This paper presents the first of a series of case studies on the seismic design of long span bridges (cable-stayed bridges, suspension bridges and arch bridges) under a cooperative research project on seismic behavi...This paper presents the first of a series of case studies on the seismic design of long span bridges (cable-stayed bridges, suspension bridges and arch bridges) under a cooperative research project on seismic behavior and design of highway bridges between the State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University and the Multidisciplinary Center for Earthquake Engineering Research, University at Buffalo. The objective of this series of case studies is to examine the differences and similarities on the seismic design practice of long span bridges in China and the U.S., to identify research needs and to develop design guidelines beneficial to bridge engineers in both countries. Unlike short to medium span bridges, long span bridges are not included in most seismic design specifications, mainly because they are location dependent and structurally unique. In this paper, an available model of a steel tied half through arch bridge with a main span of 550m in China is discussed. Analysis is focused on comparisons of the seismic responses due to different ground motions. Seismic design criteria and seismic performance requirements for long span bridges in both countries were first introduced and compared, and then three near field earthquake records with large vertical components were selected as the excitations to examine the seismic behavior and seismic vulnerability of the bridge. Results show that (1) the selected near field ground motions cause larger responses to key components (critical sections) of the bridge (such as arch rib ends) with a maximum increase of more than twice those caused by the site specific ground motions; (2) piers, longitudinal girders and arch crowns are more vulnerable to vertical motions, especially their axial forces; and (3) large vertical components of near field ground motions may not significantly affect the bridge's internal forces provided that their peak acceleration spectra ordinates only appear at periods of less than 0.2s. However, they may have more influence on the longitudinal displacements of sliding bearings due to their large displacement spectra ordinates at the fundamental period of the bridge.展开更多
With the current rapid development of urbanization in China,people's living standards have been greatly improved.In the context of such a development background,the requirements for road traffic are getting more s...With the current rapid development of urbanization in China,people's living standards have been greatly improved.In the context of such a development background,the requirements for road traffic are getting more stringent,especially for bridge projects.The arched continuous rigid-frame bridge was developed under this social background.The advantage of the bridge lies in the design of a bridge model that integrates various functions such as transportation,landscape,and sightseeing.Based on the above,this paper first refers to the case to analyze the design and construction strategy of the arched continuous rigid-frame bridge,in hope of providing a valuable reference for relevant personnel.展开更多
In order to ensure the construction quality and safety of small and medium span basket type steel box tied arch bridge,this paper takes a practical project as an example to analyze the key technologies in its design p...In order to ensure the construction quality and safety of small and medium span basket type steel box tied arch bridge,this paper takes a practical project as an example to analyze the key technologies in its design process.It is hoped that this analysis can provide corresponding reference for the design and construction of this kind of arch bridge.展开更多
文摘This paper presents the first of a series of case studies on the seismic design of long span bridges (cable-stayed bridges, suspension bridges and arch bridges) under a cooperative research project on seismic behavior and design of highway bridges between the State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University and the Multidisciplinary Center for Earthquake Engineering Research, University at Buffalo. The objective of this series of case studies is to examine the differences and similarities on the seismic design practice of long span bridges in China and the U.S., to identify research needs and to develop design guidelines beneficial to bridge engineers in both countries. Unlike short to medium span bridges, long span bridges are not included in most seismic design specifications, mainly because they are location dependent and structurally unique. In this paper, an available model of a steel tied half through arch bridge with a main span of 550m in China is discussed. Analysis is focused on comparisons of the seismic responses due to different ground motions. Seismic design criteria and seismic performance requirements for long span bridges in both countries were first introduced and compared, and then three near field earthquake records with large vertical components were selected as the excitations to examine the seismic behavior and seismic vulnerability of the bridge. Results show that (1) the selected near field ground motions cause larger responses to key components (critical sections) of the bridge (such as arch rib ends) with a maximum increase of more than twice those caused by the site specific ground motions; (2) piers, longitudinal girders and arch crowns are more vulnerable to vertical motions, especially their axial forces; and (3) large vertical components of near field ground motions may not significantly affect the bridge's internal forces provided that their peak acceleration spectra ordinates only appear at periods of less than 0.2s. However, they may have more influence on the longitudinal displacements of sliding bearings due to their large displacement spectra ordinates at the fundamental period of the bridge.
文摘With the current rapid development of urbanization in China,people's living standards have been greatly improved.In the context of such a development background,the requirements for road traffic are getting more stringent,especially for bridge projects.The arched continuous rigid-frame bridge was developed under this social background.The advantage of the bridge lies in the design of a bridge model that integrates various functions such as transportation,landscape,and sightseeing.Based on the above,this paper first refers to the case to analyze the design and construction strategy of the arched continuous rigid-frame bridge,in hope of providing a valuable reference for relevant personnel.
文摘In order to ensure the construction quality and safety of small and medium span basket type steel box tied arch bridge,this paper takes a practical project as an example to analyze the key technologies in its design process.It is hoped that this analysis can provide corresponding reference for the design and construction of this kind of arch bridge.