Transition metal telluride nanosheets have shown enormous promise for fundamental research and other applications across various fields.Still,until now,mass fabrication has been impossible,leaving the material as some...Transition metal telluride nanosheets have shown enormous promise for fundamental research and other applications across various fields.Still,until now,mass fabrication has been impossible,leaving the material as something of a laboratory curiosity rather than an industrial reality.But a team of researchers from the Dalian Institute of Chemical Physics(DICP)of the Chinese Academy of Sciences has recently developed a novel exfoliation process–using chemical solutions to peel off thin layers from their parent compounds,creating atomically thin sheets–that looks set to finally deliver on the ultra-thin substance’s promise.展开更多
Based on current sheet flapping motion on 27 August 2018 in the dusk flank magnetotail,as recorded by instruments aboard Magnetospheric Multiscale(MMS)spacecraft,we present the first study of guide field reconnection ...Based on current sheet flapping motion on 27 August 2018 in the dusk flank magnetotail,as recorded by instruments aboard Magnetospheric Multiscale(MMS)spacecraft,we present the first study of guide field reconnection observed in the flux rope embedded in kink-like flapping current sheets near the dusk-side flank of the magnetotail.Unlike more common magnetotail reconnections,which are symmetric,these asymmetric small-scale(λ_(i)~650 km)reconnections were found in the highly twisted current sheet when the direction normal to the sheet changes from the Z direction into the Y direction.The unique feature of this unusual reconnection is that the reconnection jets are along the Z direction-different from outflow in the X direction,which is the more usual situation.This vertical reconnection jet is parallel or antiparallel to the up-and-down motion of the tail’s current sheet.The normalized reconnection rate R is estimated to be~0.1.Our results indicate that such asymmetric reconnections can significantly enlarge current sheet flapping,with large oscillation amplitudes.This letter presents direct evidence of guide field reconnection in a highly twisted current sheet,characterized by enlarged current sheet flapping as a consequence of the reconnection outflow.展开更多
Self-oscillation is an intriguing and omnipresent phenomenon that governs a broad range of growth dynamics and formation of nanoscale periodic and delicate heterostructures.A self-oscillating growth phenomenon of cata...Self-oscillation is an intriguing and omnipresent phenomenon that governs a broad range of growth dynamics and formation of nanoscale periodic and delicate heterostructures.A self-oscillating growth phenomenon of catalyst droplets,consuming surface-coating a-Si/a-Ge bilayer,is exploited to accomplish a high-frequency alternating growth of ultrathin crystalline Si and Ge(c-Si/c-Ge)nano-slates,with Ge-rich layer thickness of 14–19 nm,embedded within a superlattice nanowire structure,with pre-known position and uniform channel diameter.A subsequent selective etching of the Ge-rich segments leaves a chain of ultrafine standing c-Si nanosheets down to~6 nm thick,without the use of any expensive high-resolution lithography and growth modulation control.A ternary-phase-competition model has been established to explain the underlying formation mechanism of this nanoscale self-oscillating growth dynamics.It is also suggested that these ultrathin nanosheets could help to produce ultrathin fin-channels for advanced electronics,or provide size-specified trapping sites to capture and position hetero nanoparticle for high-precision labelling or light emission.展开更多
This paper provides a review of the recent results on the stability of vortex sheets in compressible flows.Vortex sheets are contact discontinuities of the underlying flows.The vortex sheet problem is a free boundary ...This paper provides a review of the recent results on the stability of vortex sheets in compressible flows.Vortex sheets are contact discontinuities of the underlying flows.The vortex sheet problem is a free boundary problem with a characteristic boundary and is challenging in analysis.The formulation of the vortex sheet problem will be introduced.The linear stability and nonlinear stability for both the two-dimensional two-phase compressible flows and the two-dimensional elastic flows are summarized.The linear stability of vortex sheets for the three-dimensional elastic flows is also presented.The difficulties of the vortex sheet problems and the ideas of proofs are discussed.展开更多
The aim of this study is to investigate the influence of fiber reinforcement polymer (FRP) on shear behavior of reinforcement concrete (RC) beams with various guidelines. The FRP thickness, beam depth and concrete str...The aim of this study is to investigate the influence of fiber reinforcement polymer (FRP) on shear behavior of reinforcement concrete (RC) beams with various guidelines. The FRP thickness, beam depth and concrete strength at ultimate load are considered as main strength parameters. A finite element (FE) by using ANSYS computer program was used to analyze the reinforced concrete beams. The numerical models were used to investigate the effect of beam depth, concrete strength, CFRP sheet configuration, and CFRP sheet thickness on the behavior of reinforced concrete beams strengthened with CFRP sheets compared with different guidelines. The results from ACI guideline show little difference compared with FE, which make it suitable for RC beams strengthened with FRP sheets.展开更多
Aqueous rechargeable zinc ion batteries are promising in electric grid storage due to their low cost and intrinsic safety.However,the practical implementation is hindered by the poor reversibility of the zinc anode,pr...Aqueous rechargeable zinc ion batteries are promising in electric grid storage due to their low cost and intrinsic safety.However,the practical implementation is hindered by the poor reversibility of the zinc anode,primarily caused by the chaotic Zn deposition present as dendrite and side reactions.展开更多
The mechanical properties and texture of AM60(Mg-6.0Al-0.3Mn,mass fraction %) and ZXM200(Mg-1.6Zn-0.5Ca-0.2Mn) Mg alloys subjected to multi-pass hot rolling were investigated.The finer recrystallized grains usuall...The mechanical properties and texture of AM60(Mg-6.0Al-0.3Mn,mass fraction %) and ZXM200(Mg-1.6Zn-0.5Ca-0.2Mn) Mg alloys subjected to multi-pass hot rolling were investigated.The finer recrystallized grains usually exhibit particular preferred orientations and then alter the total texture feature of rolled sheets.Ca solid solution into Mg matrix serves to the formation of texture component with c-axis rotated away from normal direction towards transverse direction and then weakens the overall texture intensity,resulting in a similar anisotropic characteristic to RE-containing Mg alloys.展开更多
The formability of AA5052/polyethylene/AA5052 sandwich sheets was experimentally studied. Three kinds of AA5052/polyethylene/AA5052 sandwich specimens with different thicknesses of core materials were prepared by the ...The formability of AA5052/polyethylene/AA5052 sandwich sheets was experimentally studied. Three kinds of AA5052/polyethylene/AA5052 sandwich specimens with different thicknesses of core materials were prepared by the hot pressing adhesive method. Then, the uniaxial tensile tests were conducted to investigate the mechanical properties of AA5052/polyethylene/ AA5052 sandwich sheets, and the stretching tests were carried out to investigate the influences of polymer core thickness on the limit dome height of the sandwich sheet. The forming limit curves for three kinds of sandwich sheets were obtained. The experimental results show that the forming limit of the AA5052/polyethylene/AA5052 sandwich sheet is higher than that of the monolithic AA5052 sheet, and it increases with increasing the thickness of polyethylene core.展开更多
The mechanical properties, microstructures, and fractographs of TA15 sheets vacuum-annealed under different patterns were investigated. The results indicate that vacuum annealing significantly improves the mechanical ...The mechanical properties, microstructures, and fractographs of TA15 sheets vacuum-annealed under different patterns were investigated. The results indicate that vacuum annealing significantly improves the mechanical properties of the sheets in comparison with those after ambient annealing. With increasing the annealing temperature, the phase boundaries and secondary a-phase increase, whereas the volume fraction of primary a-phase decreases, resulting in increased strength and decreased elongation A relatively fine secondary a-phase is obtained after double annealing. The desirable mechanical properties (i.e., ultimate tensile strength, yield strength, and elongation are 1070 MPa, 958 MPa, and 15%, respectively) are obtained through double annealing ((950 ℃/2 h, AC)+(600 ℃/2 h, AC)). The fractographs obtained after tensile tests show that the deepest and largest dimples are formed in the specimen annealed at 850 ℃, which indicates that the best plasticity is obtained at this annealing temperature.展开更多
Shougang Group has carried out a strategic structure adjustment in order to realize the promise of Chinese people to the Olympic Games.Automotive sheets are chosen as a type of strategic product and an engine to upgra...Shougang Group has carried out a strategic structure adjustment in order to realize the promise of Chinese people to the Olympic Games.Automotive sheets are chosen as a type of strategic product and an engine to upgrade enterprise management,technology and operation to reach the top international level during the transition from long products to steel sheets in Shougang Group.Since 2006,Shougang Group has made an elaborate preparation on steel sheet culture,production line construction,technology import,pilot plant and talent reserve.It lays the foundation for the development of automotive sheets.The developing history of cold rolled automotive sheets is reviewed and the research and development of cold rolled automotive sheets, tackling key problem of defect on surface and the latest progress of automotive sheets construction are described in this paper.The main contents were given as follows:①The products of automotive sheets realize zero breakthrough in Shougang Group.Monthly output was 300 ton in January,2009 and it increased to 48 000 ton in June,2010.The ratio of IF steel sheets increases to 70%from 40%.The proportion of outside panel in automotive sheets occupys more than 15%.②A high emulational pilot plant is used as a product developing platform to develop successfully automotive sheets with 1 000 MPa and below.It guarantees that the industrial development of DP and TRIP sheets gets success at a time.It covers continuous annealing sheets with tensile strength≤780 MPa and galvanizing sheets with tensile strength≤590 MPa.③Individual design is used to meet special requirement of customer.Shougang owns 23 inner brands of LCAK and IF steels.It insures that the grades of yield strength cover whole range from 120 to 270 MPa.It keeps the stabilization of steel performance by means of chemical composition control and high accuracy rolling technology.For example,the strength of soft steel fluctuates within±15 MPa.④The steel sheets with surface grade O5 are produced steadily by solving forming striation of IF steel,grain coarse on surface,edge curling skin and mountains - and - waters painting defects.⑤The safeguard mechanism on quality of products is improved steadily and the output of automotive sheets and outside panel increases greatly by building consistency quality management system、information - system and customer service system.展开更多
The effect of the repeated unidirectional bending (RUB) process and annealing on the formability of magnesium alloy sheets was investigated. The RUB process and annealing treatments produce two effects on microstruc...The effect of the repeated unidirectional bending (RUB) process and annealing on the formability of magnesium alloy sheets was investigated. The RUB process and annealing treatments produce two effects on microstructure: grain coarsening and weakening of the texture. The sheet that underwent RUB and was annealed at 300 ℃exhibits the best formability owing to the reduction of the (0002) basal texture intensity, which results in low yield strength, large fracture elongation, small Lankford value (r-value) and large strain hardening exponent (n-value). Compared with the as-received sheet, the coarse-grain sheet produced by RUB and annealing at 400 ℃ exhibits lower tensile properties but higher formability. The phenomenon is because the deformation twin enhanced by grain coarsening can accommodate the strain of thickness.展开更多
Titanium dioxide sheet photocatalysts composed of interwoven microstrips were successfully synthesized using filter paper as templates. The synthesized samples were characterized by means of Fourier transform infrared...Titanium dioxide sheet photocatalysts composed of interwoven microstrips were successfully synthesized using filter paper as templates. The synthesized samples were characterized by means of Fourier transform infrared spectroscopy, surface area analyzer, thermogravimetric analysis, powder X-ray diffraction, and scanning electron microscopy. The photocatalytic activities of the samples were evaluated by the degradation of methyl orange in an aqueous solution under UV-illumination. The results demonstrated that the paper-like TiO2 sheets with the optimum proportion of anatase/rutile (10/1) had the highest photoactivity. And the presence of the filter paper fiber can improve the crystallinity, raise the anatase-rutile transformation temperature and contribute to the formation of being paper-like. A detailed formation mechanism for TiO2 sheets is proposed.展开更多
In order to study the fatigue failure mode and fatigue life laws of basalt-aramid and basalt-carbon hybrid fiber reinforced polymer ( FRP ) sheets, fatigue experiments are carried out, considering two hybrid ratios ...In order to study the fatigue failure mode and fatigue life laws of basalt-aramid and basalt-carbon hybrid fiber reinforced polymer ( FRP ) sheets, fatigue experiments are carried out, considering two hybrid ratios of 1 : 1 and 2:1 under different stress levels from 0.6 to 0.95. The results show that fractures occur first in carbon fibers or aramid fibers for the specimens with hybrid ratio of 1: 1, namely B1A1 and B1C1, while a fracture occurs first in basalt fibers for the specimens with a hybrid ratio of 2: 1, namely B2A1 and B2C1. The fatigue lives of the hybrid FRP sheets increase with the improvement of the content of carbon fibers or aramid fibers, and the influence of the carbon fibers content improvement to fatigue life is more significant. The fatigue performance of B2A1 is relatively worse, while the fatigue performance of B1C1 and B2C1 is relatively better. Finally, a new fatigue stiffness degradation model with dual variables and double inflection points is presented, which is applicable to both hybrid and normal FRP sheets.展开更多
The relationship among microstructure,mechanical properties and texture of TA32 titanium alloy sheets during hot tensile deformation at 800℃was investigated.In the test,the original sheet exhibited relatively low flo...The relationship among microstructure,mechanical properties and texture of TA32 titanium alloy sheets during hot tensile deformation at 800℃was investigated.In the test,the original sheet exhibited relatively low flow stress and sound plasticity,and increasing the heat treatment temperature resulted in an increased ultimate tensile strength(UTS)and a decreased elongation(EL).The deformation mechanism of TA32 alloy was dominated by high angle grain boundaries sliding and coordinated by dislocation motion.The coarsening of grains and the annihilation of dislocations in heat-treated specimens weakened the deformation ability of material,which led to the increase in flow stress.Based on the high-temperature creep equation,the quantitative relationship between microstructure and flow stress was established.The grain size exponent andαphase strength constant of TA32 alloy were calculated to be 1.57 and 549.58 MPa,respectively.The flow stress was accurately predicted by combining with the corresponding phase volume fraction and grain size.Besides,the deformation behavior of TA32 alloy was also dependent on the orientation of predominantαphase,and the main slip mode was the activation of prismaticslip system.The decrease of near prism-oriented texture in heat-treated specimens resulted in the enhancement of strength of the material.展开更多
In this paper, repeated unidirectional bending (RUB), was applied to improve the texture of AZ31B magnesium alloy sheets so as to enhance their stamping properties. The samples undergoing RUB were annealed at differ...In this paper, repeated unidirectional bending (RUB), was applied to improve the texture of AZ31B magnesium alloy sheets so as to enhance their stamping properties. The samples undergoing RUB were annealed at different temperatures. The mechanical properties, formability, textural components and microstructure of the samples before and after RUB were characterized and compared. It was found that the basal textural component was reduced dramatically by RUB, and that (1212) and (1211) textural components appeared. Annealing has a great effect on the mechanical properties of samples undergoing RUB. The plasticity and stamping formability of samples were greatly improved by RUB and annealing at 260℃ for 1 h, and elongation to fracture and Erichsen value were increased to 38% and 67%, respectively.展开更多
The behavior of flow stress of Al sheets used for pressure can prepared by different melt-treatment during plastic deformation at elevated temperature was studied by isothermal compression test using Gleeble1500 dynam...The behavior of flow stress of Al sheets used for pressure can prepared by different melt-treatment during plastic deformation at elevated temperature was studied by isothermal compression test using Gleeble1500 dynamic hot-simulation testing machine. The results show that the AI sheets possess the remarkable characteristic of steady state flow stress when they are deformed in the temperature range of 350-500℃ at strain rates within the range of 0.01-10.0s^-1. A hyperbolic sine relationship is found to correlate well the flow stress with the strain rate, and an Arrhenius relationship with the temperature, which implies that the process of plastic deformation at elevated temperature for this material is thermally activated. Compared with the AI pieces prepared by no or conventional melt-treatment, hot deformation activation energy of AI sheets prepared by high-efficient melt-treatment is the smallest ( Q= 168.0kJ/mol), which reveals that the hot working formability of this material is very better, and has directly to do with the effective improvement of its metallurgical quality.展开更多
The refining effect of Al3Ti1B1RE master alloy on Al sheets used for pressure can manufacture and the behavior of mixed rare earths in master alloy were investigated with XRD, OM, SEM and EDAX. It is found that the r...The refining effect of Al3Ti1B1RE master alloy on Al sheets used for pressure can manufacture and the behavior of mixed rare earths in master alloy were investigated with XRD, OM, SEM and EDAX. It is found that the refining effect of the refiner on the material has superiority over foreign or domestic Al5Ti1B refiner, and the refiner still retains its refining ability for 6 h after adding it to molten Al, thus improving the strength and plasticity of the material remarkably. The excellent refining effect and stability of AlTiBRE refiner result from that RE can lower the surface energy of molten Al and improve the wetting characteristics of molten Al on refinement nuclei such as TiAl 3, TiB 2, etc., thus giving full play to the effect of heterogeneous nucleation and impeding the congregating tendency of TiB 2 phase in molten Al. At the same time, RE gathering in front of solid/liquid interface are also easy to cause composition supercooling in molten Al, thus impeding the growth of α Al grains and promoting α Al nucleation on refinement nuclei. In addition, RE also play certain role in purification and grain refinement, or modification, especially their effect of purification can improve the metallurgical quality of AlTiBRE master alloy.展开更多
Repeatedly unidirectional bending(RUB) was applied to the magnesium alloy sheet to improve the basal texture.The effect of RUB temperature on resulting structure and room temperature properties was investigated.The te...Repeatedly unidirectional bending(RUB) was applied to the magnesium alloy sheet to improve the basal texture.The effect of RUB temperature on resulting structure and room temperature properties was investigated.The texture components of the sheet undergoing RUB at recovery temperature were similar to those of the sheet undergoing RUB at room temperature(RT).As the RUB temperature increased to above recrystallization temperature,the texture components became more disperse and the pyramidal components increased.With the increase of RUB temperature,the grain size near the surface of the sheets undergoing RUB tended to grow up.When the sheets were processed by RUB at medium-high temperature followed by annealing at 533 K,the yield strength and fracture elongation were lower than those of the cold rolled sheet;however,the Erichsen value was slightly higher than that of the cold rolled sheet.The sheet undergoing RUB at RT followed by annealing at 533 K represented the best mechanical properties.展开更多
A native organ has heterogeneous structures, sirength, and cell components. It is a big challenge to fabricate organ prototypes with controllable shapes, strength, and cells. Herein, a hybrid method is developed to fa...A native organ has heterogeneous structures, sirength, and cell components. It is a big challenge to fabricate organ prototypes with controllable shapes, strength, and cells. Herein, a hybrid method is developed to fabricate organ prototypes with controlled cell deposition by integrating extrusion-based 3D printing, electrospinning, and 3D bioprinting. Multi-scale sheets were first fabricated by 3D printing and electrospinning;then, all the sheets were assembled into organ prototypes by sol-gel react io n duri ng bioprinting. With this method, macroscale structures fabricated by 3D printing ensure the customized structures and provide mechanical support, nanoscale structures fabricated by electrospinning offer a favorable environment for cell growth, and different types of cells with controllable densities are deposited in accurate locations by bioprinting. The results show that L929 mouse fibroblasts encapsulated in the structures exhibited over 90% survival within 10 days and maintai ned a high proliferation rate. Furthermore, the cells grew in spherical shapes first and then migrated to the nano scale fibers showing stretched morphology. Additionally, a branched vascular structure was successfully fabricated using the presented method. Compared with other methods, this strategy offers an easy way to simultancously realize the shape control, nanolibrous structures, and cell accurate deposition, which will have potemidi applications in tissue cngineering.展开更多
文摘Transition metal telluride nanosheets have shown enormous promise for fundamental research and other applications across various fields.Still,until now,mass fabrication has been impossible,leaving the material as something of a laboratory curiosity rather than an industrial reality.But a team of researchers from the Dalian Institute of Chemical Physics(DICP)of the Chinese Academy of Sciences has recently developed a novel exfoliation process–using chemical solutions to peel off thin layers from their parent compounds,creating atomically thin sheets–that looks set to finally deliver on the ultra-thin substance’s promise.
基金supported by NSFC grants(42188101,42174209,42174207)the Specialized Research Fund for State Key Laboratories of Chinathe Strategic Pioneer Program on Space Science II,Chinese Academy of Sciences,grants XDA15350201,XDA15052500.
文摘Based on current sheet flapping motion on 27 August 2018 in the dusk flank magnetotail,as recorded by instruments aboard Magnetospheric Multiscale(MMS)spacecraft,we present the first study of guide field reconnection observed in the flux rope embedded in kink-like flapping current sheets near the dusk-side flank of the magnetotail.Unlike more common magnetotail reconnections,which are symmetric,these asymmetric small-scale(λ_(i)~650 km)reconnections were found in the highly twisted current sheet when the direction normal to the sheet changes from the Z direction into the Y direction.The unique feature of this unusual reconnection is that the reconnection jets are along the Z direction-different from outflow in the X direction,which is the more usual situation.This vertical reconnection jet is parallel or antiparallel to the up-and-down motion of the tail’s current sheet.The normalized reconnection rate R is estimated to be~0.1.Our results indicate that such asymmetric reconnections can significantly enlarge current sheet flapping,with large oscillation amplitudes.This letter presents direct evidence of guide field reconnection in a highly twisted current sheet,characterized by enlarged current sheet flapping as a consequence of the reconnection outflow.
基金the National Natural Science Foundation of China(Grant Nos.92164201,61921005,61974064,61934004,and 11874198)。
文摘Self-oscillation is an intriguing and omnipresent phenomenon that governs a broad range of growth dynamics and formation of nanoscale periodic and delicate heterostructures.A self-oscillating growth phenomenon of catalyst droplets,consuming surface-coating a-Si/a-Ge bilayer,is exploited to accomplish a high-frequency alternating growth of ultrathin crystalline Si and Ge(c-Si/c-Ge)nano-slates,with Ge-rich layer thickness of 14–19 nm,embedded within a superlattice nanowire structure,with pre-known position and uniform channel diameter.A subsequent selective etching of the Ge-rich segments leaves a chain of ultrafine standing c-Si nanosheets down to~6 nm thick,without the use of any expensive high-resolution lithography and growth modulation control.A ternary-phase-competition model has been established to explain the underlying formation mechanism of this nanoscale self-oscillating growth dynamics.It is also suggested that these ultrathin nanosheets could help to produce ultrathin fin-channels for advanced electronics,or provide size-specified trapping sites to capture and position hetero nanoparticle for high-precision labelling or light emission.
基金R.M.Chen is supported in part by the NSF grant DMS-1907584F.Huang was supported in part by the National Center for Mathematics and Interdisciplinary Sciences,Academy of Mathematics and Systems Science,Chinese Academy of Sciences and the National Natural Sciences Foundation of China under Grant Nos.11371349 and 11688101+1 种基金D.Wang was supported in part by the NSF under grant DMS-1907519D.Yuan was supported in part by the National Natural Sciences Foundation of China under Grant No.12001045 and the China Postdoctoral Science Foundation under Grant Nos.2020M680428 and 2021T140063.
文摘This paper provides a review of the recent results on the stability of vortex sheets in compressible flows.Vortex sheets are contact discontinuities of the underlying flows.The vortex sheet problem is a free boundary problem with a characteristic boundary and is challenging in analysis.The formulation of the vortex sheet problem will be introduced.The linear stability and nonlinear stability for both the two-dimensional two-phase compressible flows and the two-dimensional elastic flows are summarized.The linear stability of vortex sheets for the three-dimensional elastic flows is also presented.The difficulties of the vortex sheet problems and the ideas of proofs are discussed.
文摘The aim of this study is to investigate the influence of fiber reinforcement polymer (FRP) on shear behavior of reinforcement concrete (RC) beams with various guidelines. The FRP thickness, beam depth and concrete strength at ultimate load are considered as main strength parameters. A finite element (FE) by using ANSYS computer program was used to analyze the reinforced concrete beams. The numerical models were used to investigate the effect of beam depth, concrete strength, CFRP sheet configuration, and CFRP sheet thickness on the behavior of reinforced concrete beams strengthened with CFRP sheets compared with different guidelines. The results from ACI guideline show little difference compared with FE, which make it suitable for RC beams strengthened with FRP sheets.
文摘Aqueous rechargeable zinc ion batteries are promising in electric grid storage due to their low cost and intrinsic safety.However,the practical implementation is hindered by the poor reversibility of the zinc anode,primarily caused by the chaotic Zn deposition present as dendrite and side reactions.
基金Project(51204003)supported by the National Natural Science Foundation of ChinaProject(KJ2011A051)supported by the Scientific Research Foundation of Education Department of Anhui Province,China
文摘The mechanical properties and texture of AM60(Mg-6.0Al-0.3Mn,mass fraction %) and ZXM200(Mg-1.6Zn-0.5Ca-0.2Mn) Mg alloys subjected to multi-pass hot rolling were investigated.The finer recrystallized grains usually exhibit particular preferred orientations and then alter the total texture feature of rolled sheets.Ca solid solution into Mg matrix serves to the formation of texture component with c-axis rotated away from normal direction towards transverse direction and then weakens the overall texture intensity,resulting in a similar anisotropic characteristic to RE-containing Mg alloys.
基金Project(HIT.NSRIF.2009033) supported by the Scientific Research Foundation of Harbin Institute of Technology,China
文摘The formability of AA5052/polyethylene/AA5052 sandwich sheets was experimentally studied. Three kinds of AA5052/polyethylene/AA5052 sandwich specimens with different thicknesses of core materials were prepared by the hot pressing adhesive method. Then, the uniaxial tensile tests were conducted to investigate the mechanical properties of AA5052/polyethylene/ AA5052 sandwich sheets, and the stretching tests were carried out to investigate the influences of polymer core thickness on the limit dome height of the sandwich sheet. The forming limit curves for three kinds of sandwich sheets were obtained. The experimental results show that the forming limit of the AA5052/polyethylene/AA5052 sandwich sheet is higher than that of the monolithic AA5052 sheet, and it increases with increasing the thickness of polyethylene core.
基金Project supported by Beijing Laboratory of Metallic Materials and Processing for Modern Transportation
文摘The mechanical properties, microstructures, and fractographs of TA15 sheets vacuum-annealed under different patterns were investigated. The results indicate that vacuum annealing significantly improves the mechanical properties of the sheets in comparison with those after ambient annealing. With increasing the annealing temperature, the phase boundaries and secondary a-phase increase, whereas the volume fraction of primary a-phase decreases, resulting in increased strength and decreased elongation A relatively fine secondary a-phase is obtained after double annealing. The desirable mechanical properties (i.e., ultimate tensile strength, yield strength, and elongation are 1070 MPa, 958 MPa, and 15%, respectively) are obtained through double annealing ((950 ℃/2 h, AC)+(600 ℃/2 h, AC)). The fractographs obtained after tensile tests show that the deepest and largest dimples are formed in the specimen annealed at 850 ℃, which indicates that the best plasticity is obtained at this annealing temperature.
文摘Shougang Group has carried out a strategic structure adjustment in order to realize the promise of Chinese people to the Olympic Games.Automotive sheets are chosen as a type of strategic product and an engine to upgrade enterprise management,technology and operation to reach the top international level during the transition from long products to steel sheets in Shougang Group.Since 2006,Shougang Group has made an elaborate preparation on steel sheet culture,production line construction,technology import,pilot plant and talent reserve.It lays the foundation for the development of automotive sheets.The developing history of cold rolled automotive sheets is reviewed and the research and development of cold rolled automotive sheets, tackling key problem of defect on surface and the latest progress of automotive sheets construction are described in this paper.The main contents were given as follows:①The products of automotive sheets realize zero breakthrough in Shougang Group.Monthly output was 300 ton in January,2009 and it increased to 48 000 ton in June,2010.The ratio of IF steel sheets increases to 70%from 40%.The proportion of outside panel in automotive sheets occupys more than 15%.②A high emulational pilot plant is used as a product developing platform to develop successfully automotive sheets with 1 000 MPa and below.It guarantees that the industrial development of DP and TRIP sheets gets success at a time.It covers continuous annealing sheets with tensile strength≤780 MPa and galvanizing sheets with tensile strength≤590 MPa.③Individual design is used to meet special requirement of customer.Shougang owns 23 inner brands of LCAK and IF steels.It insures that the grades of yield strength cover whole range from 120 to 270 MPa.It keeps the stabilization of steel performance by means of chemical composition control and high accuracy rolling technology.For example,the strength of soft steel fluctuates within±15 MPa.④The steel sheets with surface grade O5 are produced steadily by solving forming striation of IF steel,grain coarse on surface,edge curling skin and mountains - and - waters painting defects.⑤The safeguard mechanism on quality of products is improved steadily and the output of automotive sheets and outside panel increases greatly by building consistency quality management system、information - system and customer service system.
基金Project(CSTC2010AA4035)supported by Scientific and Technological Project of Chongqing Science and Technology Commission,ChinaProject(50504019)supported by the National Natural Science Foundation of China+1 种基金Project(CDJZR11130008)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(CDJXS10130001)supported by the Chongqing University Postgraduates'Science and Innovation Fund,China
文摘The effect of the repeated unidirectional bending (RUB) process and annealing on the formability of magnesium alloy sheets was investigated. The RUB process and annealing treatments produce two effects on microstructure: grain coarsening and weakening of the texture. The sheet that underwent RUB and was annealed at 300 ℃exhibits the best formability owing to the reduction of the (0002) basal texture intensity, which results in low yield strength, large fracture elongation, small Lankford value (r-value) and large strain hardening exponent (n-value). Compared with the as-received sheet, the coarse-grain sheet produced by RUB and annealing at 400 ℃ exhibits lower tensile properties but higher formability. The phenomenon is because the deformation twin enhanced by grain coarsening can accommodate the strain of thickness.
基金This work was supported by the Natural Science Foundation of Shanxi Province (No.2009011099), the Program for the Top Science and Technology Innovation Team of Higher Learning Institutions of Shanxi, and the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi.
文摘Titanium dioxide sheet photocatalysts composed of interwoven microstrips were successfully synthesized using filter paper as templates. The synthesized samples were characterized by means of Fourier transform infrared spectroscopy, surface area analyzer, thermogravimetric analysis, powder X-ray diffraction, and scanning electron microscopy. The photocatalytic activities of the samples were evaluated by the degradation of methyl orange in an aqueous solution under UV-illumination. The results demonstrated that the paper-like TiO2 sheets with the optimum proportion of anatase/rutile (10/1) had the highest photoactivity. And the presence of the filter paper fiber can improve the crystallinity, raise the anatase-rutile transformation temperature and contribute to the formation of being paper-like. A detailed formation mechanism for TiO2 sheets is proposed.
基金The National Natural Science Foundation of China(No.51108238)
文摘In order to study the fatigue failure mode and fatigue life laws of basalt-aramid and basalt-carbon hybrid fiber reinforced polymer ( FRP ) sheets, fatigue experiments are carried out, considering two hybrid ratios of 1 : 1 and 2:1 under different stress levels from 0.6 to 0.95. The results show that fractures occur first in carbon fibers or aramid fibers for the specimens with hybrid ratio of 1: 1, namely B1A1 and B1C1, while a fracture occurs first in basalt fibers for the specimens with a hybrid ratio of 2: 1, namely B2A1 and B2C1. The fatigue lives of the hybrid FRP sheets increase with the improvement of the content of carbon fibers or aramid fibers, and the influence of the carbon fibers content improvement to fatigue life is more significant. The fatigue performance of B2A1 is relatively worse, while the fatigue performance of B1C1 and B2C1 is relatively better. Finally, a new fatigue stiffness degradation model with dual variables and double inflection points is presented, which is applicable to both hybrid and normal FRP sheets.
基金Project(51805256)supported by the National Natural Science Foundation of China。
文摘The relationship among microstructure,mechanical properties and texture of TA32 titanium alloy sheets during hot tensile deformation at 800℃was investigated.In the test,the original sheet exhibited relatively low flow stress and sound plasticity,and increasing the heat treatment temperature resulted in an increased ultimate tensile strength(UTS)and a decreased elongation(EL).The deformation mechanism of TA32 alloy was dominated by high angle grain boundaries sliding and coordinated by dislocation motion.The coarsening of grains and the annihilation of dislocations in heat-treated specimens weakened the deformation ability of material,which led to the increase in flow stress.Based on the high-temperature creep equation,the quantitative relationship between microstructure and flow stress was established.The grain size exponent andαphase strength constant of TA32 alloy were calculated to be 1.57 and 549.58 MPa,respectively.The flow stress was accurately predicted by combining with the corresponding phase volume fraction and grain size.Besides,the deformation behavior of TA32 alloy was also dependent on the orientation of predominantαphase,and the main slip mode was the activation of prismaticslip system.The decrease of near prism-oriented texture in heat-treated specimens resulted in the enhancement of strength of the material.
基金supported by the National Natural Science Foundation of China under Grant No. 50504019Natural Science Foundation Project of CQ CSTC under Grant No. 2008BB4040
文摘In this paper, repeated unidirectional bending (RUB), was applied to improve the texture of AZ31B magnesium alloy sheets so as to enhance their stamping properties. The samples undergoing RUB were annealed at different temperatures. The mechanical properties, formability, textural components and microstructure of the samples before and after RUB were characterized and compared. It was found that the basal textural component was reduced dramatically by RUB, and that (1212) and (1211) textural components appeared. Annealing has a great effect on the mechanical properties of samples undergoing RUB. The plasticity and stamping formability of samples were greatly improved by RUB and annealing at 260℃ for 1 h, and elongation to fracture and Erichsen value were increased to 38% and 67%, respectively.
基金supported by the Fujian Provincial Natural Science Foundation(No.E0210011)the Educational Commission of Fujian province(No.K20014).
文摘The behavior of flow stress of Al sheets used for pressure can prepared by different melt-treatment during plastic deformation at elevated temperature was studied by isothermal compression test using Gleeble1500 dynamic hot-simulation testing machine. The results show that the AI sheets possess the remarkable characteristic of steady state flow stress when they are deformed in the temperature range of 350-500℃ at strain rates within the range of 0.01-10.0s^-1. A hyperbolic sine relationship is found to correlate well the flow stress with the strain rate, and an Arrhenius relationship with the temperature, which implies that the process of plastic deformation at elevated temperature for this material is thermally activated. Compared with the AI pieces prepared by no or conventional melt-treatment, hot deformation activation energy of AI sheets prepared by high-efficient melt-treatment is the smallest ( Q= 168.0kJ/mol), which reveals that the hot working formability of this material is very better, and has directly to do with the effective improvement of its metallurgical quality.
文摘The refining effect of Al3Ti1B1RE master alloy on Al sheets used for pressure can manufacture and the behavior of mixed rare earths in master alloy were investigated with XRD, OM, SEM and EDAX. It is found that the refining effect of the refiner on the material has superiority over foreign or domestic Al5Ti1B refiner, and the refiner still retains its refining ability for 6 h after adding it to molten Al, thus improving the strength and plasticity of the material remarkably. The excellent refining effect and stability of AlTiBRE refiner result from that RE can lower the surface energy of molten Al and improve the wetting characteristics of molten Al on refinement nuclei such as TiAl 3, TiB 2, etc., thus giving full play to the effect of heterogeneous nucleation and impeding the congregating tendency of TiB 2 phase in molten Al. At the same time, RE gathering in front of solid/liquid interface are also easy to cause composition supercooling in molten Al, thus impeding the growth of α Al grains and promoting α Al nucleation on refinement nuclei. In addition, RE also play certain role in purification and grain refinement, or modification, especially their effect of purification can improve the metallurgical quality of AlTiBRE master alloy.
基金Project(50504019) supported by the National Natural Science Foundation of ChinaProject(2008BB4040) supported by the Science Foundation of Chongqing, ChinaProject(2008AA4028) supported by Scientific and Technological Project of Chongqing Science and Technology Commission, China
文摘Repeatedly unidirectional bending(RUB) was applied to the magnesium alloy sheet to improve the basal texture.The effect of RUB temperature on resulting structure and room temperature properties was investigated.The texture components of the sheet undergoing RUB at recovery temperature were similar to those of the sheet undergoing RUB at room temperature(RT).As the RUB temperature increased to above recrystallization temperature,the texture components became more disperse and the pyramidal components increased.With the increase of RUB temperature,the grain size near the surface of the sheets undergoing RUB tended to grow up.When the sheets were processed by RUB at medium-high temperature followed by annealing at 533 K,the yield strength and fracture elongation were lower than those of the cold rolled sheet;however,the Erichsen value was slightly higher than that of the cold rolled sheet.The sheet undergoing RUB at RT followed by annealing at 533 K represented the best mechanical properties.
基金the National Nature Science Foundation of China(Nos.51805474,51622510,U1609207)Science Fund for Creative Research Groups of National Natural Science Foundation of China (No.51821093)China Postdoctoral Science Foundation (No.2017M621915).
文摘A native organ has heterogeneous structures, sirength, and cell components. It is a big challenge to fabricate organ prototypes with controllable shapes, strength, and cells. Herein, a hybrid method is developed to fabricate organ prototypes with controlled cell deposition by integrating extrusion-based 3D printing, electrospinning, and 3D bioprinting. Multi-scale sheets were first fabricated by 3D printing and electrospinning;then, all the sheets were assembled into organ prototypes by sol-gel react io n duri ng bioprinting. With this method, macroscale structures fabricated by 3D printing ensure the customized structures and provide mechanical support, nanoscale structures fabricated by electrospinning offer a favorable environment for cell growth, and different types of cells with controllable densities are deposited in accurate locations by bioprinting. The results show that L929 mouse fibroblasts encapsulated in the structures exhibited over 90% survival within 10 days and maintai ned a high proliferation rate. Furthermore, the cells grew in spherical shapes first and then migrated to the nano scale fibers showing stretched morphology. Additionally, a branched vascular structure was successfully fabricated using the presented method. Compared with other methods, this strategy offers an easy way to simultancously realize the shape control, nanolibrous structures, and cell accurate deposition, which will have potemidi applications in tissue cngineering.