期刊文献+
共找到127篇文章
< 1 2 7 >
每页显示 20 50 100
A statistical damage-based constitutive model for shearing of rock joints in brittle drop mode
1
作者 Xinrong Liu Peiyao Li +5 位作者 Xueyan Guo Xinyang Luo Xiaohan Zhou Luli Miao Fuchuan Zhou Hao Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第8期1041-1058,共18页
Some rock joints exhibit significant brittleness,characterized by a sharp decrease in shear stress upon reaching the peak strength.However,existing models often fail to accurately represent this behavior and are encum... Some rock joints exhibit significant brittleness,characterized by a sharp decrease in shear stress upon reaching the peak strength.However,existing models often fail to accurately represent this behavior and are encumbered by numerous parameters lacking clear mechanical significance.This study presents a new statistical damage constitutive model rooted in both damage mechanics and statistics,containing only three model parameters.The proposed model encompasses all stages of joint shearing,including the compaction stage,linear stage,plastic yielding stage,drop stage,strain softening stage,and residual strength stage.To derive the analytical expression of the constitutive model,three boundary conditions are introduced.Experimental data from both natural and artificial rock joints is utilized to validate the model,resulting in average absolute relative errors ranging from 3%to 8%.Moreover,a comparative analysis with established models illustrates that the proposed model captures stress drop and post-peak strain softening more effectively,with model parameters possessing clearer mechanical interpretations.Furthermore,parameter analysis is conducted to investigate the impacts of model parameters on the curves and unveil the relationship between these parameters and the mechanical properties of rock joints.Importantly,the proposed model is straightforward in form,and all model parameters can be obtained from direct shear tests,thus facilitating the utilization in numerical simulations. 展开更多
关键词 Rock joints Brittle rock Direct shear test Damage-based constitutive model Parameters analysis
下载PDF
Physical and mechanical properties and microstructures of submarine soils in the Yellow Sea 被引量:1
2
作者 Zhuangcai Tian Yihua Chang +6 位作者 Sichao Chen Gengchen Wang Yanhong Hu Chuan Guo Lei Jia Lei Song Jianhua Yue 《Deep Underground Science and Engineering》 2024年第2期197-206,共10页
In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical propertie... In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical properties of silt and sand from the Yellow Sea were measured using a direct shear apparatus and their microstructures were observed using a scanning electron microscope.The test results suggest that the shear strength of silt and sand increases linearly with the increase of normal stress.Based on the direct shear test,the scanning electron microscope was used to observe the section surface of sand.It is observed that the section surface becomes rough,with many“V”‐shaped cracks.Many particles appear on the surface of the silt structure and tend to be disintegrated.The X‐ray diffraction experiment reveals that the sand and silt have different compositions.The shear strength of sand is slightly greater than that of silt under high stress,which is related to the shape of soil particles and the mineral composition.These results can be a reference for further study of other soils in the Yellow Sea;meanwhile,they can serve as soil parameters for the stability and durability analyses of offshore infrastructure construction. 展开更多
关键词 direct shear test MICROSCOPE physical properties submarine soil Yellow Sea
下载PDF
Numerical Simulation of Rainfall-induced Xianchi Reservoir Landslide in Yunyang,Chongqing,China
3
作者 YAN Jinkai MA Yan +2 位作者 LIU Lei WANG Zhihui REN Tianxiang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第2期505-517,共13页
A calamitous landslide happened at 22:00 on September 1,2014 in the Yunyang area of Chongqing City,southwest China,enforcing the evacuation of 508 people and damaging 23 buildings.The landslide volume comprised 1.44 m... A calamitous landslide happened at 22:00 on September 1,2014 in the Yunyang area of Chongqing City,southwest China,enforcing the evacuation of 508 people and damaging 23 buildings.The landslide volume comprised 1.44 million m^(3) of material in the source area and 0.4 million m^(3) of shoveled material.The debris flow runout extended 400 m vertically and 1600 m horizontally.The Xianchi reservoir landslide event has been investigated as follows:(1)samples collected from the main body of landslide were carried out using GCTS ring shear apparatus;(2)the parameters of shear and pore water pressure have been measured;and(3)the post-failure characteristics of landslide have been analyzed using the numerical simulation method.The excess pore-water pressure and erosion in the motion path are considered to be the key reasons for the long-runout motion and the scale-up of landslides,such as that at Xianchi,were caused by the heavy rainfall.The aim of this paper is to acquired numerical parameters and the basic resistance model,which is beneficial to improve simulation accuracy for hazard assessment for similar to potentially dangerous hillslopes in China and elsewhere. 展开更多
关键词 GEOHAZARDS LANDSLIDE post-failure rapid and long runout ring shear test
下载PDF
State-of-the-art on the anchorage performance of rock bolts subjected to shear load
4
作者 Yu Chen Haodong Xiao 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期1-30,共30页
Rock bolts are extensively utilized in underground engineering as a means of offering support and stability to rock masses in tunnels,mines,and other underground structures.In environments of high ground stress,faults... Rock bolts are extensively utilized in underground engineering as a means of offering support and stability to rock masses in tunnels,mines,and other underground structures.In environments of high ground stress,faults or weak zones can frequently arise in rock formations,presenting a significant challenge for engineering and potentially leading to underground engineering collapse.Rock bolts serve as a crucial structural element for the transmission of tensile stress and are capable of withstanding shear loads to prevent sliding of weak zones within rock mass.Therefore,a complete understanding of the behavior of rock bolts subjected to shear loads is essential.This paper presents a state-of-the-art review of the research progress of rock bolts subjected to shear load in three categories:experiment,numerical simulation,and analytical model.The review focuses on the research studies and developments in this area since the 1970s,providing a comprehensive overview of numerous factors that influence the anchorage performance of rock bolts.These factors include the diameter and angle of the rock bolt installation,rock strength,grouting material,bolt material,borehole diameter,rock bolt preload,normal stress,joint surface roughness and joint expansion angle.The paper reviews the improvement of mechanical parameter setting in numerical simulation of rock bolt shear.Furthermore,it delves into the optimization of the analytical model concerning rock bolt shear theory,approached from the perspectives of both Elastic foundation beam theory coupled with Elastoplasticity theory and Structural mechanic methods.The significance of this review lies in its ability to provide insights into the mechanical behavior of rock bolts.The paper also highlights the limitations of current research and guidelines for further research of rock bolts. 展开更多
关键词 Rock bolt Shear load Shear test Numerical simulation Analytical model
下载PDF
Field testing of shear strength of granite residual soils
5
作者 Song Yin Pengfei Liu +3 位作者 Xianwei Zhang Wenyuan He Pan Yan Yuzhou Sun 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3718-3732,共15页
The characteristics of residual soils are very different from those of sedimentary soils.Although the strength characteristics of sedimentary soils have been studied extensively,the shear strength characteristics of g... The characteristics of residual soils are very different from those of sedimentary soils.Although the strength characteristics of sedimentary soils have been studied extensively,the shear strength characteristics of granitic residual soils(GRS)subjected to the weathering of parent rocks have rarely been investigated.In this study,the shear strength characteristics of GRS in the Taishan area of southeast China(TSGRS)were studied by field and laboratory tests.The field tests consisted of a cone penetration test(CPT),borehole shear test(BST),self-boring pressuremeter test(SBPT),and seismic dilatometer Marchetti test(SDMT).The shortcomings of laboratory testing are obvious,with potential disturbances arising through the sampling,transportation,and preparation of soil samples.Due to the special structure of GRS samples and the ease of disturbance,the results obtained from laboratory tests were generally lower than those obtained from situ tests.The CPT and scanning electron microscopy(SEM)results indicated significant weathering and crustal hardening in the shallow TSGRS.This resulted in significant differences in the strength and strength parameters of shallow soil obtained by the BST.Based on the SDMT and SBPT results,a comprehensive evaluation method of shear strength for TSGRS was proposed.The SBPT was suitable for evaluating the strength of shallow GRS.The material index(ID)and horizontal stress index(KD)values obtained by the SDMT satisfied the empirical relationship proposed by Marchetti based on the ID index,and were therefore considered suitable for the evaluation of the shear strength of deep GRS. 展开更多
关键词 Granite residual soils Shear strength Field tests Self-boring pressuremeter Seismic dilatometer Borehole shear test
下载PDF
Assessment of liquefaction potential based on shear wave velocity:Strain energy approach
6
作者 Mohammad Hassan Baziar Mahdi Alibolandi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3733-3745,共13页
Liquefaction assessment based on strain energy is significantly superior to conventional stress-based methods.The main purpose of the present study is to investigate the correlation between shear wave velocity and str... Liquefaction assessment based on strain energy is significantly superior to conventional stress-based methods.The main purpose of the present study is to investigate the correlation between shear wave velocity and strain energy capacity of silty sands.The dissipated energy until liquefaction occurs was calculated by analyzing the results of three series of comprehensive cyclic direct simple shear and triaxial tests on Ottawa F65,Nevada,and Firoozkuh sands with varying silt content by weight and relative densities.Additionally,the shear wave velocity of each series was obtained using bender element or resonant column tests.Consequently,for the first time,a liquefaction triggering criterion,relating to effective overburden normalized liquefaction capacity energy(WL=s’c)to effective overburden stresscorrected shear wave velocity(eVs1)has been introduced.The accuracy of the proposed criteria was evaluated using in situ data.The results confirm the ability of shear wave velocity as a distinguishing parameter for separating liquefied and non-liquefied soils when it is calculated against liquefaction capacity energy(WL=s’c).However,the proposed WL=s’c-Vs1 curve,similar to previously proposed cyclic resistance ratio(CRR)-Vs1 relationships,should be used conservatively for fields vulnerable to liquefaction-induced lateral spreading. 展开更多
关键词 LIQUEFACTION Strain energy capacity Shear wave velocity Cyclic triaxial test Cyclic direct simple shear test Resonant column test Bender element test
下载PDF
Experimental investigation on shear strength deterioration at the interface between different rock types under cyclic loading
7
作者 Qiong Wu Zhiqi Liu +6 位作者 Huiming Tang Liangqing Wang Xiaoxue Huo Zhen Cui Shiyu Li Bo Zhang Zhiwei Lin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3063-3079,共17页
The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake... The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake;however,rare work has been devoted to this subject due to lack of attention.In this study,experimental investigations on shear strength weakening of discontinuities with different joint wall material(DDJM)under cyclic loading were conducted by taking the interface between siltstone and mudstone in the Shaba slope of Yunnan Province,China as research objects.A total of 99 pairs of similar material samples of DDJM(81 pairs)and discontinuities with identical joint wall material(DIJM)(18 pairs)were fabricated by inserting plates,engraved with typical surface morphology obtained by performing three-dimensional laser scanning on natural DDJMs sampled from field,into mold boxes.Cyclic shear tests were conducted on these samples to study their shear strength changes with the cyclic number considering the effects of normal stress,joint surface morphology,shear displacement amplitude and shear rate.The results indicate that the shear stress vs.shear displacement curves under each shear cycle and the peak shear strength vs.cyclic number curves of the studied DDJMs are between those of DIJMs with siltstone and mudstone,while closer to those of DIJMs with mudstone.The peak shear strengths of DDJMs exhibit an initial rapid decline followed by a gradual decrease with the cyclic number and the decrease rate varies from 6%to 55.9%for samples with varied surface morphology under different testing conditions.The normal stress,joint surface morphology,shear displacement amplitude and shear rate collectively influence the shear strength deterioration of DDJM under cyclic shear loading,with the degree of influence being greater for larger normal stress,rougher surface morphology,larger shear displacement amplitude and faster shear rate. 展开更多
关键词 Discontinuities with different joint wall material(DDJM) Discontinuities with identical joint wall material(DIJM) Cyclic shear test Shear strength deterioration Joint surface morphology Shear displacement amplitude Shear rate Normal stress
下载PDF
Mechanical behaviour of fiber-reinforced grout in rock bolt reinforcement
8
作者 Yingchun Li Ammar Ahmed Danqi Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期437-453,共17页
Grouted rock bolts subject to axial loading in the field exhibit various failure modes,among which the most predominant one is the bolt-grout interface failure.Thus,mechanical characterization of the grout is essentia... Grouted rock bolts subject to axial loading in the field exhibit various failure modes,among which the most predominant one is the bolt-grout interface failure.Thus,mechanical characterization of the grout is essential for understanding its performance in ground support.To date,few studies have been conducted to characterize the mechanical behaviour of fiber-reinforced grout(FRG)in rock bolt reinforcement.Here we experimentally studied the mechanical behaviour of FRG under uniaxial compression,indirect tension,and direct shear loading conditions.We also conducted a series of pullout tests of rebar bolt encapsulated with different grouts including conventional cementitious grout and FRG.FRG was developed using 15%silica fume(SF)replacement of cement(by weight)and steel fiber to achieve highstrength and crack-resistance to overcome drawbacks of the conventional grout.Two types of steel fibers including straight and wavy steel fibers were further added to enhance the grout quality.The effect of fiber shape and fiber volume proportion on the grout mechanical properties were examined.Our experimental results showed that the addition of SF and steel fiber by 1.5%fiber volume proportion could lead to the highest compressive,tensile,and shear strengths of the grout.The minimum volume of fiber that could improve the mechanical properties of grout was found at 0.5%.The scanning electron microscopy(SEM)analysis demonstrated that steel fibers act as an excellent bridge to prevent the cracks from propagating at the interfacial region and hence to aid in maintaining the integrity of the cementitious grout.Our laboratory pullout tests further confirmed that FRG could prevent the cylindrical grout annulus from radial crack and hence improve the rebar’s load carrying capacity.Therefore,FRG has a potential to be utilized in civil and mining applications where high-strength and crack-resistance support is required. 展开更多
关键词 Fiber-reinforced grout(FRG) Steel fibers Mechanical properties Direct shear test Pullout test
下载PDF
Cyclic shear behavior of en-echelon joints under constant normal stiffness conditions
9
作者 Bin Wang Yujing Jiang +3 位作者 Qiangyong Zhang Hongbin Chen Richeng Liu Yuanchao Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3419-3436,共18页
To reveal the mechanism of shear failure of en-echelon joints under cyclic loading,such as during earthquakes,we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness(CNS)condit... To reveal the mechanism of shear failure of en-echelon joints under cyclic loading,such as during earthquakes,we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness(CNS)conditions.We analyzed the evolution of shear stress,normal stress,stress path,dilatancy characteristics,and friction coefficient and revealed the failure mechanisms of en-echelon joints at different angles.The results show that the cyclic shear behavior of the en-echelon joints is closely related to the joint angle,with the shear strength at a positive angle exceeding that at a negative angle during shear cycles.As the number of cycles increases,the shear strength decreases rapidly,and the difference between the varying angles gradually decreases.Dilation occurs in the early shear cycles(1 and 2),while contraction is the main feature in later cycles(310).The friction coefficient decreases with the number of cycles and exhibits a more significant sensitivity to joint angles than shear cycles.The joint angle determines the asperities on the rupture surfaces and the block size,and thus determines the subsequent shear failure mode(block crushing and asperity degradation).At positive angles,block size is more greater and asperities on the rupture surface are smaller than at nonpositive angles.Therefore,the cyclic shear behavior is controlled by block crushing at positive angles and asperity degradation at negative angles. 展开更多
关键词 En-echelon joint Cyclic shear tests Shear stress Normal displacement Constant normal stiffness(CNS)
下载PDF
Surrounding rock pressure in the tunnel portal section through moraine under freeze-thaw action
10
作者 CHEN Zhimin LIU Baoli +1 位作者 LIU Yaohui XU Jiangtao 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2480-2493,共14页
Moraines,characterized by the accumulation of rock and soil debris transported by glacial activity,present unique challenges for tunnel construction,particularly in portal sections,due to prevailing geographical and c... Moraines,characterized by the accumulation of rock and soil debris transported by glacial activity,present unique challenges for tunnel construction,particularly in portal sections,due to prevailing geographical and climatic conditions that facilitate freeze-thaw action.Despite these challenges,there is a dearth of studies investigating the influence of freeze-thaw action and water content on the mechanical properties of moraines,and no research on calculating surrounding rock pressure in moraine tunnels subjected to freeze-thaw conditions.In this study,direct shear tests under freeze-thaw cycles were conducted to examine the effects of freeze-thaw cycles and water content on the mechanical properties of frozen moraine.A comprehensive parameter K,integrating the number of freeze-thaws and water content,was introduced to model cohesion c.Drawing on Terzaghi Theory,we propose an improved algorithm for calculating surrounding rock pressure at the portal section of moraine tunnels.Using a tunnel as a case study,surrounding rock pressure was calculated under various conditions to validate the Improved Algorithm's efficacy.The results show that:(1)Strength loss exhibits a linear trend with the number of freeze-thaw cycles at water content levels of 4%and 8%,while at 12%water content,previous freeze-thaw cycles induce more significant damage to the soil.(2)Moraine saturation peaks between 8%and 12%water content.Following repeated freeze-thaw cycles,moraine shear strength initially increases before decreasing with varying water content.(3)The internal friction angle of moraine experiences slight reductions with prolonged freeze-thaw cycles,but both freeze-thaw cycles and water content significantly influence cohesion.(4)Vertical surrounding rock pressure increases after the initial freeze-thaw cycle,particularly with higher water content,although freeze-thaw cycles have minimal effect on it.(5)Freeze-thaw cycles lead to a substantial increase in lateral surrounding rock pressure,necessitating reinforced support structures at the arch wall,arch waist,and arch foot in engineering projects to mitigate freeze-thaw effects.This study provides a foundation for designing and selecting tunnel support structures in similar geological conditions. 展开更多
关键词 MORAINES Freeze-thaw cycles Direct shear test Surrounding rock pressure
下载PDF
A vector sum analysis method for stability evolution of expansive soil slope considering shear zone damage softening
11
作者 Junbiao Yan Lingwei Kong +1 位作者 Cheng Chen Mingwei Guo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3746-3759,共14页
Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering cons... Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering construction in expansive soil areas.Most of the existing studies evaluate the slope stability by analyzing the limit equilibrium state of the slope,and the analysis method for the stability evolution considering the damage softening of the shear zone is lacking.In this study,the large deformation shear mechanical behavior of expansive soil was investigated by ring shear test.The damage softening characteristic of expansive soil in the shear zone was analyzed,and a shear damage model reflecting the damage softening behavior of expansive soil was derived based on the damage theory.Finally,by skillfully combining the vector sum method and the shear damage model,an analysis method for the stability evolution of the expansive soil slope considering the shear zone damage softening was proposed.The results show that the shear zone subjected to large displacement shear deformation exhibits an obvious damage softening phenomenon.The damage variable equation based on the logistic function can be well used to describe the shear damage characteristics of expansive soil,and the proposed shear damage model is in good agreement with the ring shear test results.The vector sum method considering the damage softening behavior of the shear zone can be well applied to analyze the stability evolution characteristics of the expansive soil slope.The stability factor of the expansive soil slope decreases with the increase of shear displacement,showing an obvious progressive failure behavior. 展开更多
关键词 Expansive soil slope Stability analysis Ring shear test Vector sum method Damage model Strain softening
下载PDF
Flow-Slip Stability Behavior of Calcareous Sand Treated by Microbially Induced Carbonate Precipitation Technology
12
作者 KOU Hailei HE Xiang +4 位作者 HOU Wangxiang LI Zhendong ZHANG Xixin AN Zhaotun LU Jiaqing 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第5期1381-1389,共9页
Flow-slip damage commonly destabilizes coastal slopes.Finding a slope stabilization method for calcareous sands in the South China Sea is crucial.Microbially induced calcite precipitation is a promising,eco-friendly m... Flow-slip damage commonly destabilizes coastal slopes.Finding a slope stabilization method for calcareous sands in the South China Sea is crucial.Microbially induced calcite precipitation is a promising,eco-friendly method for soil stabilization.This study investigates the effect of microbial treatments,initial relative density,initial cell pressure,and initial stress ratio on the flow-slip stability of calcareous sand specimens by using constant shear drained tests.These tests lay the foundation to study the mechanical instability of sand slopes.Results show that the microbial-treated specimens maintain stable stresses longer,take longer to reach the instability,and withstand larger volumetric strains.Microbial treatment effectively enhances sand stability under constant shear drainage,with improvements amplified by higher initial relative density and initial cell pressure.In addition,a smaller initial stress ratio reduces shear effects on the specimen and increases resistance to flow slides.Microanalysis reveals that the flow-slip stability of calcareous sand slopes is enhanced by contact cementation,particle coating,void filling,and mutual embedment of calcium carbonate crystals. 展开更多
关键词 clcareous sand microbially induced carbonate precipitation constant shear drained tests flow-slip stability
下载PDF
Numerical simulation of direct shear tests on mechanical properties of talus deposits based on self-adaptive PCNN digital image processing 被引量:5
13
作者 王盛年 徐卫亚 +1 位作者 石崇 张强 《Journal of Central South University》 SCIE EI CAS 2014年第7期2904-2914,共11页
The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of tal... The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of talus deposits that widely exist in the hydro-power engineering in the southwest of China were first reconstructed by small particles according to the in-situ photographs based on the self-adaptive PCNN digital image processing,and then numerical direct shear tests were carried out for studying the mechanical properties of talus deposits.Results indicate that the reconstructed meso-structures of talus deposits are more consistent with the actual situation because the self-adaptive PCNN digital image processing has a higher discrimination in the details of soil-rock segmentation.The existence and random distribution of rock blocks make the initial shear stiffness,the peak strength and the residual strength higher than those of the "pure soil" with particle size less than 1.25 cm apparently,but reduce the displacements required for the talus deposits reaching its peak shear strength.The increase of rock proportion causes a significant improvement in the internal friction angle of talus deposit,which to a certain degree leads to the characteristics of shear stress-displacement curves having a changing trend from the plastic strain softening deformation to the nonlinear strain hardening deformation,while an unconspicuous increase in cohesion.The uncertainty and heterogeneity of rock distributions cause the differences of rock proportion within shear zone,leading to a relatively strong fluctuation in peak strengths during the shear process,while movement features of rock blocks,such as translation,rotation and crossing,expand the scope of shear zone,increase the required shear force,and also directly lead to the misjudgment that the lower shear strength is obtained from the samples with high rock proportion.That,however,just explains the reason why the shear strength gained from a small amount of indoor test data is not consistent with engineering practice. 展开更多
关键词 talus deposits digital image processing pulse coupled neural networks(PCNN) direct shear test mechanical property granular discrete element method
下载PDF
Numerical analysis of loess and weak intercalated layer failure behavior under direct shearing and cyclic loading 被引量:3
14
作者 ZHANG Ze-lin WANG Tao 《Journal of Mountain Science》 SCIE CSCD 2020年第11期2796-2815,共20页
The mechanical behavior of the joints inside a loess layer is greatly important in weak intercalation studies owing to its involvement in a wide range of landslides in the loess region in China.The shear behavior of t... The mechanical behavior of the joints inside a loess layer is greatly important in weak intercalation studies owing to its involvement in a wide range of landslides in the loess region in China.The shear behavior of the joints in the loess stratum during direct shear and cyclic loadings was investigated using the PFC2D discrete element software.Loess mudstone and mudstone with weak intercalated layer materials were subjected to direct testing,and cyclic shear tests were conducted with consideration to the influence of normal stress and shear velocity.The macroscopic properties and damage patterns were obtained for six numerical configurations;namely,loess-weathered mudstone with 0°,10°,and-10°joints and weathered mudstone with 0°,10°,and-10°weak intercalated layers.The numerical test results revealed that,in the direct shear tests,the shear stress and shear displacement of the samples increased with the normal stress.In the cyclic shear tests with a total cycle number N=20,the shear stress-shear strain curve of the six different configurations exhibited a hysteresis loop.The numerical tests also revealed that,under cyclic shear,the normal stress and shear velocity affected the shear strength.The degree of damage increased as the shear velocity decreased from 0.1 mm/s to 0.005 mm/s for all six numerical configurations.Compared with the damage pattern of the direct shear tests,the damage of the cyclic shear tests mainly comprised shear cracks and fractures,some shaking consolidation settlement and fewer shear strain occurred around the joints.In the direct shear tests,more compression cracks and fractures occurred in the samples.The damage mainly developed along the joints,and shearing-off damage occurred.The results obtained by this study further elucidate the failure mechanism and microscopic damage response of the joints in the loess stratum in Northwest China. 展开更多
关键词 LOESS MUDSTONE Weak intercalated layer Direct shear test Cyclic shear test PFC2D
下载PDF
Trigger mechanism of loess-mudstone landslides inferred from ring shear tests and numerical simulation 被引量:2
15
作者 WANG Xin-gang LIAN Bao-qin +1 位作者 Liu Kai Luo Li 《Journal of Mountain Science》 SCIE CSCD 2021年第9期2412-2426,共15页
Whereas loess-mudstone landslides are widely distributed and frequently occurred at the loess Plateau,this type of landslides is hard to detect due to its particularity,and easily generates serious losses.To clarify t... Whereas loess-mudstone landslides are widely distributed and frequently occurred at the loess Plateau,this type of landslides is hard to detect due to its particularity,and easily generates serious losses.To clarify the shear characteristics and formation mechanism of loess-mudstone landslides,field investigations,ring shear tests and numerical simulation analyses were performed on the loess specimens collected from the Dingjiagou landslide in Yan’an city,China.The test results showed that both the peak strength and residual strength of slip zone soils have a decreasing tendency with moisture content,while the increasing of normal stress caused an increase in the shear strength.These phenomena indicate that the rise in the moisture content induced by precipitation or the decreasing of normal stress due to excavation activities would result in the weakening of slip zone soils.Numerical simulations of the evolution process of slope failure using the finite element method were conducted based on the Mohr–Coulomb criterion.It was found that the heavy precipitation played a more important role in the slope instability compared with the excavation.In addition,the field investigation showed that loess soils with well-developed cracks and underlying mudstone soils provide material base for the formation of loess-mudstone landslides.Finally,the formation mechanism of this type of landslides was divided into three stages,namely,the local deformation stage,the penetration stage,the creeping-sliding stage.This study may provide a basis for understanding the sliding process of loess-mudstone landslides,as well as guidelines for the prevention and mitigation of loess-mudstone landslides. 展开更多
关键词 Loess-mudstone landslides Slip zone soil Ring shear tests Numerical simulation Formation mechanism
下载PDF
Effects of water saturation and loading rate on direct shear tests of andesite 被引量:2
16
作者 Tianshu Bao Kimihiro Hashiba Katsunori Fukui 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第2期653-662,共10页
For estimating the long-term stability of underground framework,it is vital to learn the mechanical and rheological characteristics of rock in multiple water saturation conditions.However,the majority of previous stud... For estimating the long-term stability of underground framework,it is vital to learn the mechanical and rheological characteristics of rock in multiple water saturation conditions.However,the majority of previous studies explored the rheological properties of rock in air-dried and water saturated conditions,as well as the water effects on compressive and tensile strengths.In this study,andesite was subjected to direct shear tests under five water saturation conditions,which were controlled by varying the wetting and drying time.The tests were conducted at alternating displacement rates under three vertical stresses.The results reveal that the shear strength decreases exponentially as water saturation increases,and that the increase in shear strength with a tenfold increase in displacement rate is nearly constant for each of the vertical stresses.Based on the findings of the shear tests in this study and the compression and tension tests in previous studies,the influences of both water saturation and loading rate on the Hoek-Brown failure criterion for the andesite was examined.These results indicate that the brittleness index of the andesite,which is defined as the ratio of uniaxial compressive strength to tensile strength,is independent of both water saturation and loading rate and that the influences of the water saturation dependence and the loading rate dependence of the failure criterion can be converted between each other. 展开更多
关键词 Direct shear test Water saturation Loading rate dependence Failure criterion
下载PDF
High-Speed Ring Shear Tests to Study the Motion and Acceleration Processes of the Yingong Landslide 被引量:8
17
作者 HU Ming-jian Pan Hua-li +1 位作者 Zhu Chang-qi Wang Fa-wu 《Journal of Mountain Science》 SCIE CSCD 2015年第6期1534-1541,共8页
In this paper, the motion and acceleration process, as well as the mechanism of a high speed and long run landslide are investigated by adopting high speed ring shear test and taking the landslide occurred at Yigong R... In this paper, the motion and acceleration process, as well as the mechanism of a high speed and long run landslide are investigated by adopting high speed ring shear test and taking the landslide occurred at Yigong River in Bomi, Tibet on April 9, 2000 as the background. According to the motion characteristics of high-speed and long distance motion landside, the mechanism is studied under different conditions such as shear speed, consolidated drained and consolidated undrained status. Results show that high speed shearing process hinders and delays the dissipation of pore pressure, and drives pore water migrating to shear zone slowly. Both of water content and fine particle content at shear zone are obviously higher than those in other layers; and soil liquefaction occurs at shear zone in the saturated consolidated undrained ring shear tests. The effective internal friction angle of the consolidated undrained soil is much lower than that of the consolidated drained soil under ring shearing. The results also indicate that the shearing speed affecting the strength of soil to some extent. The higher the ring shearing speed is, the lower the strength of soil is. This investigation provides a preliminary interpretation of the mechanism of the motion and acceleration process of the Yigong landslide, occurred in Tibet in 2000. 展开更多
关键词 Yigong landslide Ring shear tests Shear zone Liquefaction Strength
下载PDF
Influence of moisture content on shearing strength of unsaturated undisturbed quaternary system middle pleistocene 被引量:7
18
作者 钟祖良 刘元雪 +2 位作者 刘新荣 李小勇 王睢 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2776-2782,共7页
The unsaturated undisturbed quaternary system middle pleistocene loess,a typical unsaturated soil,often occurs in the implementation of western development strategy.To obtain the shearing strength characteristics of t... The unsaturated undisturbed quaternary system middle pleistocene loess,a typical unsaturated soil,often occurs in the implementation of western development strategy.To obtain the shearing strength characteristics of this unsaturated undisturbed loess,based on the analysis of mineral composition,the triaxial shear test of undisturbed quaternary system middle pleistocene loess under different moisture contents is conducted with the specialized triaxial instrument for unsaturated soil.The test results show that the mainly mineral composition of undisturbed quaternary system middle pleistocene loess is quartz and albite.Under the same confining pressure,the matric suction increases with the decrease of moisture content.The smaller the moisture content,the larger the matric suction;the higher the moisture content,the lower the matric suction.Under the same moisture content,the matric suction increases with the confining pressure and reaches a maximum when the confining pressure is 100 kPa,and then decreases with the increase of confining pressure.This phenomenon is closely related to the grain contact tightness of soil mass under high confining pressure.According to the triaxial test of loess,the sample of loess experiences 4 stages from loading to failure:1) compaction stage;2) compression stage;3) microcrack developing stage;4) shear failure stage.The test sample is of brittle failure(weak softening)under low moisture content and confining pressure.With the decrease of matric suction and the increase of consolidated confining pressure,the stress-strain curve changes from softening type to ideal plastic type.In the shearing strength parameters of unsaturated undisturbed loess,the influence of moisture content on internal friction angle is small,but that on cohesive force is obvious.Therefore,the shearing strength of unsaturated undisturbed loess is higher than that of saturated undisturbed loess and varies with the moisture content. 展开更多
关键词 unsaturated undisturbed loess matric suction test shearing strength
下载PDF
Rock borehole shear tests in dam foundation of Xiangjiaba hydropower station 被引量:2
19
作者 Yufei Zhao Xiaogang Wang +3 位作者 Xiaohui Zhang Zhixin Jia Xiangxi Zeng Hongtao Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2012年第4期360-366,共7页
Xiangjiaba hydropowcr station is one of the complicated geological conditions of its dam foundation, parameters of rock masses are very important issues. To cascade power stations on the Jinsha River, China. Due to th... Xiangjiaba hydropowcr station is one of the complicated geological conditions of its dam foundation, parameters of rock masses are very important issues. To cascade power stations on the Jinsha River, China. Due to the evaluating the rock mass quality and determining the mechanical address these issues, several groups of rock borehole shear tests (RBSTs) were conducted on the black mudstone in the dam foundation of Xiangjiaba hydropower station in the second construction phase. Forty three groups of shear strengths of black mudstone samples were obtained from RBSTs, and the shear strength parameters (c and f) were calculated using the least squares method. In addition, the limitations and merits of RBST employed in the Xiangjiaba hydropower station were discussed. Test results indicate that the shear strength parameters obtained from RBST have a good correlation with the results from sotmd wave test in borehole. It is believed that RBST has a good adaptability and applicability in geotechnical engineering. 展开更多
关键词 rock mass: field investigation: rock borehole shear test (RBST) shear strength parameters
下载PDF
Cyclic Shear Tests on Key Connection Joints of Modularized Constructions
20
作者 Deshen Chen Xiaofei Jin +3 位作者 Huajie Wang Hongliang Qian Deci Chang Feng Fan 《Journal of Harbin Institute of Technology(New Series)》 CAS 2022年第3期13-20,共8页
Modularized construction is a new type of prefabricated building system with green environmental protection and excellent performance. There are few studies on the seismic performance of its key connection joint. This... Modularized construction is a new type of prefabricated building system with green environmental protection and excellent performance. There are few studies on the seismic performance of its key connection joint. This paper presents a new type of assembled connection joint for the high-rise modularized construction. Cyclic shear tests of full-scale joints were carried out, and the key indexes of their seismic performances including the hysteretic performance, ductility, and energy dissipation capacity were analyzed and obtained. The results show that the hysteresis loops of longitudinal and lateral cyclic shear tests were both plump in shapes. The ductility coefficients were 4.54 and 4.98, and the energy dissipation coefficients were 1.83 and 1.43, respectively. The test joint had good ductility and energy dissipation capacity. The positions of yield failure of specimens were mainly concentrated in the connection areas between the column and short beam or end-plate. The research can provide the technical reference for the seismic design and engineering application of related modularized constructions. 展开更多
关键词 modularized construction assembled connection joint cyclic shear test seismic performance
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部