期刊文献+
共找到50篇文章
< 1 2 3 >
每页显示 20 50 100
Review of Iron-Based Catalysts for Carbon Dioxide Fischer-Tropsch Synthesis
1
作者 Ji-Yue Jia Yu-Ling Shan +3 位作者 Yong-Xiao Tuo Hao Yan Xiang Feng De Chen 《Transactions of Tianjin University》 EI CAS 2024年第2期178-197,共20页
Capturing and utilizing CO_(2)from the production process is the key to solving the excessive CO_(2)emission problem. CO_(2)hydrogenation with green hydrogen to produce olefins is an effective and promising way to uti... Capturing and utilizing CO_(2)from the production process is the key to solving the excessive CO_(2)emission problem. CO_(2)hydrogenation with green hydrogen to produce olefins is an effective and promising way to utilize CO_(2)and produce valuable chemicals. The olefins can be produced by CO_(2)hydrogenation through two routes, i.e., CO_(2)-FTS (carbon dioxide Fischer- Tropsch synthesis) and MeOH (methanol-mediated), among which CO_(2)-FTS has significant advantages over MeOH in practical applications due to its relatively high CO_(2)conversion and low energy consumption potentials. However, the CO_(2)-FTS faces challenges of difficult CO_(2)activation and low olefins selectivity. Iron-based catalysts are promising for CO_(2)-FTS due to their dual functionality of catalyzing RWGS and CO-FTS reactions. This review summarizes the recent progress on iron-based catalysts for CO_(2)hydrogenation via the FTS route and analyzes the catalyst optimization from the perspectives of additives, active sites, and reaction mechanisms. Furthermore, we also outline principles and challenges for rational design of high-performance CO_(2)-FTS catalysts. 展开更多
关键词 CO_(2)hydrogenation OLEFINS CO_(2)-FTS iron-based catalysts
下载PDF
A critical review towards the causes of the iron-based catalysts deactivation mechanisms in the selective oxidation of hydrogen sulfide to elemental sulfur from biogas
2
作者 Mostafa Tarek Janaina S.Santos +4 位作者 Victor Márquez Mohammad Fereidooni Mohammad Yazdanpanah Supareak Praserthdam Piyasan Praserthdam 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期388-411,I0010,共25页
Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of ... Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of hydrogen sulfide(SOH_(2)S) to elemental sulfur(S) has emerged as a sustainable and environmentally friendly solution.Due to its unique properties,iron oxide has been extensively investigated as a catalyst for SOH_(2)S;however,rapid deactivation has remained a significant drawback.The causes of iron oxide-based catalysts deactivation mechanisms in SOH_(2)S,including sulfur or sulfate deposition,the transformation of iron species,sintering and excessive oxygen vacancy formation,and active site loss,are thoroughly examined in this review.By focusing on the deactivation mechanisms,this review aims to provide valuable insights into enhancing the stability and efficiency of iron-based catalysts for SOH_(2)S. 展开更多
关键词 Selective oxidation of H_(2)S iron-based catalysts Mechanism of deactivation Sulfur or sulfate deposition Transformation of iron species Sintering SDG 7
下载PDF
Effect of Manganese Incorporation Manner on an Iron-Based Catalyst for Fischer-Tropsch Synthesis 被引量:5
3
作者 Tingzhen Li Yong Yang +5 位作者 Chenghua Zhang Zhichao Tao Haijun Wan Xia An Hongwei Xiang Yongwang Li 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2007年第3期244-251,共8页
A systematic study was undertaken to investigate the effects of the manganese incorporation manner on the textural properties, bulk and surface phase compositions, reduction/carburization behaviors, and surface basici... A systematic study was undertaken to investigate the effects of the manganese incorporation manner on the textural properties, bulk and surface phase compositions, reduction/carburization behaviors, and surface basicity of an iron-based Fischer-Tropsch synthesis (FTS) catalyst. The catalyst samples were characterized by N2 physisorption, X-ray photoelectron spectroscopy (XPS), H2 (or CO) temperature-programmed reduction (TPR), CO2 temperature-programmed desorption (TPD), and M5ssbauer spectroscopy. The FTS performance of the catalysts was studied in a slurry-phase continuously stirred tank reactor (CSTR). The characterization results indicated that the manganese promoter incorporated by using the coprecipitation method could improve the dispersion of iron oxide, and decrease the size of the iron oxide crystallite. The manganese incorporated with the impregnation method is enriched on the catalyst's surface. The manganese promoter added with the impregnation method suppresses the reduction and carburization of the catalyst in H2, CO, and syngas because of the excessive enrichment of manganese on the catalyst surface. The catalyst added manganese using the coprecipitation method has the highest CO conversion (51.9%) and the lowest selectivity for heavy hydrocarbons (C12+). 展开更多
关键词 Fischer-Tropsch synthesis iron-based catalyst manganese promoter incorporation manner
下载PDF
Effect of Al_2O_3 Binder on the Precipitated Iron-Based Catalysts for Fischer-Tropsch Synthesis 被引量:7
4
作者 Hai-Jun Wan Bao-Shan Wu +4 位作者 Xia An Ting-Zhen Li Zhi-Chao Tao Hong-Wei Xiang Yong-Wang Li 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2007年第2期130-138,共9页
A series of iron-based Fischer-Tropsch synthesis (FTS) catalysts incorporated with Al2O3 binder were prepared by the combination of co-precipitation and spray drying technology. The catalyst samples were characteriz... A series of iron-based Fischer-Tropsch synthesis (FTS) catalysts incorporated with Al2O3 binder were prepared by the combination of co-precipitation and spray drying technology. The catalyst samples were characterized by using N2 physical adsorption, temperature-programmed reduction/desorption (TPR/TPD) and MSssbauer effect spectroscopy (MES) methods. The characterization results indicated that the BET surface area increases with increasing Al2O3 content and passes through a maximum at the Al2O3/Fe ratio of 10/100 (weight basis). After the point, it decreases with further increase in Al2O3 content. The incorporation of Al2O3 binder was found to weaken the surface basicity and suppress the reduction and carburization of iron-based catalysts probably due to the strong K-Al2O3 and Fe-Al2O3 interactions. Furthermore, the H2 adsorption ability of the catalysts is enhanced with increasing Al2O3 content. The FTS performances of the catalysts were tested in a slurry-phase continuously stirred tank reactor (CSTR) under the reaction conditions of 260 ℃, 1.5 MPa, 1000 h^-1 and molar ratio of H2/CO 0.67 for 200 h. The results showed that the addition of small amounts of Al2O3 affects the activity of iron-based catalysts to a little extent. However, with further increase of Al2O3 content, the FTS activity and water gas shift reaction (WGS) activity are decreased severely. The addition of appropriate Al2O3 do not affect the product selectivity, but the catalysts incorporated with large amounts of Al2O3 have higher selectivity for light hydrocarbons and lower selectivity for heavy hydrocarbons. 展开更多
关键词 Fischer-Tropsch synthesis iron-based catalyst Al2O3 binder Fe-Al2O3 interaction
下载PDF
Effect of Addition Sequence during Neutralization and Precipitation on Iron-based Catalysts for High Temperature Shift Reaction 被引量:1
5
作者 Li Wei Zhu Jianhua Mou Zhanjun 《Petroleum Science》 SCIE CAS CSCD 2007年第1期75-80,共6页
The preparation of the iron-based catalysts promoted by cobalt with a small amount of copper and aluminum for the high temperature shift reaction (HTS) with different sequences of adding catalyst raw materials durin... The preparation of the iron-based catalysts promoted by cobalt with a small amount of copper and aluminum for the high temperature shift reaction (HTS) with different sequences of adding catalyst raw materials during neutralization and precipitation was investigated. XRD, BET and particle size distribution (PSD) were used to characterize the prepared catalysts. It was found that the catalyst crystals were all γ-Fe2O3, and the intermediate of the catalyst after aging was Fe3O4. The crystallographic form of the catalyst and its intermediate was not affected by the addition sequence in the neutralization and precipitation process. The results showed that the specific surface area and the particle size of the catalysts depended on the addition sequence to the mother liquor. Cobalt with a small amount of copper and aluminum could increase the specific surface area and decrease the particle size of catalysts. 展开更多
关键词 Water gas shift reaction Γ-FE2O3 cobalt-promoted catalyst iron-based catalyst
下载PDF
Promoter effect on the CO_2-H_2O formation during Fischer-Tropsch synthesis on iron-based catalysts 被引量:1
6
作者 Ali Nakhaei Pour Seyed Mehdi Kamali Shahri +1 位作者 Yahya Zamani Akbar Zamanian 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第2期193-197,共5页
The effects of Mg,La and Ca promoters on primary and secondary CO2 and H2O formation pathways during Fischer-Tropsch synthesis on precipitated Fe/Cu/SiO2 catalysts are investigated.The chemisorbed oxygen atoms in the ... The effects of Mg,La and Ca promoters on primary and secondary CO2 and H2O formation pathways during Fischer-Tropsch synthesis on precipitated Fe/Cu/SiO2 catalysts are investigated.The chemisorbed oxygen atoms in the primary pathway formed in the CO dissociation steps reacted with co-adsorbed hydrogen or carbon monoxide to produce H2O and CO2,respectively.The secondary pathway was the water-gas shift reaction.The results indicated that the CO2 production led to an increase in both primary and secondary pathways,and H2O production decreased when surface basicity of the catalyst increased in the order Ca 〉 Mg 〉 La. 展开更多
关键词 Ca promoter Mg promoter La promoter Fischer-Tropsch synthesis iron-based catalyst water-gas shift reaction
下载PDF
KINETICS OF IRON-BASED CATALYST IN TEMPERATURE-PROGRAMMED REDUCTION
7
作者 梁斌 张鎏 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1996年第3期42-50,共9页
In this work, Temperature-Programmed Reduction Processes of iron oxide and 12 other kinds of promoted iron oxides were investigated. It is suggested that the reduction activation energy can be expressed as a normal di... In this work, Temperature-Programmed Reduction Processes of iron oxide and 12 other kinds of promoted iron oxides were investigated. It is suggested that the reduction activation energy can be expressed as a normal distribution. The distribution parameters were obtained by kinetic data fitting, which depends on the chemical and geometric characteristics of both the iron oxide and the promoter. 展开更多
关键词 temperature-programmed REDUCTION iron-based catalyst REDUCTION KINETICS
下载PDF
Physico-chemical structure evolution characteristics of coal char during gasification in the presence of iron-based waste catalyst
8
作者 Xinsha Zhang Xudong Song +4 位作者 Jiaofei Wang Weiguang Su Bing Zhou Yonghui Bai Guangsuo Yu 《International Journal of Coal Science & Technology》 EI 2020年第3期456-463,共8页
The present study aims to explore the physico-chemical structure evolution characteristic during Yangchangwan bituminous coal(YCW)gasification in the presence of iron-based waste catalyst(IWC).The catalytic gasificati... The present study aims to explore the physico-chemical structure evolution characteristic during Yangchangwan bituminous coal(YCW)gasification in the presence of iron-based waste catalyst(IWC).The catalytic gasification reactivity of YCW was measured by thermogravimetric analyzer.Scanning electron microscope–energy dispersive system,nitrogen adsorption analyzer and laser Raman spectroscopy were employed to analyze the char physico-chemical properties.The results show that the optimal IWC loading ratio was 5 wt%at 1000°C.The distribution of IWC on char was uneven and Fe catalyst concentrated on the surface of some chars.The specific surface area of YCW gasified semi-char decreased significantly with the increase of gasification time.i.e.,the specific surface area reduced from 382 m2/g(0 min)to 192 m2/g(3 min),meanwhile,the number of micropores and mesopores decreased sharply at the late gasification stage.The carbon microcrystalline structure of YCW gasified semi-char was gradually destroyed with the increase of gasification time,and the microcrystalline structure with small size was gradually generated,resulting in the decreasing order degree of carbon microcrystalline structure.IWC can catalyze YCW gasification which could provide theoretical guidance for industrial solid waste recycling. 展开更多
关键词 Char structure CHARACTERISTIC iron-based waste catalyst Catalytic gasification
下载PDF
Direct decomposition of nitric oxide in low temperature over iron-based perovskite-type catalyst modified by Ru
9
作者 李丽 张密林 +3 位作者 袁福龙 史克英 张国 张丹 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第5期568-570,共3页
Iron-based perovskite-type compounds modified by Ru were prepared through sol-gel process to study its catalytic activity of NOx direct decomposition at low temperature and evaluate the conversion of NO under the expe... Iron-based perovskite-type compounds modified by Ru were prepared through sol-gel process to study its catalytic activity of NOx direct decomposition at low temperature and evaluate the conversion of NO under the experimental conditions. The catalytic activity of La 0.9Ce 0.1Fe 0.8-nCo 0.2RunO3 (n=0.01,0.03,0.05,0.07,0.09)series for the NO, NO-CO two components, CO-HC-NO three components were also analyzed. The catalytic investigation evidenced that the presence of Ru is necessary for making highly activity in decomposition of nitric oxide even at low temperature(400 ℃)and La 0.9Ce 0.9Fe 0.75Co 0.2Ru 0.05O3 (n=0.05) has better activity in all the samples, the conversion of it is 58.5%. With the reducing gas(CO,C3H6)added into the gas, the catalyst displayed very high activity in decomposition of NO and the conversion of it is 80% and 92.5% separately. 展开更多
关键词 iron-based perovskite-type compounds catalyst modified by Ru direct decomposition of nitric oxide in low temperature catalytic activity
下载PDF
Towards advanced removal of organics in persulfate solution by heterogeneous iron-based catalyst:A review
10
作者 Baihui Cui Tingting Tian +5 位作者 Luchun Duan Hongwei Rong Zhihua Chen Shiyi Luo Dabin Guo Ravi Naidu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第12期163-175,共13页
Heterogeneous iron-based catalysts have drawn increasing attention in the advanced oxidation of persulfates due to their abundance in nature,the lack of secondary pollution to the environment,and their low cost over t... Heterogeneous iron-based catalysts have drawn increasing attention in the advanced oxidation of persulfates due to their abundance in nature,the lack of secondary pollution to the environment,and their low cost over the last a few years.In this paper,the latest progress in the research on the activation of persulfate by heterogeneous iron-based catalysts is reviewed from two aspects,in terms of synthesized catalysts(Fe0,Fe_(2)O_(3),Fe_(3)O_(4),FeOOH)and natural iron ore catalysts(pyrite,magnetite,hematite,siderite,goethite,ferrohydrite,ilmenite and lepidocrocite)focusing on efforts made to improve the performance of catalysts.The advantages and disadvantages of the synthesized catalysts and natural iron ore were summarized.Particular interests were paid to the activation mechanisms in the catalyst/PS/pollutant system for removal of organic pollutants.Future research challenges in the context of field application were also discussed. 展开更多
关键词 Activated persulfate iron-based catalysts Iron ore-based catalysts Aactive free radicals Organic pollutants Heterogeneous catalysts
原文传递
Effect of nano-particle size on product distribution and kinetic parameters of Fe/Cu/La catalyst in Fischer-Tropsch synthesis 被引量:4
11
作者 Ali Nakhaei Pour Mohammad Reza Housaindokht +1 位作者 Sayyed Faramarz Tayyari Jamshid Zarkesh 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第2期107-116,共10页
Effects of nano-particle size on hydrocarbon production rates and distributions for precipitated Fe/Cu/La catalysts in Fischer-Tropsch synthesis were investigated.Nano-structured iron catalyst was prepared by micro-em... Effects of nano-particle size on hydrocarbon production rates and distributions for precipitated Fe/Cu/La catalysts in Fischer-Tropsch synthesis were investigated.Nano-structured iron catalyst was prepared by micro-emulsion method.The concept of two superimposed AndersonSchulz-Flory (ASF) distributions has been applied for the representation of the effects of reaction conditions and nano-particles size on kinetics parameters and product distributions.These results reveal that by reducing the particle size of catalyst,the break in ASF distributions was decreased.Also useful different kinetics equations for synthesis of C3 to C9 and C10 to C22 were determined by using α1 and α2 chain growth probabilities. 展开更多
关键词 chain length distribution Fischer-Tropsch synthesis iron-based catalyst nano-particle size
下载PDF
Fischer-Tropsch synthesis by nano-structured iron catalyst 被引量:3
12
作者 Ali Nakhaei Pour Mohammad Reza Housaindokht +1 位作者 Sayyed Faramarz Tayyari Jamshid Zarkesh 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第3期284-292,共9页
Effects of nanoscale iron oxide particles on textural structure,reduction,carburization and catalytic behavior of precipitated iron catalyst in Fischer-Tropsch synthesis(FTS) are investigated.Nanostructured iron cat... Effects of nanoscale iron oxide particles on textural structure,reduction,carburization and catalytic behavior of precipitated iron catalyst in Fischer-Tropsch synthesis(FTS) are investigated.Nanostructured iron catalysts were prepared by microemulsion method in two series.Firstly,Fe2O3 ,CuO and La2O3 nanoparticles were prepared separately and were mixed to attain Fe/Cu/La nanostructured catalyst(sep-nano catalyst);Secondly nanostructured catalyst was prepared by co-precipitation in a water-in-oil microemulsion method(mix-nano catalyst).Also,conventional iron catalyst was prepared with common co-precipitation method.Structural characterizations of the catalysts were performed by TEM,XRD,H2 and CO-TPR tests.Particle size of iron oxides for sep-nano and mix-nano catalysts,which were determined by XRD pattern(Scherrer equation) and TEM images was about 20 and 21.6 nm,respectively.Catalyst evaluation was conducted in a fixed-bed stainless steel reactor and compared with conventional iron catalyst.The results revealed that FTS reaction increased while WGS reaction and olefin/paraffin ratio decreased in nanostructured iron catalysts. 展开更多
关键词 Fischer-Tropsch synthesis iron-based catalyst NANO-PARTICLE
下载PDF
Deactivation studies of nano-structured iron catalyst in Fischer-Tropsch synthesis 被引量:2
13
作者 Ali Nakhaei Pour Mohammad Reza Housaindokht +1 位作者 Sayyed Faramarz Tayyari Jamshid Zarkesh 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第3期333-340,共8页
A nano-structured iron catalyst for syngas conversion to hydrocarbons in Fischer-Tropsch synthesis(FTS) was prepared by micro-emulsion method.Compositions of bulk iron phase and phase transformations of carbonaceous... A nano-structured iron catalyst for syngas conversion to hydrocarbons in Fischer-Tropsch synthesis(FTS) was prepared by micro-emulsion method.Compositions of bulk iron phase and phase transformations of carbonaceous species during catalyst deactivation in FTS reaction were characterized by temperature-programmed surface reaction with hydrogen(TPSR-H 2 ),and XRD techniques.Many carbonaceous species on surface and bulk of the nano-structured iron catalysts were completely identified by combined TPSR-H 2 and XRD spectra and which were compared with those recorded on conventional co-precipitated iron catalyst.The results reveal that the catalyst deactivation results from the formation of inactive carbide phases and surface carbonaceous species like graphite,and it will be increased when the particle size of iron oxides was reduced in FTS iron catalyst. 展开更多
关键词 Fischer-Tropsch synthesis iron-based catalyst catalyst deactivation nano-size particles
下载PDF
Fischer–Tropsch synthesis over iron catalysts with corncob-derived promoters 被引量:2
14
作者 Lisheng Guo Jian Sun +3 位作者 Jian Wei Zhiyong Wen Hengyong Xu Qingjie Ge 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第4期632-638,共7页
A sustainable strategy for Fischer–Tropsch iron catalysts is successfully achieved by embedding of synergistic promoters from a renewable resource, corncob. The iron-based catalysts, named as 'corncob-driven'... A sustainable strategy for Fischer–Tropsch iron catalysts is successfully achieved by embedding of synergistic promoters from a renewable resource, corncob. The iron-based catalysts, named as 'corncob-driven'catalysts, are composed of iron species supported on carbon as primary active components and various minerals(K, Mg, Ca, and Si, etc.) as promoters. The corncob-driven catalysts are facilely synthesized by a one-pot hydrothermal treatment under mild conditions. The characterization results indicate that the formation of iron carbides from humboldtine is clearly enhanced and the morphology of catalyst particles tends to be more regular microspheres after adding corncob. It is observed that the optimized corncob-driven catalyst exhibits a higher conversion than without promoters' catalyst in Fischer–Tropsch synthesis(ca. 73% vs. ca. 49%). More importantly, a synergistic effect exists in multiple promoters from corncob that can enhance heavy hydrocarbons selectivity and lower CO_2 selectivity, obviously different from the catalyst with promoters from chemicals. The proposed synthesis route of corncob-driven catalysts provides new strategies for the utilization of renewable resources and elimination of environmental pollutants from chemical promoters. 展开更多
关键词 Fischer–Tropsch synthesis Promoters Synergistic effect iron-based catalysts Hydrocarbons
下载PDF
Folic Acid Self-Assembly Enabling Manganese Single-Atom Electrocatalyst for Selective Nitrogen Reduction to Ammonia 被引量:3
15
作者 Xuewan Wang Dan Wu +3 位作者 Suyun Liu Jiujun Zhang Xian-Zhu Fu Jing-Li Luo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第8期163-174,共12页
Efficient and robust single-atom catalysts(SACs)based on cheap and earth-abundant elements are highly desirable for electrochemical reduction of nitrogen to ammonia(NRR)under ambient conditions.Herein,for the first ti... Efficient and robust single-atom catalysts(SACs)based on cheap and earth-abundant elements are highly desirable for electrochemical reduction of nitrogen to ammonia(NRR)under ambient conditions.Herein,for the first time,a Mn-N-C SAC consisting of isolated manganese atomic sites on ultrathin carbon nanosheets is developed via a template-free folic acid self-assembly strategy.The spontaneous molecular partial dissociation enables a facile fabrication process without being plagued by metal atom aggregation.Thanks to well-exposed atomic Mn active sites anchored on two-dimensional conductive carbon matrix,the catalyst exhibits excellent activity for NRR with high activity and selectivity,achieving a high Faradaic efficiency of 32.02%for ammonia synthesis at−0.45 V versus reversible hydrogen electrode.Density functional theory calculations unveil the crucial role of atomic Mn sites in promoting N_(2) adsorption,activation and selective reduction to NH_(3) by the distal mechanism.This work provides a simple synthesis process for Mn-N-C SAC and a good platform for understanding the structure-activity relationship of atomic Mn sites. 展开更多
关键词 Folic acid self-assembly N-doped carbon sheet Manganese single-atom catalyst ELECTROCATALYSIS Nitrogen reduction
下载PDF
Kinetics studies of nano-structured iron catalyst in Fischer-Tropsch synthesis 被引量:2
16
作者 Ali Nakhaei Pour Mohammad Reza Housaindokht +1 位作者 Sayyed Faramarz Tayyari Jamshid Zarkesh 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第4期441-445,共5页
Kinetic parameters of nano-structured iron catalyst in Fischer-Tropsch synthesis (FTS) were studied in a wide range of synthesis gas conversions and compared with conventional catalyst.The conventional Fe/Cu/La cata... Kinetic parameters of nano-structured iron catalyst in Fischer-Tropsch synthesis (FTS) were studied in a wide range of synthesis gas conversions and compared with conventional catalyst.The conventional Fe/Cu/La catalyst was prepared by co-precipitation of Fe and Cu nitrates in aqueous media and Fe/Cu/La nanostructure catalyst was prepared by co-precipitation in a water-in-oil micro-emulsion.Nano-structured iron catalyst shows higher FTS activity.Kinetic results indicated that in FTS rate expression,the rate constant (k) increased and adsorption parameter (b) decreased by decreasing the catalyst particle size from conventional to nano-structured.Since increasing in the rate constant and decreasing in the adsorption parameter affected the FTS rate in parallel direction,the particle size of catalyst showed complicated effects on kinetic parameters of FTS reaction. 展开更多
关键词 Fischer-Tropsch synthesis iron-based catalyst kinetics parameters
下载PDF
A new kinetic model for direct CO2 hydrogenation to higher hydrocarbons on a precipitated iron catalyst:Effect of catalyst particle size 被引量:2
17
作者 Ali Nakhaei Pour Mohammad Reza Housaindokht 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第3期359-367,共9页
The kinetic of the direct COhydrogenation to higher hydrocarbons via Fischer–Tropsch synthesis(FTS)and reverse water-gas shift reaction(RWGS) mechanisms over a series of precipitated Fe/Cu/K catalysts with variou... The kinetic of the direct COhydrogenation to higher hydrocarbons via Fischer–Tropsch synthesis(FTS)and reverse water-gas shift reaction(RWGS) mechanisms over a series of precipitated Fe/Cu/K catalysts with various particle sizes was studied in a well mixed, continuous spinning basket reactor. The iron catalysts promoted with copper and potassium were prepared via precipitation technique in various alcohol/water mixtures to achieve a series of catalyst particle sizes between 38 and 14 nm. A new kinetic model for direct COhydrogenation was developed with combination of kinetic model for FTS reaction and RWGS equilibrium condition. For estimate of structure sensitivity of indirect COhydrogenation to higher hydrocarbons, the kinetic parameters of developed model are evaluated for a series of iron catalysts with various particle sizes. For kinetic study a wide range of syngas conversions have been obtained by varying experimental conditions. The results show that the new developed model fits favorably with experimental data. The values of activation energies for indirect COhydrogenation reaction are fall within the narrow range of 23–16 kJ/mol. 展开更多
关键词 Fischer–Tropsch synthesis Carbon dioxide hydrogenation iron-based catalyst Kinetic parameters
下载PDF
Active Fischer-Tropsch synthesis Fe-Cu-K/SiO_2 catalysts prepared by autocombustion method without a reduction step 被引量:1
18
作者 Suthasinee Pengnarapat Peipei Ai +3 位作者 Prasert Reubroycharoen Tharapong Vitidsant Yoshiharu Yoneyama Noritatsu Tsubaki 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第2期432-438,共7页
The purpose of this study was to prepare iron-based catalysts supported on silica by autocombustion method for directly using for Fischer-Tropsch synthesis(FTS) without a reduction step. The effect of different citr... The purpose of this study was to prepare iron-based catalysts supported on silica by autocombustion method for directly using for Fischer-Tropsch synthesis(FTS) without a reduction step. The effect of different citric acid(CA):iron nitrate(N) molar ratios and acid types on the FTS performance of catalysts were investigated. The CA:N molar ratios had an important influence on the formation of iron active phases and FTS activity. The iron carbide(FexC), which is known to be one of the iron active phases, was demonstrated by the X-ray diffraction and X-ray photoelectron spectroscopy. Increasing the CA:N molar ratios up to 0.1 increased CO conversion of catalyst to 86.5%, which was then decreased markedly at higher CA:N molar ratios. An excess of CA resulted in carbon residues covering the catalyst surface and declined FTS activity. The optimal catalyst(CA:N molar ratio = 0.1) achieved the highest CO conversion when compared with other autocombustion catalysts as well as reference catalyst prepared by impregnation method, followed by a reduction step. The autocombustion method had the advantage to synthesize more efficient catalysts without a reduction step. More interestingly, iron-based FTS catalysts need induction duration at the initial stage of FTS reaction even after reduction, because metallic iron species need time to be transformed to FexC. But here, even if without reduction, FexC was formed directly by autocombustion and induction period was eliminated during FTS reaction. 展开更多
关键词 Fischer-Tropsch synthesis iron-based catalysts Autocombustion Iron carbide SIO2
下载PDF
Effect of operating conditions and potassium content on Fischer-Tropsch liquid products produced by potassium-promoted iron catalysts 被引量:1
19
作者 Francisco E.M.Farias Fernando G.Sales Fabiano A.N.Fernandes 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第2期175-178,共4页
The dependencies of Fischer-Tropsch synthesis liquid hydrocarbon product distribution on operating pressure and temperature have been studied over three potassium-promoted iron catalysts with increasing potassium mola... The dependencies of Fischer-Tropsch synthesis liquid hydrocarbon product distribution on operating pressure and temperature have been studied over three potassium-promoted iron catalysts with increasing potassium molar content. The study followed an experimental planning and the results were analyzed based on surface response methodology. The effects of different operating conditions and potassium contents on the liquid product distribution were compared based on number average carbon number and dispersion. Results showed that high pressures (25 to 30 arm) favored the production of waxes that could be converted into liquid fuels through hydrocracking, while greater direct selectivity towards diesel was favored by low pressure (20 arm) using catalysts with low potassium to iron molar ratios. The liquid product distribution produced using an iron catalyst with high potassium content presented higher number-average number of carbons when compared to the distribution obtained using an iron catalyst with low potassium content. 展开更多
关键词 Fischer-Tropsch synthesis liquid fuels iron-based catalyst POTASSIUM
下载PDF
Effect of incorporation manner of Zr promoter on precipitated ironbased catalysts for Fischer-Tropsch synthesis 被引量:2
20
作者 ZHANG Hao-jian MA Hong-fang +2 位作者 ZHANG Hai-tao YING Wei-yong FANG Ding-ye 《Journal of Coal Science & Engineering(China)》 2012年第2期182-187,共6页
The promotional effects of Zr on the structure, reduction, carburization and catalytic behavior of precipitated iron-based Fischer-Tropsch synthesis (FTS) catalysts were investigated. The catalysts were characterize... The promotional effects of Zr on the structure, reduction, carburization and catalytic behavior of precipitated iron-based Fischer-Tropsch synthesis (FTS) catalysts were investigated. The catalysts were characterized by N2 physisorption, temperature-programmed reduction (TPR), and M6ssbauer effect spectroscopy (MES) techniques. As revealed by N2 physisorption, Zr decreased the BET surface area and pore volume of the catalyst. The results of TPR and MES show that Zr suppresses the reduction and carburization of Fe catalysts because of the interaction between Fe and Zr. The FTS reaction results indicate that Zr decreases the FTS activity of Fe catalysts but improves the catalysts' stability. In addition, Zr promoter restraines the formation of light hydrocarbons (methane and C2-C4) and shifts the production distribution to the heavy hydrocarbons. 展开更多
关键词 Zr promoter precipitated iron-based catalyst Fischer-Tropsch synthesis
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部