The use of ultra-high strength steels through sheet metal forming process offers a practical solution to the lightweight design of vehicles.However,sheet metal forming process not only produces desirable changes in ma...The use of ultra-high strength steels through sheet metal forming process offers a practical solution to the lightweight design of vehicles.However,sheet metal forming process not only produces desirable changes in material properties but also causes material damage that may adversely influence the service performance of the material formed.Thus,an investigation is conducted to experimentally quantify such influence for a commonly used steel(the 22MnB5 steel) based on the hot and cold forming processes.For each process,a number of samples are used to conduct a uniaxial tensile test to simulate the forming process.After that,some of the samples are trimmed into a standard shape and then uniaxially extended until fracture to simulate the service stage.Finally,a microstructure test is conducted to analyze the microdefects of the remaining samples.Based on the results of the first two tests,the effect of material damage on the service performance of 22MnB5 steel is analyzed.It is found that the material damages of both the hot and cold forming processes cause reductions in the service performance,such as the failure strain,the ultimate stress,the capacity of energy absorption and the ratio of residual strain.The reductions are generally lower and non-linear in the former process but higher and linear in the latter process.Additionally,it is found from the microstructure analysis that the difference in the reductions of the service performance of 22MnB5 by the two forming processes is driven by the difference in the micro damage mechanisms of the two processes.The findings of this research provide a useful reference in terms of the selection of sheet metal forming processes and the determination of forming parameters for 22MnB5.展开更多
We report a simple solution-processed method for the fabrication of low-cost,flexible optical limiting materials based on graphene oxide(GO) impregnated polyvinyl alcohol(PVA) sheets.Such GO–PVA composite sheets disp...We report a simple solution-processed method for the fabrication of low-cost,flexible optical limiting materials based on graphene oxide(GO) impregnated polyvinyl alcohol(PVA) sheets.Such GO–PVA composite sheets display highly efficient broadband optical limiting activities for femtosecond laser pulses at 400,800,and 1400 nm with very low limiting thresholds.Femtosecond pump–probe measurement results revealed that nonlinear absorption played an important role for the observed optical limiting activities.High flexibility and efficient optical limiting activities of these materials allow these composite sheets to be attached to nonplanar optical sensors in order to protect them from light-induced damage.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51375201)CSAE(Beijing)Automotive Lightweight Technology Research Institute Development Fund Project of China
文摘The use of ultra-high strength steels through sheet metal forming process offers a practical solution to the lightweight design of vehicles.However,sheet metal forming process not only produces desirable changes in material properties but also causes material damage that may adversely influence the service performance of the material formed.Thus,an investigation is conducted to experimentally quantify such influence for a commonly used steel(the 22MnB5 steel) based on the hot and cold forming processes.For each process,a number of samples are used to conduct a uniaxial tensile test to simulate the forming process.After that,some of the samples are trimmed into a standard shape and then uniaxially extended until fracture to simulate the service stage.Finally,a microstructure test is conducted to analyze the microdefects of the remaining samples.Based on the results of the first two tests,the effect of material damage on the service performance of 22MnB5 steel is analyzed.It is found that the material damages of both the hot and cold forming processes cause reductions in the service performance,such as the failure strain,the ultimate stress,the capacity of energy absorption and the ratio of residual strain.The reductions are generally lower and non-linear in the former process but higher and linear in the latter process.Additionally,it is found from the microstructure analysis that the difference in the reductions of the service performance of 22MnB5 by the two forming processes is driven by the difference in the micro damage mechanisms of the two processes.The findings of this research provide a useful reference in terms of the selection of sheet metal forming processes and the determination of forming parameters for 22MnB5.
基金financial support from the Guangdong Innovative Research Team Program of China (201101C0105067115)DSTA Singapore (Project DSTA-NUS-DIRP/9010100347)National Research Foundation Singapore (R398-001-062-281)
文摘We report a simple solution-processed method for the fabrication of low-cost,flexible optical limiting materials based on graphene oxide(GO) impregnated polyvinyl alcohol(PVA) sheets.Such GO–PVA composite sheets display highly efficient broadband optical limiting activities for femtosecond laser pulses at 400,800,and 1400 nm with very low limiting thresholds.Femtosecond pump–probe measurement results revealed that nonlinear absorption played an important role for the observed optical limiting activities.High flexibility and efficient optical limiting activities of these materials allow these composite sheets to be attached to nonplanar optical sensors in order to protect them from light-induced damage.