d for com p u tin g stre n g th o f rock m asses based u p o n in -situo bservations o f RQD p o pularly kno w n as rock quality d esignation. This m odel links u p th ...In th is study, a n e w m odel w as p re se n te d for com p u tin g stre n g th o f rock m asses based u p o n in -situo bservations o f RQD p o pularly kno w n as rock quality d esignation. This m odel links u p th e rock m assp aram eters from in -situ investigations w ith th e stre n g th p a ram eters o f jo in ted rocks obtain ed fromlaboratory scale ex p erim en tal observations. Using th e co n stitu tiv e relation, th e a u th o r derived a p ressu reand d am age sensitive plastic p a ra m e te r to d ete rm in e stre n g th o f rock m asses for varied ex te n ts ofd isco n tin u ity an d p ressu re induced dam age. The te s t results show th a t plasticity characterized byhard en in g an d softening inclusive o f dam ag e invariably d e p en d s u p o n m ean p ressu re an d e x te n t ofdefo rm atio n s alread y experien ced by rock m asses. The p re se n t w ork explores th e te s t d a ta th a t revealth e d ep en d en c e o f in -situ stren g th on increm ental jo in t p ara m e te rs o b tain ed from th e jo in t num ber,jo in t orien tatio n , jo in t roughness, gouge p a ram eters an d w a te r pressure. S ubstituting th e relationshipb e tw e e n th e RQD and m odified jo in t factor w ith th a t b e tw e e n m odulus ratio an d stren g th ratio, th em odel show s successfully th a t using d am age inclusive plastic p a ra m e te r an d RQD provides a relationshipfor estim atin g th e stre n g th o f rock m asses. One o f th e m ain objectives o f this w ork is to illustrate th a t th ep re se n t m odel is sensitive to p la s tic ity a n d dam ag e to g e th e r in estim atin g in -situ stre n g th o f rock m assesin foundations, u n d e rg ro u n d excavation an d tunnels.展开更多
Using normal and shear rigid coefficients of intact rock and fracture plane, rigidly normal, shear equivalent rigid coefficients of fissure rock mass are conducted. On the basis of hypotheses of small displacement of ...Using normal and shear rigid coefficients of intact rock and fracture plane, rigidly normal, shear equivalent rigid coefficients of fissure rock mass are conducted. On the basis of hypotheses of small displacement of rock mass, principle of superposition, irrelevance of strength parameters C and T and Coulomb theory, formulas to calculate equivalent strength parameters C and phi of equivalent continuous mass from fissured rock mass with anchor piles are given. The achievement is extremely valuable in integral stability analysis of the rock mass slope and important in promoting the research of the rock mass's constitutive relation.展开更多
Although many intact rock types can be very strong,a critical confining pressure can eventually be reached in triaxial testing,such that the Mohr shear strength envelope becomes horizontal.This critical state has rece...Although many intact rock types can be very strong,a critical confining pressure can eventually be reached in triaxial testing,such that the Mohr shear strength envelope becomes horizontal.This critical state has recently been better defined,and correct curvature or correct deviation from linear Mohr-Coulomb(MC) has finally been found.Standard shear testing procedures for rock joints,using multiple testing of the same sample,in case of insufficient samples,can be shown to exaggerate apparent cohesion.Even rough joints do not have any cohesion,but instead have very high friction angles at low stress,due to strong dilation.Rock masses,implying problems of large-scale interaction with engineering structures,may have both cohesive and frictional strength components.However,it is not correct to add these,following linear M-C or nonlinear Hoek-Brown(H-B) standard routines.Cohesion is broken at small strain,while friction is mobilized at larger strain and remains to the end of the shear deformation.The criterion 'c then σn tan φ' should replace 'c plus σn tan φ' for improved fit to reality.Transformation of principal stresses to a shear plane seems to ignore mobilized dilation,and caused great experimental difficulties until understood.There seems to be plenty of room for continued research,so that errors of judgement of the last 50 years can be corrected.展开更多
An empirical expression of cohesion (C) and friction angle (Ф) for layered rock was suggested. This expression was compared with a test result made by the former researchers. The constitutive relationship of a tr...An empirical expression of cohesion (C) and friction angle (Ф) for layered rock was suggested. This expression was compared with a test result made by the former researchers. The constitutive relationship of a transversely isotropic medium and Mohr-Coulomb criterion in which C and Ф vary with directions were employed, and a relative 3D elasto-plastic FEM code was developed, in which the important thing was to adopt a search-trial method to find the orientation angle (p) of shear failure plane (or weakest shear plane) with respect to the major principal stress as well as the corresponding C and Ф Taking an underground opening as the calculation object, the numerical analyses were carried out by using the FEM code for two cases of transversely isotropic rock and isotropic rock, respectively, and the computation results were compared. The results show that when the rock is a transversely isotropic one, the distributions of displacements, plastic zones and stress contours in the surrounding rock will be non-axisymmetric along the tunnel's vertical axis, which is very different from that of isotropic rock. The stability of the tunnel in transversely isotropic rock is relatively low.展开更多
Xiangjiaba hydropowcr station is one of the complicated geological conditions of its dam foundation, parameters of rock masses are very important issues. To cascade power stations on the Jinsha River, China. Due to th...Xiangjiaba hydropowcr station is one of the complicated geological conditions of its dam foundation, parameters of rock masses are very important issues. To cascade power stations on the Jinsha River, China. Due to the evaluating the rock mass quality and determining the mechanical address these issues, several groups of rock borehole shear tests (RBSTs) were conducted on the black mudstone in the dam foundation of Xiangjiaba hydropower station in the second construction phase. Forty three groups of shear strengths of black mudstone samples were obtained from RBSTs, and the shear strength parameters (c and f) were calculated using the least squares method. In addition, the limitations and merits of RBST employed in the Xiangjiaba hydropower station were discussed. Test results indicate that the shear strength parameters obtained from RBST have a good correlation with the results from sotmd wave test in borehole. It is believed that RBST has a good adaptability and applicability in geotechnical engineering.展开更多
The shear behavior of rock joints is important in solving practical problems of rock mechanics. Three group rock joints with different morphologies are made by cement mortar material and a series of CNL(constant norma...The shear behavior of rock joints is important in solving practical problems of rock mechanics. Three group rock joints with different morphologies are made by cement mortar material and a series of CNL(constant normal loading) shear tests are performed. The influences of the applied normal stress and joint morphology to its shear strength are analyzed. According to the experimental results, the peak dilatancy angle of rock joint decreases with increasing normal stress, but increases with increasing roughness. The shear strength increases with the increasing normal stress and the roughness of rock joint. It is observed that the modes of failure of asperities are tensile, pure shear, or a combination of both. It is suggested that the three-dimensional roughness parameters and the tensile strength are the appropriate parameter for describing the shear strength criterion. A new peak shear criterion is proposed which can be used to predict peak shear strength of rock joints. All the used parameters can be easily obtained by performing tests.展开更多
The estimation of shear strength of rock mass discontinuity is always a focal, but difficult, problem in the field of geotechnical engineering. Considering the disadvantages and limitation of exist- ing estimation met...The estimation of shear strength of rock mass discontinuity is always a focal, but difficult, problem in the field of geotechnical engineering. Considering the disadvantages and limitation of exist- ing estimation methods, a new approach based on the shadow area percentage (SAP) that can be used to quantify surface roughness is proposed in this article. Firstly, by the help of laser scanning technique, the three-dimensional model of the surface of rock discontinuity was established. Secondly, a light source was simulated, and there would be some shadows produced on the model surface. Thirdly, to obtain the value of SAP of each specimen, the shadow detection technique was introduced for use. Fourthly, compared with the result from direct shear testing and based on statistics, an empirical for- mula was found among SAP, normal stress, and shear strength. Data of Yujian (~ River were used as an example, and the following conclusions have been made. (1) In the case of equal normal stress, the peak shear stress is positively proportional to the SAP. (2) The formula for estimating was derived, and the predictions of peak-shear strength made with this equation well agreed with the experimental re- suits obtained in laboratory tests.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2023YFC2907600)the National Natural Science Foundation of China(Grant Nos.42277174 and 52204260).
文摘The rock mass consists of rock blocks and structural planes,which can reduce its integrity and strength.Therefore,accurately obtaining the characteristics of the rock mass structural plane is a prerequisite for evaluating stability and designing supports in underground engineering.Currently,there are no effective testing methods for the characteristic parameters of the rock mass structural plane in underground engineering.The paper presents the digital drilling technology as a new testing method of rock mass structural planes.Flawed rock specimens with cracks of varying widths and angles were used to simulate the rock mass structural planes,and the multifunctional rock mass digital drilling test system was employed to carry out the digital drilling tests.The analysis focuses on the variation laws of drilling parameters,such as drilling pressure and drilling torque,affected by the characteristics of prefabricated cracks,and clarifies the degradation mechanism of rock equivalent compressive strength.Additionally,an identification model for the characteristic parameters of rock mass structural planes during drilling is established.The test results indicate that the average difference of the characteristics of prefabricated cracks identified by the equivalent compressive strength is 2.45°and 0.82 mm,respectively.The identification model while drilling is verified to be correct due to the high identification accuracy.Based on this,a method for testing the characteristic parameters of the surrounding rock structural plane while drilling is proposed.The research offers a theoretical and methodological foundation for precise in situ identification of structural planes of the surrounding rock in underground engineering.
文摘In th is study, a n e w m odel w as p re se n te d for com p u tin g stre n g th o f rock m asses based u p o n in -situo bservations o f RQD p o pularly kno w n as rock quality d esignation. This m odel links u p th e rock m assp aram eters from in -situ investigations w ith th e stre n g th p a ram eters o f jo in ted rocks obtain ed fromlaboratory scale ex p erim en tal observations. Using th e co n stitu tiv e relation, th e a u th o r derived a p ressu reand d am age sensitive plastic p a ra m e te r to d ete rm in e stre n g th o f rock m asses for varied ex te n ts ofd isco n tin u ity an d p ressu re induced dam age. The te s t results show th a t plasticity characterized byhard en in g an d softening inclusive o f dam ag e invariably d e p en d s u p o n m ean p ressu re an d e x te n t ofdefo rm atio n s alread y experien ced by rock m asses. The p re se n t w ork explores th e te s t d a ta th a t revealth e d ep en d en c e o f in -situ stren g th on increm ental jo in t p ara m e te rs o b tain ed from th e jo in t num ber,jo in t orien tatio n , jo in t roughness, gouge p a ram eters an d w a te r pressure. S ubstituting th e relationshipb e tw e e n th e RQD and m odified jo in t factor w ith th a t b e tw e e n m odulus ratio an d stren g th ratio, th em odel show s successfully th a t using d am age inclusive plastic p a ra m e te r an d RQD provides a relationshipfor estim atin g th e stre n g th o f rock m asses. One o f th e m ain objectives o f this w ork is to illustrate th a t th ep re se n t m odel is sensitive to p la s tic ity a n d dam ag e to g e th e r in estim atin g in -situ stre n g th o f rock m assesin foundations, u n d e rg ro u n d excavation an d tunnels.
文摘Using normal and shear rigid coefficients of intact rock and fracture plane, rigidly normal, shear equivalent rigid coefficients of fissure rock mass are conducted. On the basis of hypotheses of small displacement of rock mass, principle of superposition, irrelevance of strength parameters C and T and Coulomb theory, formulas to calculate equivalent strength parameters C and phi of equivalent continuous mass from fissured rock mass with anchor piles are given. The achievement is extremely valuable in integral stability analysis of the rock mass slope and important in promoting the research of the rock mass's constitutive relation.
文摘Although many intact rock types can be very strong,a critical confining pressure can eventually be reached in triaxial testing,such that the Mohr shear strength envelope becomes horizontal.This critical state has recently been better defined,and correct curvature or correct deviation from linear Mohr-Coulomb(MC) has finally been found.Standard shear testing procedures for rock joints,using multiple testing of the same sample,in case of insufficient samples,can be shown to exaggerate apparent cohesion.Even rough joints do not have any cohesion,but instead have very high friction angles at low stress,due to strong dilation.Rock masses,implying problems of large-scale interaction with engineering structures,may have both cohesive and frictional strength components.However,it is not correct to add these,following linear M-C or nonlinear Hoek-Brown(H-B) standard routines.Cohesion is broken at small strain,while friction is mobilized at larger strain and remains to the end of the shear deformation.The criterion 'c then σn tan φ' should replace 'c plus σn tan φ' for improved fit to reality.Transformation of principal stresses to a shear plane seems to ignore mobilized dilation,and caused great experimental difficulties until understood.There seems to be plenty of room for continued research,so that errors of judgement of the last 50 years can be corrected.
基金Project(2010CB732101) supported by the National Basic Research Program of China Project(51079145) supported by the National Natural Science Foundation of China
文摘An empirical expression of cohesion (C) and friction angle (Ф) for layered rock was suggested. This expression was compared with a test result made by the former researchers. The constitutive relationship of a transversely isotropic medium and Mohr-Coulomb criterion in which C and Ф vary with directions were employed, and a relative 3D elasto-plastic FEM code was developed, in which the important thing was to adopt a search-trial method to find the orientation angle (p) of shear failure plane (or weakest shear plane) with respect to the major principal stress as well as the corresponding C and Ф Taking an underground opening as the calculation object, the numerical analyses were carried out by using the FEM code for two cases of transversely isotropic rock and isotropic rock, respectively, and the computation results were compared. The results show that when the rock is a transversely isotropic one, the distributions of displacements, plastic zones and stress contours in the surrounding rock will be non-axisymmetric along the tunnel's vertical axis, which is very different from that of isotropic rock. The stability of the tunnel in transversely isotropic rock is relatively low.
基金Supported by the National Basic Research Program of China(973 Program)(2011CB013502)the Youth Special Foundation of IWHR(YJ1106)
文摘Xiangjiaba hydropowcr station is one of the complicated geological conditions of its dam foundation, parameters of rock masses are very important issues. To cascade power stations on the Jinsha River, China. Due to the evaluating the rock mass quality and determining the mechanical address these issues, several groups of rock borehole shear tests (RBSTs) were conducted on the black mudstone in the dam foundation of Xiangjiaba hydropower station in the second construction phase. Forty three groups of shear strengths of black mudstone samples were obtained from RBSTs, and the shear strength parameters (c and f) were calculated using the least squares method. In addition, the limitations and merits of RBST employed in the Xiangjiaba hydropower station were discussed. Test results indicate that the shear strength parameters obtained from RBST have a good correlation with the results from sotmd wave test in borehole. It is believed that RBST has a good adaptability and applicability in geotechnical engineering.
基金Project(41130742)supported by the Key Program of National Natural Science Foundation of ChinaProject(2014CB046904)supportedby the National Basic Research Program of China+1 种基金Project(2011CDA119)supported by Natural Science Foundation of Hubei Province,ChinaProject(40972178)supported by the General Program of National Natural Science Foundation of China
文摘The shear behavior of rock joints is important in solving practical problems of rock mechanics. Three group rock joints with different morphologies are made by cement mortar material and a series of CNL(constant normal loading) shear tests are performed. The influences of the applied normal stress and joint morphology to its shear strength are analyzed. According to the experimental results, the peak dilatancy angle of rock joint decreases with increasing normal stress, but increases with increasing roughness. The shear strength increases with the increasing normal stress and the roughness of rock joint. It is observed that the modes of failure of asperities are tensile, pure shear, or a combination of both. It is suggested that the three-dimensional roughness parameters and the tensile strength are the appropriate parameter for describing the shear strength criterion. A new peak shear criterion is proposed which can be used to predict peak shear strength of rock joints. All the used parameters can be easily obtained by performing tests.
基金supported by the China Geological Survey (No.1212011014030)the Major State Basic Research Development Program of China (973 Program) (No.2011CB710600)
文摘The estimation of shear strength of rock mass discontinuity is always a focal, but difficult, problem in the field of geotechnical engineering. Considering the disadvantages and limitation of exist- ing estimation methods, a new approach based on the shadow area percentage (SAP) that can be used to quantify surface roughness is proposed in this article. Firstly, by the help of laser scanning technique, the three-dimensional model of the surface of rock discontinuity was established. Secondly, a light source was simulated, and there would be some shadows produced on the model surface. Thirdly, to obtain the value of SAP of each specimen, the shadow detection technique was introduced for use. Fourthly, compared with the result from direct shear testing and based on statistics, an empirical for- mula was found among SAP, normal stress, and shear strength. Data of Yujian (~ River were used as an example, and the following conclusions have been made. (1) In the case of equal normal stress, the peak shear stress is positively proportional to the SAP. (2) The formula for estimating was derived, and the predictions of peak-shear strength made with this equation well agreed with the experimental re- suits obtained in laboratory tests.